new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 12

When LLMs Meet API Documentation: Can Retrieval Augmentation Aid Code Generation Just as It Helps Developers?

Retrieval-augmented generation (RAG) has increasingly shown its power in extending large language models' (LLMs') capability beyond their pre-trained knowledge. Existing works have shown that RAG can help with software development tasks such as code generation, code update, and test generation. Yet, the effectiveness of adapting LLMs to fast-evolving or less common API libraries using RAG remains unknown. To bridge this gap, we take an initial step to study this unexplored yet practical setting - when developers code with a less common library, they often refer to its API documentation; likewise, when LLMs are allowed to look up API documentation via RAG, to what extent can LLMs be advanced? To mimic such a setting, we select four less common open-source Python libraries with a total of 1017 eligible APIs. We study the factors that affect the effectiveness of using the documentation of less common API libraries as additional knowledge for retrieval and generation. Our intensive study yields interesting findings: (1) RAG helps improve LLMs' performance by 83%-220%. (2) Example code contributes the most to advance LLMs, instead of the descriptive texts and parameter lists in the API documentation. (3) LLMs could sometimes tolerate mild noises (typos in description or incorrect parameters) by referencing their pre-trained knowledge or document context. Finally, we suggest that developers pay more attention to the quality and diversity of the code examples in the API documentation. The study sheds light on future low-code software development workflows.

  • 5 authors
·
Mar 19

CodeUpdateArena: Benchmarking Knowledge Editing on API Updates

Large language models (LLMs) are increasingly being used to synthesize and reason about source code. However, the static nature of these models' knowledge does not reflect the fact that libraries and API functions they invoke are continuously evolving, with functionality being added or changing. While numerous benchmarks evaluate how LLMs can generate code, no prior work has studied how an LLMs' knowledge about code API functions can be updated. To fill this gap, we present CodeUpdateArena, a benchmark for knowledge editing in the code domain. An instance in our benchmark consists of a synthetic API function update paired with a program synthesis example that uses the updated functionality; our goal is to update an LLM to be able to solve this program synthesis example without providing documentation of the update at inference time. Compared to knowledge editing for facts encoded in text, success here is more challenging: a code LLM must correctly reason about the semantics of the modified function rather than just reproduce its syntax. Our dataset is constructed by first prompting GPT-4 to generate atomic and executable function updates. Then, for each update, we generate program synthesis examples whose code solutions are prone to use the update. Our benchmark covers updates of various types to 54 functions from seven diverse Python packages, with a total of 670 program synthesis examples. Our experiments show that prepending documentation of the update to open-source code LLMs (i.e., DeepSeek, CodeLlama) does not allow them to incorporate changes for problem solving, and existing knowledge editing techniques also have substantial room for improvement. We hope our benchmark will inspire new methods for knowledge updating in code LLMs.

  • 5 authors
·
Jul 8, 2024

The Fused Kernel Library: A C++ API to Develop Highly-Efficient GPU Libraries

Existing GPU libraries often struggle to fully exploit the parallel resources and on-chip memory (SRAM) of GPUs when chaining multiple GPU functions as individual kernels. While Kernel Fusion (KF) techniques like Horizontal Fusion (HF) and Vertical Fusion (VF) can mitigate this, current library implementations often require library developers to manually create fused kernels. Hence, library users rely on limited sets of pre-compiled or template-based fused kernels. This limits the use cases that can benefit from HF and VF and increases development costs. In order to solve these issues, we present a novel methodology for building GPU libraries that enables automatic on-demand HF and VF for arbitrary combinations of GPU library functions. Our methodology defines reusable, fusionable components that users combine via high-level programming interfaces. Leveraging C++17 metaprogramming features available in compilers like nvcc, our methodology generates a single and optimized fused kernel tailored to the user's specific sequence of operations at compile time, without needing a custom compiler or manual development and pre-compilation of kernel combinations. This approach abstracts low-level GPU complexities while maximizing GPU resource utilization and keeping intermediate data in SRAM. We provide an open-source implementation demonstrating significant speedups compared to traditional libraries in various benchmarks, validating the effectiveness of this methodology for improving GPU performance in the range of 2x to more than 1000x, while preserving high-level programmability.

  • 4 authors
·
Aug 9

DocTer: Documentation Guided Fuzzing for Testing Deep Learning API Functions

Input constraints are useful for many software development tasks. For example, input constraints of a function enable the generation of valid inputs, i.e., inputs that follow these constraints, to test the function deeper. API functions of deep learning (DL) libraries have DL specific input constraints, which are described informally in the free form API documentation. Existing constraint extraction techniques are ineffective for extracting DL specific input constraints. To fill this gap, we design and implement a new technique, DocTer, to analyze API documentation to extract DL specific input constraints for DL API functions. DocTer features a novel algorithm that automatically constructs rules to extract API parameter constraints from syntactic patterns in the form of dependency parse trees of API descriptions. These rules are then applied to a large volume of API documents in popular DL libraries to extract their input parameter constraints. To demonstrate the effectiveness of the extracted constraints, DocTer uses the constraints to enable the automatic generation of valid and invalid inputs to test DL API functions. Our evaluation on three popular DL libraries (TensorFlow, PyTorch, and MXNet) shows that the precision of DocTer in extracting input constraints is 85.4%. DocTer detects 94 bugs from 174 API functions, including one previously unknown security vulnerability that is now documented in the CVE database, while a baseline technique without input constraints detects only 59 bugs. Most (63) of the 94 bugs are previously unknown, 54 of which have been fixed or confirmed by developers after we report them. In addition, DocTer detects 43 inconsistencies in documents, 39 of which are fixed or confirmed.

  • 7 authors
·
Sep 2, 2021

ToolCoder: Teach Code Generation Models to use API search tools

Automatically generating source code from natural language descriptions has been a growing field of research in recent years. However, current large-scale code generation models often encounter difficulties when selecting appropriate APIs for specific contexts. These models may generate APIs that do not meet requirements or refer to non-existent APIs in third-party libraries, especially for lesser-known or private libraries. Inspired by the process of human developers using tools to search APIs, we propose ToolCoder, a novel approach that integrates API search tools with existing models to assist in code generation and API selection. To teach our model to use tools, we introduce an automated data annotation method using ChatGPT to add tool usage information into the source code data and fine-tune code generation models. During inference, we integrate API search tools into the generation process so that our model can automatically use the search tool to get suggestions when selecting an API. Our experimental results demonstrate that ToolCoder exhibits excellent performance and generalization across five public and private library code generation benchmarks, with at least 6.21\% improvement on average pass@1 metrics and 9.64\% improvement on average pass@10 metrics compared to state-of-the-art methods. Furthermore, we show that our relatively small ToolCoder model is comparable to one of the current best models, GPT-3.5, highlighting the potential of incorporating programming tools into the code generation process.

  • 6 authors
·
May 6, 2023

Private-Library-Oriented Code Generation with Large Language Models

Large language models (LLMs), such as Codex and GPT-4, have recently showcased their remarkable code generation abilities, facilitating a significant boost in coding efficiency. This paper will delve into utilizing LLMs for code generation in private libraries, as they are widely employed in everyday programming. Despite their remarkable capabilities, generating such private APIs poses a formidable conundrum for LLMs, as they inherently lack exposure to these private libraries during pre-training. To address this challenge, we propose a novel framework that emulates the process of programmers writing private code. This framework comprises two modules: APIFinder first retrieves potentially useful APIs from API documentation; and APICoder then leverages these retrieved APIs to generate private code. Specifically, APIFinder employs vector retrieval techniques and allows user involvement in the retrieval process. For APICoder, it can directly utilize off-the-shelf code generation models. To further cultivate explicit proficiency in invoking APIs from prompts, we continuously pre-train a reinforced version of APICoder, named CodeGenAPI. Our goal is to train the above two modules on vast public libraries, enabling generalization to private ones. Meanwhile, we create four private library benchmarks, including TorchDataEval, TorchDataComplexEval, MonkeyEval, and BeatNumEval, and meticulously handcraft test cases for each benchmark to support comprehensive evaluations. Numerous experiments on the four benchmarks consistently affirm the effectiveness of our approach. Furthermore, deeper analysis is also conducted to glean additional insights.

  • 9 authors
·
Jul 28, 2023

APIGen: Generative API Method Recommendation

Automatic API method recommendation is an essential task of code intelligence, which aims to suggest suitable APIs for programming queries. Existing approaches can be categorized into two primary groups: retrieval-based and learning-based approaches. Although these approaches have achieved remarkable success, they still come with notable limitations. The retrieval-based approaches rely on the text representation capabilities of embedding models, while the learning-based approaches require extensive task-specific labeled data for training. To mitigate the limitations, we propose APIGen, a generative API recommendation approach through enhanced in-context learning (ICL). APIGen involves two main components: (1) Diverse Examples Selection. APIGen searches for similar posts to the programming queries from the lexical, syntactical, and semantic perspectives, providing more informative examples for ICL. (2) Guided API Recommendation. APIGen enables large language models (LLMs) to perform reasoning before generating API recommendations, where the reasoning involves fine-grained matching between the task intent behind the queries and the factual knowledge of the APIs. With the reasoning process, APIGen makes recommended APIs better meet the programming requirement of queries and also enhances the interpretability of results. We compare APIGen with four existing approaches on two publicly available benchmarks. Experiments show that APIGen outperforms the best baseline CLEAR by 105.8% in method-level API recommendation and 54.3% in class-level API recommendation in terms of SuccessRate@1. Besides, APIGen achieves an average 49.87% increase compared to the zero-shot performance of popular LLMs such as GPT-4 in method-level API recommendation regarding the SuccessRate@3 metric.

  • 6 authors
·
Jan 28, 2024

Contextual API Completion for Unseen Repositories Using LLMs

Large language models have made substantial progress in addressing diverse code-related tasks. However, their adoption is hindered by inconsistencies in generating output due to the lack of real-world, domain-specific information, such as for intra-repository API calls for unseen software projects. We introduce a novel technique to mitigate hallucinations by leveraging global and local contextual information within a code repository for API completion tasks. Our approach is tailored to refine code completion tasks, with a focus on optimizing local API completions. We examine relevant import statements during API completion to derive insights into local APIs, drawing from their method signatures. For API token completion, we analyze the inline variables and correlate them with the appropriate imported modules, thereby allowing our approach to rank the most contextually relevant suggestions from the available local APIs. Further, for conversational API completion, we gather APIs that are most relevant to the developer query with a retrieval-based search across the project. We employ our tool, LANCE, within the framework of our proposed benchmark, APIEval, encompassing two different programming languages. Our evaluation yields an average accuracy of 82.6% for API token completion and 76.9% for conversational API completion tasks. On average, LANCE surpasses Copilot by 143% and 142% for API token completion and conversational API completion, respectively. The implications of our findings are substantial for developers, suggesting that our lightweight context analysis can be applied to multilingual environments without language-specific training or fine-tuning, allowing for efficient implementation with minimal examples and effort.

  • 4 authors
·
May 7, 2024

TPTU-v2: Boosting Task Planning and Tool Usage of Large Language Model-based Agents in Real-world Systems

Large Language Models (LLMs) have demonstrated proficiency in addressing tasks that necessitate a combination of task planning and the usage of external tools that require a blend of task planning and the utilization of external tools, such as APIs. However, real-world complex systems present three prevalent challenges concerning task planning and tool usage: (1) The real system usually has a vast array of APIs, so it is impossible to feed the descriptions of all APIs to the prompt of LLMs as the token length is limited; (2) the real system is designed for handling complex tasks, and the base LLMs can hardly plan a correct sub-task order and API-calling order for such tasks; (3) Similar semantics and functionalities among APIs in real systems create challenges for both LLMs and even humans in distinguishing between them. In response, this paper introduces a comprehensive framework aimed at enhancing the Task Planning and Tool Usage (TPTU) abilities of LLM-based agents operating within real-world systems. Our framework comprises three key components designed to address these challenges: (1) the API Retriever selects the most pertinent APIs for the user task among the extensive array available; (2) LLM Finetuner tunes a base LLM so that the finetuned LLM can be more capable for task planning and API calling; (3) the Demo Selector adaptively retrieves different demonstrations related to hard-to-distinguish APIs, which is further used for in-context learning to boost the final performance. We validate our methods using a real-world commercial system as well as an open-sourced academic dataset, and the outcomes clearly showcase the efficacy of each individual component as well as the integrated framework.

  • 12 authors
·
Nov 19, 2023 2

Pop Quiz! Do Pre-trained Code Models Possess Knowledge of Correct API Names?

Recent breakthroughs in pre-trained code models, such as CodeBERT and Codex, have shown their superior performance in various downstream tasks. The correctness and unambiguity of API usage among these code models are crucial for achieving desirable program functionalities, requiring them to learn various API fully qualified names structurally and semantically. Recent studies reveal that even state-of-the-art pre-trained code models struggle with suggesting the correct APIs during code generation. However, the reasons for such poor API usage performance are barely investigated. To address this challenge, we propose using knowledge probing as a means of interpreting code models, which uses cloze-style tests to measure the knowledge stored in models. Our comprehensive study examines a code model's capability of understanding API fully qualified names from two different perspectives: API call and API import. Specifically, we reveal that current code models struggle with understanding API names, with pre-training strategies significantly affecting the quality of API name learning. We demonstrate that natural language context can assist code models in locating Python API names and generalize Python API name knowledge to unseen data. Our findings provide insights into the limitations and capabilities of current pre-trained code models, and suggest that incorporating API structure into the pre-training process can improve automated API usage and code representations. This work provides significance for advancing code intelligence practices and direction for future studies. All experiment results, data and source code used in this work are available at https://doi.org/10.5281/zenodo.7902072.

  • 7 authors
·
Sep 14, 2023

ShortcutsBench: A Large-Scale Real-world Benchmark for API-based Agents

Recent advancements in integrating large language models (LLMs) with application programming interfaces (APIs) have gained significant interest in both academia and industry. These API-based agents, leveraging the strong autonomy and planning capabilities of LLMs, can efficiently solve problems requiring multi-step actions. However, their ability to handle multi-dimensional difficulty levels, diverse task types, and real-world demands through APIs remains unknown. In this paper, we introduce ShortcutsBench, a large-scale benchmark for the comprehensive evaluation of API-based agents in solving tasks with varying levels of difficulty, diverse task types, and real-world demands. ShortcutsBench includes a wealth of real APIs from Apple Inc.'s operating systems, refined user queries from shortcuts, human-annotated high-quality action sequences from shortcut developers, and accurate parameter filling values about primitive parameter types, enum parameter types, outputs from previous actions, and parameters that need to request necessary information from the system or user. Our extensive evaluation of agents built with 5 leading open-source (size >= 57B) and 4 closed-source LLMs (e.g. Gemini-1.5-Pro and GPT-3.5) reveals significant limitations in handling complex queries related to API selection, parameter filling, and requesting necessary information from systems and users. These findings highlight the challenges that API-based agents face in effectively fulfilling real and complex user queries. All datasets, code, and experimental results will be available at https://github.com/eachsheep/shortcutsbench.

  • 8 authors
·
Jun 28, 2024

LLM+Reasoning+Planning for supporting incomplete user queries in presence of APIs

Recent availability of Large Language Models (LLMs) has led to the development of numerous LLM-based approaches aimed at providing natural language interfaces for various end-user tasks. These end-user tasks in turn can typically be accomplished by orchestrating a given set of APIs. In practice, natural language task requests (user queries) are often incomplete, i.e., they may not contain all the information required by the APIs. While LLMs excel at natural language processing (NLP) tasks, they frequently hallucinate on missing information or struggle with orchestrating the APIs. The key idea behind our proposed approach is to leverage logical reasoning and classical AI planning along with an LLM for accurately answering user queries including identification and gathering of any missing information in these queries. Our approach uses an LLM and ASP (Answer Set Programming) solver to translate a user query to a representation in Planning Domain Definition Language (PDDL) via an intermediate representation in ASP. We introduce a special API "get_info_api" for gathering missing information. We model all the APIs as PDDL actions in a way that supports dataflow between the APIs. Our approach then uses a classical AI planner to generate an orchestration of API calls (including calls to get_info_api) to answer the user query. Our evaluation results show that our approach significantly outperforms a pure LLM based approach by achieving over 95\% success rate in most cases on a dataset containing complete and incomplete single goal and multi-goal queries where the multi-goal queries may or may not require dataflow among the APIs.

  • 4 authors
·
May 20, 2024

API2Com: On the Improvement of Automatically Generated Code Comments Using API Documentations

Code comments can help in program comprehension and are considered as important artifacts to help developers in software maintenance. However, the comments are mostly missing or are outdated, specially in complex software projects. As a result, several automatic comment generation models are developed as a solution. The recent models explore the integration of external knowledge resources such as Unified Modeling Language class diagrams to improve the generated comments. In this paper, we propose API2Com, a model that leverages the Application Programming Interface Documentations (API Docs) as a knowledge resource for comment generation. The API Docs include the description of the methods in more details and therefore, can provide better context in the generated comments. The API Docs are used along with the code snippets and Abstract Syntax Trees in our model. We apply the model on a large Java dataset of over 130,000 methods and evaluate it using both Transformer and RNN-base architectures. Interestingly, when API Docs are used, the performance increase is negligible. We therefore run different experiments to reason about the results. For methods that only contain one API, adding API Docs improves the results by 4% BLEU score on average (BLEU score is an automatic evaluation metric used in machine translation). However, as the number of APIs that are used in a method increases, the performance of the model in generating comments decreases due to long documentations used in the input. Our results confirm that the API Docs can be useful in generating better comments, but, new techniques are required to identify the most informative ones in a method rather than using all documentations simultaneously.

  • 3 authors
·
Mar 19, 2021

ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world APIs

Despite the advancements of open-source large language models (LLMs) and their variants, e.g., LLaMA and Vicuna, they remain significantly limited in performing higher-level tasks, such as following human instructions to use external tools (APIs). This is because current instruction tuning largely focuses on basic language tasks instead of the tool-use domain. This is in contrast to state-of-the-art (SOTA) LLMs, e.g., ChatGPT, which have demonstrated excellent tool-use capabilities but are unfortunately closed source. To facilitate tool-use capabilities within open-source LLMs, we introduce ToolLLM, a general tool-use framework of data construction, model training and evaluation. We first present ToolBench, an instruction-tuning dataset for tool use, which is created automatically using ChatGPT. Specifically, we collect 16,464 real-world RESTful APIs spanning 49 categories from RapidAPI Hub, then prompt ChatGPT to generate diverse human instructions involving these APIs, covering both single-tool and multi-tool scenarios. Finally, we use ChatGPT to search for a valid solution path (chain of API calls) for each instruction. To make the searching process more efficient, we develop a novel depth-first search-based decision tree (DFSDT), enabling LLMs to evaluate multiple reasoning traces and expand the search space. We show that DFSDT significantly enhances the planning and reasoning capabilities of LLMs. For efficient tool-use assessment, we develop an automatic evaluator: ToolEval. We fine-tune LLaMA on ToolBench and obtain ToolLLaMA. Our ToolEval reveals that ToolLLaMA demonstrates a remarkable ability to execute complex instructions and generalize to unseen APIs, and exhibits comparable performance to ChatGPT. To make the pipeline more practical, we devise a neural API retriever to recommend appropriate APIs for each instruction, negating the need for manual API selection.

  • 18 authors
·
Jul 31, 2023 5

Can ChatGPT replace StackOverflow? A Study on Robustness and Reliability of Large Language Model Code Generation

Recently, the large language models (LLMs) have shown extraordinary ability in understanding natural language and generating programming code. It has been a common practice of software engineers to consult LLMs when encountering coding questions. Although efforts have been made to avoid syntax errors and align the code with the intended semantics, the reliability and robustness of the code generationfrom LLMs have not yet been thoroughly studied. The executable code is not equivalent to the reliable and robust code, especially in the context of real-world software development. The misuse of APIs in the generated code could lead to severe problem, such as resource leaks, program crashes. To make things worse, the users of LLM code generation services are actually the developers that are most vulnerable to these code that seems right -- They are always novice developers that are not familiar with the APIs that LLMs generate code for them. Therefore, they could hardly tell the misuse in the code generated by LLMs, which further facilitates the incorrect code applied in real-world software. Existing code evaluation benchmark and datasets focus on crafting small tasks such as programming questions in coding interviews, which however deviates from the problem that developers would ask LLM for real-world coding help. To fill the missing piece, in this work, we propose a dataset RobustAPI for evaluating the reliability and robustness of code generated by LLMs. We collect 1208 coding questions from StackOverflow on 24 representative Java APIs. We summarize thecommon misuse patterns of these APIs and evaluate them oncurrent popular LLMs. The evaluation results show that evenfor GPT-4, 62% of the generated code contains API misuses,which would cause unexpected consequences if the code isintroduced into real-world software.

  • 2 authors
·
Aug 20, 2023

Automatically Extracting Web API Specifications from HTML Documentation

Web API specifications are machine-readable descriptions of APIs. These specifications, in combination with related tooling, simplify and support the consumption of APIs. However, despite the increased distribution of web APIs, specifications are rare and their creation and maintenance heavily relies on manual efforts by third parties. In this paper, we propose an automatic approach and an associated tool called D2Spec for extracting specifications from web API documentation pages. Given a seed online documentation page on an API, D2Spec first crawls all documentation pages on the API, and then uses a set of machine learning techniques to extract the base URL, path templates, and HTTP methods, which collectively describe the endpoints of an API. We evaluated whether D2Spec can accurately extract endpoints from documentation on 120 web APIs. The results showed that D2Spec achieved a precision of 87.5% in identifying base URLs, a precision of 81.3% and a recall of 80.6% in generating path templates, and a precision of 84.4% and a recall of 76.2% in extracting HTTP methods. In addition, we found that D2Spec was useful when applied to APIs with pre-existing API specifications: D2Spec revealed many inconsistencies between web API documentation and their corresponding publicly available specifications. Thus, D2Spec can be used by web API providers to keep documentation and specifications in synchronization.

  • 5 authors
·
Jan 26, 2018

Dense Text Retrieval based on Pretrained Language Models: A Survey

Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval.

  • 4 authors
·
Nov 27, 2022

Binding Language Models in Symbolic Languages

Though end-to-end neural approaches have recently been dominating NLP tasks in both performance and ease-of-use, they lack interpretability and robustness. We propose Binder, a training-free neural-symbolic framework that maps the task input to a program, which (1) allows binding a unified API of language model (LM) functionalities to a programming language (e.g., SQL, Python) to extend its grammar coverage and thus tackle more diverse questions, (2) adopts an LM as both the program parser and the underlying model called by the API during execution, and (3) requires only a few in-context exemplar annotations. Specifically, we employ GPT-3 Codex as the LM. In the parsing stage, with only a few in-context exemplars, Codex is able to identify the part of the task input that cannot be answerable by the original programming language, correctly generate API calls to prompt Codex to solve the unanswerable part, and identify where to place the API calls while being compatible with the original grammar. In the execution stage, Codex can perform versatile functionalities (e.g., commonsense QA, information extraction) given proper prompts in the API calls. Binder achieves state-of-the-art results on WikiTableQuestions and TabFact datasets, with explicit output programs that benefit human debugging. Note that previous best systems are all finetuned on tens of thousands of task-specific samples, while Binder only uses dozens of annotations as in-context exemplars without any training. Our code is available at https://github.com/HKUNLP/Binder .

  • 12 authors
·
Oct 6, 2022

CodeRAG-Bench: Can Retrieval Augment Code Generation?

While language models (LMs) have proven remarkably adept at generating code, many programs are challenging for LMs to generate using their parametric knowledge alone. Providing external contexts such as library documentation can facilitate generating accurate and functional code. Despite the success of retrieval-augmented generation (RAG) in various text-oriented tasks, its potential for improving code generation remains under-explored. In this work, we conduct a systematic, large-scale analysis by asking: in what scenarios can retrieval benefit code generation models? and what challenges remain? We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks, including basic programming, open-domain, and repository-level problems. We aggregate documents from five sources for models to retrieve contexts: competition solutions, online tutorials, library documentation, StackOverflow posts, and GitHub repositories. We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources. While notable gains are made in final code generation by retrieving high-quality contexts across various settings, our analysis reveals room for improvement -- current retrievers still struggle to fetch useful contexts especially with limited lexical overlap, and generators fail to improve with limited context lengths or abilities to integrate additional contexts. We hope CodeRAG-Bench serves as an effective testbed to encourage further development of advanced code-oriented RAG methods.

  • 7 authors
·
Jun 20, 2024

CoIR: A Comprehensive Benchmark for Code Information Retrieval Models

Despite the substantial success of Information Retrieval (IR) in various NLP tasks, most IR systems predominantly handle queries and corpora in natural language, neglecting the domain of code retrieval. Code retrieval is critically important yet remains under-explored, with existing methods and benchmarks inadequately representing the diversity of code in various domains and tasks. Addressing this gap, we present \name (Code Information Retrieval Benchmark), a robust and comprehensive benchmark specifically designed to assess code retrieval capabilities. \name comprises ten meticulously curated code datasets, spanning eight distinctive retrieval tasks across seven diverse domains. We first discuss the construction of \name and its diverse dataset composition. Further, we evaluate nine widely used retrieval models using \name, uncovering significant difficulties in performing code retrieval tasks even with state-of-the-art systems. To facilitate easy adoption and integration within existing research workflows, \name has been developed as a user-friendly Python framework, readily installable via pip. It shares same data schema as other popular benchmarks like MTEB and BEIR, enabling seamless cross-benchmark evaluations. Through \name, we aim to invigorate research in the code retrieval domain, providing a versatile benchmarking tool that encourages further development and exploration of code retrieval systems\url{ https://github.com/CoIR-team/coir}.

  • 9 authors
·
Jul 3, 2024

Interpreting User Requests in the Context of Natural Language Standing Instructions

Users of natural language interfaces, generally powered by Large Language Models (LLMs),often must repeat their preferences each time they make a similar request. To alleviate this, we propose including some of a user's preferences and instructions in natural language -- collectively termed standing instructions -- as additional context for such interfaces. For example, when a user states I'm hungry, their previously expressed preference for Persian food will be automatically added to the LLM prompt, so as to influence the search for relevant restaurants. We develop NLSI, a language-to-program dataset consisting of over 2.4K dialogues spanning 17 domains, where each dialogue is paired with a user profile (a set of users specific standing instructions) and corresponding structured representations (API calls). A key challenge in NLSI is to identify which subset of the standing instructions is applicable to a given dialogue. NLSI contains diverse phenomena, from simple preferences to interdependent instructions such as triggering a hotel search whenever the user is booking tickets to an event. We conduct experiments on NLSI using prompting with large language models and various retrieval approaches, achieving a maximum of 44.7% exact match on API prediction. Our results demonstrate the challenges in identifying the relevant standing instructions and their interpretation into API calls.

  • 6 authors
·
Nov 16, 2023

DeepResearchGym: A Free, Transparent, and Reproducible Evaluation Sandbox for Deep Research

Deep research systems represent an emerging class of agentic information retrieval methods that generate comprehensive and well-supported reports to complex queries. However, most existing frameworks rely on dynamic commercial search APIs, which pose reproducibility and transparency challenges in addition to their cost. To address these limitations, we introduce DeepResearchGym, an open-source sandbox that combines a reproducible search API with a rigorous evaluation protocol for benchmarking deep research systems. The API indexes large-scale public web corpora, namely ClueWeb22 and FineWeb, using a state-of-the-art dense retriever and approximate nearest neighbor search via DiskANN. It achieves lower latency than popular commercial APIs while ensuring stable document rankings across runs, and is freely available for research use. To evaluate deep research systems' outputs, we extend the Researchy Questions benchmark with automatic metrics through LLM-as-a-judge assessments to measure alignment with users' information needs, retrieval faithfulness, and report quality. Experimental results show that systems integrated with DeepResearchGym achieve performance comparable to those using commercial APIs, with performance rankings remaining consistent across evaluation metrics. A human evaluation study further confirms that our automatic protocol aligns with human preferences, validating the framework's ability to help support controlled assessment of deep research systems. Our code and API documentation are available at https://www.deepresearchgym.ai.

CRAFT: Customizing LLMs by Creating and Retrieving from Specialized Toolsets

Large language models (LLMs) are often augmented with tools to solve complex tasks. By generating code snippets and executing them through task-specific Application Programming Interfaces (APIs), they can offload certain functions to dedicated external modules, such as image encoding and performing calculations. However, most existing approaches to augment LLMs with tools are constrained by general-purpose APIs and lack the flexibility for tailoring them to specific tasks. In this work, we present CRAFT, a general tool creation and retrieval framework for LLMs. It creates toolsets specifically curated for the tasks and equips LLMs with a component that retrieves tools from these sets to enhance their capability to solve complex tasks. For each task, we collect specific code solutions by prompting GPT-4 to solve the training examples. Following a validation step ensuring the correctness, these solutions are abstracted into code snippets to enhance reusability, and deduplicated for higher quality. At inference time, the language model retrieves snippets from the toolsets and then executes them or generates the output conditioning on the retrieved snippets. Our method is designed to be flexible and offers a plug-and-play approach to adapt off-the-shelf LLMs to unseen domains and modalities, without any finetuning. Experiments on vision-language, tabular processing, and mathematical reasoning tasks show that our approach achieves substantial improvements compared to strong baselines. In addition, our in-depth analysis reveals that: (1) consistent performance improvement can be achieved by scaling up the number of tools and the capability of the backbone models; (2) each component of our approach contributes to the performance gains; (3) the created tools are well-structured and reliable with low complexity and atomicity. The code is available at https://github.com/lifan-yuan/CRAFT.

  • 6 authors
·
Sep 29, 2023

CodeSearchNet Challenge: Evaluating the State of Semantic Code Search

Semantic code search is the task of retrieving relevant code given a natural language query. While related to other information retrieval tasks, it requires bridging the gap between the language used in code (often abbreviated and highly technical) and natural language more suitable to describe vague concepts and ideas. To enable evaluation of progress on code search, we are releasing the CodeSearchNet Corpus and are presenting the CodeSearchNet Challenge, which consists of 99 natural language queries with about 4k expert relevance annotations of likely results from CodeSearchNet Corpus. The corpus contains about 6 million functions from open-source code spanning six programming languages (Go, Java, JavaScript, PHP, Python, and Ruby). The CodeSearchNet Corpus also contains automatically generated query-like natural language for 2 million functions, obtained from mechanically scraping and preprocessing associated function documentation. In this article, we describe the methodology used to obtain the corpus and expert labels, as well as a number of simple baseline solutions for the task. We hope that CodeSearchNet Challenge encourages researchers and practitioners to study this interesting task further and will host a competition and leaderboard to track the progress on the challenge. We are also keen on extending CodeSearchNet Challenge to more queries and programming languages in the future.

  • 5 authors
·
Sep 20, 2019

ToolDial: Multi-turn Dialogue Generation Method for Tool-Augmented Language Models

Tool-Augmented Language Models (TALMs) leverage external APIs to answer user queries across various domains. However, existing benchmark datasets for TALM research often feature simplistic dialogues that do not reflect real-world scenarios, such as the need for models to ask clarifying questions or proactively call additional APIs when essential information is missing. To address these limitations, we construct and release ToolDial, a dataset comprising 11,111 multi-turn dialogues, with an average of 8.95 turns per dialogue, based on APIs from RapidAPI. ToolDial has two key characteristics. First, the dialogues incorporate 16 user and system actions (e.g., "Request", "Clarify", "Fail inform") to capture the rich dynamics of real-world interactions. Second, we simulate dialogues where the system requests necessary information from the user based on API documentation and seeks additional APIs if the user fails to provide the required information. To facilitate this process, we introduce a method for generating an API graph that represents input and output compatibility between APIs. Using ToolDial, we evaluate a suite of language models on their ability to predict correct actions and extract input parameter values for API calls from the dialogue history. Modern language models achieve accuracy scores below 70%, indicating substantial room for improvement. We release our dataset and code at https://github.com/holi-lab/ToolDial.

  • 4 authors
·
Mar 1

Skill Discovery for Software Scripting Automation via Offline Simulations with LLMs

Scripting interfaces enable users to automate tasks and customize software workflows, but creating scripts traditionally requires programming expertise and familiarity with specific APIs, posing barriers for many users. While Large Language Models (LLMs) can generate code from natural language queries, runtime code generation is severely limited due to unverified code, security risks, longer response times, and higher computational costs. To bridge the gap, we propose an offline simulation framework to curate a software-specific skillset, a collection of verified scripts, by exploiting LLMs and publicly available scripting guides. Our framework comprises two components: (1) task creation, using top-down functionality guidance and bottom-up API synergy exploration to generate helpful tasks; and (2) skill generation with trials, refining and validating scripts based on execution feedback. To efficiently navigate the extensive API landscape, we introduce a Graph Neural Network (GNN)-based link prediction model to capture API synergy, enabling the generation of skills involving underutilized APIs and expanding the skillset's diversity. Experiments with Adobe Illustrator demonstrate that our framework significantly improves automation success rates, reduces response time, and saves runtime token costs compared to traditional runtime code generation. This is the first attempt to use software scripting interfaces as a testbed for LLM-based systems, highlighting the advantages of leveraging execution feedback in a controlled environment and offering valuable insights into aligning AI capabilities with user needs in specialized software domains.

  • 9 authors
·
Apr 29 1

A Comparative Study of DSL Code Generation: Fine-Tuning vs. Optimized Retrieval Augmentation

Natural Language to Code Generation has made significant progress in recent years with the advent of Large Language Models(LLMs). While generation for general-purpose languages like C, C++, and Python has improved significantly, LLMs struggle with custom function names in Domain Specific Languages or DSLs. This leads to higher hallucination rates and syntax errors, specially for DSLs having a high number of custom function names. Additionally, constant updates to function names add to the challenge as LLMs need to stay up-to-date. In this paper, we present optimizations for using Retrieval Augmented Generation (or RAG) with LLMs for DSL generation along with an ablation study comparing these strategies. We generated a train as well as test dataset with a DSL to represent automation tasks across roughly 700 APIs in public domain. We used the training dataset to fine-tune a Codex model for this DSL. Our results showed that the fine-tuned model scored the best on code similarity metric. With our RAG optimizations, we achieved parity for similarity metric. The compilation rate, however, showed that both the models still got the syntax wrong many times, with RAG-based method being 2 pts better. Conversely, hallucination rate for RAG model lagged by 1 pt for API names and by 2 pts for API parameter keys. We conclude that an optimized RAG model can match the quality of fine-tuned models and offer advantages for new, unseen APIs.

  • 2 authors
·
Jul 2, 2024

CodexGraph: Bridging Large Language Models and Code Repositories via Code Graph Databases

Large Language Models (LLMs) excel in stand-alone code tasks like HumanEval and MBPP, but struggle with handling entire code repositories. This challenge has prompted research on enhancing LLM-codebase interaction at a repository scale. Current solutions rely on similarity-based retrieval or manual tools and APIs, each with notable drawbacks. Similarity-based retrieval often has low recall in complex tasks, while manual tools and APIs are typically task-specific and require expert knowledge, reducing their generalizability across diverse code tasks and real-world applications. To mitigate these limitations, we introduce \framework, a system that integrates LLM agents with graph database interfaces extracted from code repositories. By leveraging the structural properties of graph databases and the flexibility of the graph query language, \framework enables the LLM agent to construct and execute queries, allowing for precise, code structure-aware context retrieval and code navigation. We assess \framework using three benchmarks: CrossCodeEval, SWE-bench, and EvoCodeBench. Additionally, we develop five real-world coding applications. With a unified graph database schema, \framework demonstrates competitive performance and potential in both academic and real-world environments, showcasing its versatility and efficacy in software engineering. Our application demo: https://github.com/modelscope/modelscope-agent/tree/master/apps/codexgraph_agent.

  • 8 authors
·
Aug 7, 2024 2

Parrot: Efficient Serving of LLM-based Applications with Semantic Variable

The rise of large language models (LLMs) has enabled LLM-based applications (a.k.a. AI agents or co-pilots), a new software paradigm that combines the strength of LLM and conventional software. Diverse LLM applications from different tenants could design complex workflows using multiple LLM requests to accomplish one task. However, they have to use the over-simplified request-level API provided by today's public LLM services, losing essential application-level information. Public LLM services have to blindly optimize individual LLM requests, leading to sub-optimal end-to-end performance of LLM applications. This paper introduces Parrot, an LLM service system that focuses on the end-to-end experience of LLM-based applications. Parrot proposes Semantic Variable, a unified abstraction to expose application-level knowledge to public LLM services. A Semantic Variable annotates an input/output variable in the prompt of a request, and creates the data pipeline when connecting multiple LLM requests, providing a natural way to program LLM applications. Exposing Semantic Variables to the public LLM service allows it to perform conventional data flow analysis to uncover the correlation across multiple LLM requests. This correlation opens a brand-new optimization space for the end-to-end performance of LLM-based applications. Extensive evaluations demonstrate that Parrot can achieve up to an order-of-magnitude improvement for popular and practical use cases of LLM applications.

  • 7 authors
·
May 30, 2024

Precise Legal Sentence Boundary Detection for Retrieval at Scale: NUPunkt and CharBoundary

We present NUPunkt and CharBoundary, two sentence boundary detection libraries optimized for high-precision, high-throughput processing of legal text in large-scale applications such as due diligence, e-discovery, and legal research. These libraries address the critical challenges posed by legal documents containing specialized citations, abbreviations, and complex sentence structures that confound general-purpose sentence boundary detectors. Our experimental evaluation on five diverse legal datasets comprising over 25,000 documents and 197,000 annotated sentence boundaries demonstrates that NUPunkt achieves 91.1% precision while processing 10 million characters per second with modest memory requirements (432 MB). CharBoundary models offer balanced and adjustable precision-recall tradeoffs, with the large model achieving the highest F1 score (0.782) among all tested methods. Notably, NUPunkt provides a 29-32% precision improvement over general-purpose tools while maintaining exceptional throughput, processing multi-million document collections in minutes rather than hours. Both libraries run efficiently on standard CPU hardware without requiring specialized accelerators. NUPunkt is implemented in pure Python with zero external dependencies, while CharBoundary relies only on scikit-learn and optional ONNX runtime integration for optimized performance. Both libraries are available under the MIT license, can be installed via PyPI, and can be interactively tested at https://sentences.aleainstitute.ai/. These libraries address critical precision issues in retrieval-augmented generation systems by preserving coherent legal concepts across sentences, where each percentage improvement in precision yields exponentially greater reductions in context fragmentation, creating cascading benefits throughout retrieval pipelines and significantly enhancing downstream reasoning quality.

  • 3 authors
·
Apr 5

Data-Efficient Massive Tool Retrieval: A Reinforcement Learning Approach for Query-Tool Alignment with Language Models

Recent advancements in large language models (LLMs) integrated with external tools and APIs have successfully addressed complex tasks by using in-context learning or fine-tuning. Despite this progress, the vast scale of tool retrieval remains challenging due to stringent input length constraints. In response, we propose a pre-retrieval strategy from an extensive repository, effectively framing the problem as the massive tool retrieval (MTR) task. We introduce the MTRB (massive tool retrieval benchmark) to evaluate real-world tool-augmented LLM scenarios with a large number of tools. This benchmark is designed for low-resource scenarios and includes a diverse collection of tools with descriptions refined for consistency and clarity. It consists of three subsets, each containing 90 test samples and 10 training samples. To handle the low-resource MTR task, we raise a new query-tool alignment (QTA) framework leverages LLMs to enhance query-tool alignment by rewriting user queries through ranking functions and the direct preference optimization (DPO) method. This approach consistently outperforms existing state-of-the-art models in top-5 and top-10 retrieval tasks across the MTRB benchmark, with improvements up to 93.28% based on the metric Sufficiency@k, which measures the adequacy of tool retrieval within the first k results. Furthermore, ablation studies validate the efficacy of our framework, highlighting its capacity to optimize performance even with limited annotated samples. Specifically, our framework achieves up to 78.53% performance improvement in Sufficiency@k with just a single annotated sample. Additionally, QTA exhibits strong cross-dataset generalizability, emphasizing its potential for real-world applications.

  • 7 authors
·
Oct 4, 2024

Ragnarök: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track

Did you try out the new Bing Search? Or maybe you fiddled around with Google AI~Overviews? These might sound familiar because the modern-day search stack has recently evolved to include retrieval-augmented generation (RAG) systems. They allow searching and incorporating real-time data into large language models (LLMs) to provide a well-informed, attributed, concise summary in contrast to the traditional search paradigm that relies on displaying a ranked list of documents. Therefore, given these recent advancements, it is crucial to have an arena to build, test, visualize, and systematically evaluate RAG-based search systems. With this in mind, we propose the TREC 2024 RAG Track to foster innovation in evaluating RAG systems. In our work, we lay out the steps we've made towards making this track a reality -- we describe the details of our reusable framework, Ragnar\"ok, explain the curation of the new MS MARCO V2.1 collection choice, release the development topics for the track, and standardize the I/O definitions which assist the end user. Next, using Ragnar\"ok, we identify and provide key industrial baselines such as OpenAI's GPT-4o or Cohere's Command R+. Further, we introduce a web-based user interface for an interactive arena allowing benchmarking pairwise RAG systems by crowdsourcing. We open-source our Ragnar\"ok framework and baselines to achieve a unified standard for future RAG systems.

  • 8 authors
·
Jun 24, 2024

PyGlove: Symbolic Programming for Automated Machine Learning

Neural networks are sensitive to hyper-parameter and architecture choices. Automated Machine Learning (AutoML) is a promising paradigm for automating these choices. Current ML software libraries, however, are quite limited in handling the dynamic interactions among the components of AutoML. For example, efficientNAS algorithms, such as ENAS and DARTS, typically require an implementation coupling between the search space and search algorithm, the two key components in AutoML. Furthermore, implementing a complex search flow, such as searching architectures within a loop of searching hardware configurations, is difficult. To summarize, changing the search space, search algorithm, or search flow in current ML libraries usually requires a significant change in the program logic. In this paper, we introduce a new way of programming AutoML based on symbolic programming. Under this paradigm, ML programs are mutable, thus can be manipulated easily by another program. As a result, AutoML can be reformulated as an automated process of symbolic manipulation. With this formulation, we decouple the triangle of the search algorithm, the search space and the child program. This decoupling makes it easy to change the search space and search algorithm (without and with weight sharing), as well as to add search capabilities to existing code and implement complex search flows. We then introduce PyGlove, a new Python library that implements this paradigm. Through case studies on ImageNet and NAS-Bench-101, we show that with PyGlove users can easily convert a static program into a search space, quickly iterate on the search spaces and search algorithms, and craft complex search flows to achieve better results.

  • 10 authors
·
Jan 21, 2021

CodeAssistBench (CAB): Dataset & Benchmarking for Multi-turn Chat-Based Code Assistance

Programming assistants powered by large language models have transformed software development, yet most benchmarks focus narrowly on code generation tasks. Recent efforts like InfiBench and StackEval attempt to address this gap using Stack Overflow data but remain limited to single-turn interactions in isolated contexts, require significant manual curation, and fail to represent complete project environments. We introduce CodeAssistBench (CAB), the first benchmark framework for evaluating multi-turn programming assistance in realistic settings that address real-world questions about actual codebases. Unlike existing programming Q&A benchmarks, CAB automatically generates scalable datasets from question-related GitHub issues using configurable parameters (e.g., repository creation date, star count, programming languages), and includes automatic containerization of codebases for evaluation. It then evaluates models through simulated users in these containerized environments with full codebase access. Using this framework, we constructed a test set of 3,286 real-world programming questions across 231 repositories, spanning seven programming languages and diverse problem domains. Our evaluation of leading LLMs reveals a substantial capability gap: while models perform well on Stack Overflow questions with success rates of 70-83%, they resolve only up to 16.49% of CAB's recent issues. This discrepancy highlights the challenges of providing assistance in complex, project-specific contexts versus answering standalone questions.

  • 5 authors
·
Jul 14

PyRadar: Towards Automatically Retrieving and Validating Source Code Repository Information for PyPI Packages

A package's source code repository records the development history of the package, providing indispensable information for the use and risk monitoring of the package. However, a package release often misses its source code repository due to the separation of the package's development platform from its distribution platform. Existing tools retrieve the release's repository information from its metadata, which suffers from two limitations: the metadata may not contain or contain wrong information. Our analysis shows that existing tools can only retrieve repository information for up to 70.5% of PyPI releases. To address the limitations, this paper proposes PyRadar, a novel framework that utilizes the metadata and source distribution to retrieve and validate the repository information for PyPI releases. We start with an empirical study to compare four existing tools on 4,227,425 PyPI releases and analyze phantom files (files appearing in the release's distribution but not in the release's repository) in 14,375 correct package-repository links and 2,064 incorrect links. Based on the findings, we design PyRadar with three components, i.e., Metadata-based Retriever, Source Code Repository Validator, and Source Code-based Retriever. In particular, the Metadata-based Retriever combines best practices of existing tools and successfully retrieves repository information from the metadata for 72.1% of PyPI releases. The Source Code Repository Validator applies common machine learning algorithms on six crafted features and achieves an AUC of up to 0.995. The Source Code-based Retriever queries World of Code with the SHA-1 hashes of all Python files in the release's source distribution and retrieves repository information for 90.2% of packages in our dataset with an accuracy of 0.970. Both practitioners and researchers can employ the PyRadar to better use PyPI packages.

  • 4 authors
·
Apr 25, 2024

MeSH Suggester: A Library and System for MeSH Term Suggestion for Systematic Review Boolean Query Construction

Boolean query construction is often critical for medical systematic review literature search. To create an effective Boolean query, systematic review researchers typically spend weeks coming up with effective query terms and combinations. One challenge to creating an effective systematic review Boolean query is the selection of effective MeSH Terms to include in the query. In our previous work, we created neural MeSH term suggestion methods and compared them to state-of-the-art MeSH term suggestion methods. We found neural MeSH term suggestion methods to be highly effective. In this demonstration, we build upon our previous work by creating (1) a Web-based MeSH term suggestion prototype system that allows users to obtain suggestions from a number of underlying methods and (2) a Python library that implements ours and others' MeSH term suggestion methods and that is aimed at researchers who want to further investigate, create or deploy such type of methods. We describe the architecture of the web-based system and how to use it for the MeSH term suggestion task. For the Python library, we describe how the library can be used for advancing further research and experimentation, and we validate the results of the methods contained in the library on standard datasets. Our web-based prototype system is available at http://ielab-mesh-suggest.uqcloud.net, while our Python library is at https://github.com/ielab/meshsuggestlib.

  • 3 authors
·
Dec 18, 2022

Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential Recommendations

Retrieval models aim at selecting a small set of item candidates which match the preference of a given user. They play a vital role in large-scale recommender systems since subsequent models such as rankers highly depend on the quality of item candidates. However, most existing retrieval models employ a single-round inference paradigm, which may not adequately capture the dynamic nature of user preferences and stuck in one area in the item space. In this paper, we propose Ada-Retrieval, an adaptive multi-round retrieval paradigm for recommender systems that iteratively refines user representations to better capture potential candidates in the full item space. Ada-Retrieval comprises two key modules: the item representation adapter and the user representation adapter, designed to inject context information into items' and users' representations. The framework maintains a model-agnostic design, allowing seamless integration with various backbone models such as RNNs or Transformers. We perform experiments on three widely used public datasets, incorporating five powerful sequential recommenders as backbone models. Our results demonstrate that Ada-Retrieval significantly enhances the performance of various base models, with consistent improvements observed across different datasets. Our code and data are publicly available at: https://github.com/ll0ruc/Ada-Retrieval.

  • 4 authors
·
Jan 12, 2024

SWE-Fixer: Training Open-Source LLMs for Effective and Efficient GitHub Issue Resolution

Large Language Models (LLMs) have demonstrated remarkable proficiency across a variety of complex tasks. One significant application of LLMs is in tackling software engineering challenges, particularly in resolving real-world tasks on GitHub by fixing code based on the issues reported by the users. However, many current approaches rely on proprietary LLMs, which limits reproducibility, accessibility, and transparency. The critical components of LLMs for addressing software engineering issues and how their capabilities can be effectively enhanced remain unclear. To address these challenges, we introduce SWE-Fixer, a novel open-source LLM designed to effectively and efficiently resolve GitHub issues. SWE-Fixer comprises two essential modules: a code file retrieval module and a code editing module. The retrieval module employs BM25 along with a lightweight LLM model to achieve coarse-to-fine file retrieval. Subsequently, the code editing module utilizes the other LLM model to generate patches for the identified files. Then, to mitigate the lack of publicly available datasets, we compile an extensive dataset that includes 110K GitHub issues along with their corresponding patches, and train the two modules of SWE-Fixer separately. We assess our approach on the SWE-Bench Lite and Verified benchmarks, achieving state-of-the-art performance among open-source models with scores of 23.3% and 30.2%, respectively. These outcomes highlight the efficacy of our approach. We will make our model, dataset, and code publicly available at https://github.com/InternLM/SWE-Fixer.

  • 7 authors
·
Jan 9 2

Using clarification questions to improve software developers' Web search

Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.

  • 2 authors
·
Jul 26, 2022

SwissNYF: Tool Grounded LLM Agents for Black Box Setting

While Large Language Models (LLMs) have demonstrated enhanced capabilities in function-calling, these advancements primarily rely on accessing the functions' responses. This methodology is practical for simpler APIs but faces scalability issues with irreversible APIs that significantly impact the system, such as a database deletion API. Similarly, processes requiring extensive time for each API call and those necessitating forward planning, like automated action pipelines, present complex challenges. Furthermore, scenarios often arise where a generalized approach is needed because algorithms lack direct access to the specific implementations of these functions or secrets to use them. Traditional tool planning methods are inadequate in these cases, compelling the need to operate within black-box environments. Unlike their performance in tool manipulation, LLMs excel in black-box tasks, such as program synthesis. Therefore, we harness the program synthesis capabilities of LLMs to strategize tool usage in black-box settings, ensuring solutions are verified prior to implementation. We introduce TOPGUN, an ingeniously crafted approach leveraging program synthesis for black box tool planning. Accompanied by SwissNYF, a comprehensive suite that integrates black-box algorithms for planning and verification tasks, addressing the aforementioned challenges and enhancing the versatility and effectiveness of LLMs in complex API interactions. The public code for SwissNYF is available at https://github.com/iclr-dummy-user/SwissNYF.

  • 4 authors
·
Feb 15, 2024

LitSearch: A Retrieval Benchmark for Scientific Literature Search

Literature search questions, such as "where can I find research on the evaluation of consistency in generated summaries?" pose significant challenges for modern search engines and retrieval systems. These questions often require a deep understanding of research concepts and the ability to reason over entire articles. In this work, we introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers. LitSearch is constructed using a combination of (1) questions generated by GPT-4 based on paragraphs containing inline citations from research papers and (2) questions about recently published papers, manually written by their authors. All LitSearch questions were manually examined or edited by experts to ensure high quality. We extensively benchmark state-of-the-art retrieval models and also evaluate two LLM-based reranking pipelines. We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% difference in absolute recall@5. The LLM-based reranking strategies further improve the best-performing dense retriever by 4.4%. Additionally, commercial search engines and research tools like Google Search perform poorly on LitSearch, lagging behind the best dense retriever by 32 points. Taken together, these results show that LitSearch is an informative new testbed for retrieval systems while catering to a real-world use case.

  • 6 authors
·
Jul 10, 2024

On the Tool Manipulation Capability of Open-source Large Language Models

Recent studies on software tool manipulation with large language models (LLMs) mostly rely on closed model APIs. The industrial adoption of these models is substantially constrained due to the security and robustness risks in exposing information to closed LLM API services. In this paper, we ask can we enhance open-source LLMs to be competitive to leading closed LLM APIs in tool manipulation, with practical amount of human supervision. By analyzing common tool manipulation failures, we first demonstrate that open-source LLMs may require training with usage examples, in-context demonstration and generation style regulation to resolve failures. These insights motivate us to revisit classical methods in LLM literature, and demonstrate that we can adapt them as model alignment with programmatic data generation, system prompts and in-context demonstration retrievers to enhance open-source LLMs for tool manipulation. To evaluate these techniques, we create the ToolBench, a tool manipulation benchmark consisting of diverse software tools for real-world tasks. We demonstrate that our techniques can boost leading open-source LLMs by up to 90% success rate, showing capabilities competitive to OpenAI GPT-4 in 4 out of 8 ToolBench tasks. We show that such enhancement typically requires about one developer day to curate data for each tool, rendering a recipe with practical amount of human supervision.

sambanovasystems SambaNova
·
May 25, 2023

CoReQA: Uncovering Potentials of Language Models in Code Repository Question Answering

Large language models that enhance software development tasks, such as code generation, code completion, and code question answering (QA), have been extensively studied in both academia and the industry. The models are integrated into popular intelligent IDEs like JetBrains and Cursor. Current benchmarks for evaluating models' code comprehension capabilities primarily focus on code generation or completion, often neglecting QA, which is a crucial aspect of understanding code. Existing code QA benchmarks are derived from code comments with predefined patterns (e.g., CodeQA) or focus on specific domains, such as education (e.g., CS1QA). These benchmarks fail to capture the real-world complexity of software engineering and user requirements for understanding code repositories. To address this gap, we introduce CoReQA, a benchmark for Code Repository-level question answering, constructed from GitHub issues and comments from 176 popular repositories across four programming languages. Since questions and answers may include both natural language and code snippets, traditional evaluation metrics such as BLEU are inadequate for assessing repository-level QA performance. Thus, we provide an LLM-as-a-judge framework to evaluate QA performance from five aspects. Based on CoReQA, we evaluate the performance of three baselines, including two short-context models using generic retrieval strategies and one long-context model that utilizes the entire repository context. Evaluation results show that state-of-the-art proprietary and long-context models struggle to address repository-level questions effectively. Our analysis highlights the limitations of language models in assisting developers in understanding repositories and suggests future directions for improving repository comprehension systems through effective context retrieval methodologies.

  • 9 authors
·
Jan 6

MLCPD: A Unified Multi-Language Code Parsing Dataset with Universal AST Schema

We introduce the MultiLang Code Parser Dataset (MLCPD), a large-scale, language-agnostic dataset unifying syntactic and structural representations of code across ten major programming languages. MLCPD contains over seven million parsed source files normalized under our proposed universal Abstract Syntax Tree (AST) schema, enabling consistent cross-language reasoning, structural learning, and multilingual software analysis. Unlike existing corpora that focus purely on token-level code or isolated parsers, MLCPD provides both hierarchical tree representations and rich metadata for every file, ensuring lossless syntactic coverage and structural uniformity. Each entry includes a normalized schema, language-level metadata, and abstracted node semantics stored in Parquet format for scalable retrieval. Empirical analyses reveal strong cross-language structural regularities-demonstrating that syntactic graphs from languages as diverse as Python, Java, and Go can be aligned under a shared schema. We release the dataset publicly on Hugging Face and the accompanying codebase on GitHub, which includes complete pipelines for dataset reproduction, grammar compilation, and a visualization tool for exploring the unified AST across languages. Together, these resources establish MLCPD as an open, reproducible foundation for future research in cross-language representation learning and program analysis.

  • 2 authors
·
Oct 18

CodeTF: One-stop Transformer Library for State-of-the-art Code LLM

Code intelligence plays a key role in transforming modern software engineering. Recently, deep learning-based models, especially Transformer-based large language models (LLMs), have demonstrated remarkable potential in tackling these tasks by leveraging massive open-source code data and programming language features. However, the development and deployment of such models often require expertise in both machine learning and software engineering, creating a barrier for the model adoption. In this paper, we present CodeTF, an open-source Transformer-based library for state-of-the-art Code LLMs and code intelligence. Following the principles of modular design and extensible framework, we design CodeTF with a unified interface to enable rapid access and development across different types of models, datasets and tasks. Our library supports a collection of pretrained Code LLM models and popular code benchmarks, including a standardized interface to train and serve code LLMs efficiently, and data features such as language-specific parsers and utility functions for extracting code attributes. In this paper, we describe the design principles, the architecture, key modules and components, and compare with other related library tools. Finally, we hope CodeTF is able to bridge the gap between machine learning/generative AI and software engineering, providing a comprehensive open-source solution for developers, researchers, and practitioners.

  • 6 authors
·
May 31, 2023