Abstract
Jan-nano, a 4B parameter language model, achieves high efficiency and performance through specialized fine-tuning and multi-stage RLVR, operating on consumer hardware with a 128K context length.
Most language models face a fundamental tradeoff where powerful capabilities require substantial computational resources. We shatter this constraint with Jan-nano, a 4B parameter language model that redefines efficiency through radical specialization: instead of trying to know everything, it masters the art of finding anything instantly. Fine-tuned from Qwen3-4B using our novel multi-stage RLVR system that completely eliminates reliance on next token prediction training (SFT), Jan-nano achieves 83.2% on SimpleQA benchmark with MCP integration while running on consumer hardware. With 128K context length, Jan-nano proves that intelligence isn't about scale, it's about strategy.
Community
Most language models face a fundamental tradeoff where powerful capabilities require substantial computational resources. We shatter this constraint with Jan-nano, a 4B parameter language model that redefines efficiency through radical specialization: instead of trying to know everything, it masters the art of finding anything instantly. Fine-tuned from Qwen3-4B using our novel multi-stage RLVR system that completely eliminates reliance on next token prediction training (SFT), Jan-nano achieves 83.2% on SimpleQA benchmark with MCP integration while running on consumer hardware. With 128K context length, Jan-nano proves that intelligence isn't about scale, it's about strategy.
Models citing this paper 6
Browse 6 models citing this paperDatasets citing this paper 0
No dataset linking this paper