new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

Memory in Large Language Models: Mechanisms, Evaluation and Evolution

Under a unified operational definition, we define LLM memory as a persistent state written during pretraining, finetuning, or inference that can later be addressed and that stably influences outputs. We propose a four-part taxonomy (parametric, contextual, external, procedural/episodic) and a memory quadruple (location, persistence, write/access path, controllability). We link mechanism, evaluation, and governance via the chain write -> read -> inhibit/update. To avoid distorted comparisons across heterogeneous setups, we adopt a three-setting protocol (parametric only, offline retrieval, online retrieval) that decouples capability from information availability on the same data and timeline. On this basis we build a layered evaluation: parametric (closed-book recall, edit differential, memorization/privacy), contextual (position curves and the mid-sequence drop), external (answer correctness vs snippet attribution/faithfulness), and procedural/episodic (cross-session consistency and timeline replay, E MARS+). The framework integrates temporal governance and leakage auditing (freshness hits, outdated answers, refusal slices) and uncertainty reporting via inter-rater agreement plus paired tests with multiple-comparison correction. For updating and forgetting, we present DMM Gov: coordinating DAPT/TAPT, PEFT, model editing (ROME, MEND, MEMIT, SERAC), and RAG to form an auditable loop covering admission thresholds, rollout, monitoring, rollback, and change audits, with specs for timeliness, conflict handling, and long-horizon consistency. Finally, we give four testable propositions: minimum identifiability; a minimal evaluation card; causally constrained editing with verifiable forgetting; and when retrieval with small-window replay outperforms ultra-long-context reading. This yields a reproducible, comparable, and governable coordinate system for research and deployment.

  • 7 authors
·
Sep 23

WALL-E 2.0: World Alignment by NeuroSymbolic Learning improves World Model-based LLM Agents

Can we build accurate world models out of large language models (LLMs)? How can world models benefit LLM agents? The gap between the prior knowledge of LLMs and the specified environment's dynamics usually bottlenecks LLMs' performance as world models. To bridge the gap, we propose a training-free "world alignment" that learns an environment's symbolic knowledge complementary to LLMs. The symbolic knowledge covers action rules, knowledge graphs, and scene graphs, which are extracted by LLMs from exploration trajectories and encoded into executable codes to regulate LLM agents' policies. We further propose an RL-free, model-based agent "WALL-E 2.0" through the model-predictive control (MPC) framework. Unlike classical MPC requiring costly optimization on the fly, we adopt an LLM agent as an efficient look-ahead optimizer of future steps' actions by interacting with the neurosymbolic world model. While the LLM agent's strong heuristics make it an efficient planner in MPC, the quality of its planned actions is also secured by the accurate predictions of the aligned world model. They together considerably improve learning efficiency in a new environment. On open-world challenges in Mars (Minecraft like) and ALFWorld (embodied indoor environments), WALL-E 2.0 significantly outperforms existing methods, e.g., surpassing baselines in Mars by 16.1%-51.6% of success rate and by at least 61.7% in score. In ALFWorld, it achieves a new record 98% success rate after only 4 iterations.

  • 7 authors
·
Apr 22 4

Origin of Phobos and Deimos : Orbital evolution shortly after formation from a potential dislocation

This paper deals with the formation and evolution of Mars' moons, Phobos and Deimos, assuming the dislocation of a larger progenitor as the origin of these moons. The study by Hyodo et al. (2022) argue that under somewhat simplistic modeling, the post-dislocation orbits of Phobos and Deimos inevitably collide within 10,000 years, leading to their mutual annihilation. These findings are based on N-body simulations, accounting for Mars' J_2 and J_4 gravitational perturbations and mutual perturbations between the moons. In this paper, we challenge these findings by extending their work. We incorporate important perturbations such as solar perturbations, Mars' axial precession and nutation, and its deformation along three axes. We also extend some of the hypotheses made by Hyodo et al. (2022) concerning the initial distribution of Phobos and Deimos after the dislocation. Our analysis reveals that including these additional perturbations as well as the possibility of having more than two fragments after the dislocation does not alter the ultimate fate of Phobos and Deimos. The moons still converge towards collision within comparable timescales, supporting Hyodo et al. (2022) conclusions that the dislocation hypothesis under the dynamical scenario developed by Bagheri et al. (2021) has, in the best conditions, about 10\% chance of surviving after the first 100,000 years following their formation.

  • 3 authors
·
Apr 11

Follow-Up of Extended Shells around B[e] Stars

B[e] stars are massive B type emission line stars in different evolutionary stages ranging from pre-main sequence to post-main sequence. Due to their mass loss and ejection events these objects deposit huge amounts of mass and energy into their environment and enrich it with chemically processed material, contributing significantly to the chemical and dynamical evolution of their host galaxies. However, the large-scale environments of these enigmatic objects have not attracted much attention. The first and so far only catalog reporting the detection of extended shells around a sample of B[e] stars was an Ha imaging survey carried out in the year 2001, and was limited to bright targets in the northern hemisphere. We have recently started a follow-up of those targets to detect possible evolution of their nebulae in the plane of the sky over a baseline of two decades. Furthermore, we extend our survey to southern targets and fainter northern ones to complement and complete our knowledge on large-scale ejecta surrounding B[e] stars. Besides imaging in Ha and selected nebular lines, we utilize long-slit and 3D spectral observations across the nebulae to derive their physical properties. We discovered pronounced nebula structures around 15 more objects, resulting in a total of 27 B[e] stars with a large-scale nebula. Here we present our (preliminary) results for three selected objects: the two massive supergiants MWC137 and MWC 314, and the unclassified B[e] star MWC 819.

  • 6 authors
·
Mar 2, 2022

Automated Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences

Formulas involving fundamental mathematical constants had a great impact on various fields of science and mathematics, for example aiding in proofs of irrationality of constants. However, the discovery of such formulas has historically remained scarce, often perceived as an act of mathematical genius by great mathematicians such as Ramanujan, Euler, and Gauss. Recent efforts to automate the discovery of formulas for mathematical constants, such as the Ramanujan Machine project, relied on exhaustive search. Despite several successful discoveries, exhaustive search remains limited by the space of options that can be covered and by the need for vast amounts of computational resources. Here we propose a fundamentally different method to search for conjectures on mathematical constants: through analysis of integer sequences. We introduce the Enumerated Signed-continued-fraction Massey Approve (ESMA) algorithm, which builds on the Berlekamp-Massey algorithm to identify patterns in integer sequences that represent mathematical constants. The ESMA algorithm found various known formulas for e, e^2, tan(1), and ratios of values of Bessel functions. The algorithm further discovered a large number of new conjectures for these constants, some providing simpler representations and some providing faster numerical convergence than the corresponding simple continued fractions. Along with the algorithm, we present mathematical tools for manipulating continued fractions. These connections enable us to characterize what space of constants can be found by ESMA and quantify its algorithmic advantage in certain scenarios. Altogether, this work continues in the development of augmenting mathematical intuition by computer algorithms, to help reveal mathematical structures and accelerate mathematical research.

  • 6 authors
·
Dec 13, 2022

Analysis of the JWST spectra of the kilonova AT 2023vfi accompanying GRB 230307A

Kilonovae are key to advancing our understanding of r-process nucleosynthesis. To date, only two kilonovae have been spectroscopically observed, AT 2017gfo and AT 2023vfi. Here, we present an analysis of the James Webb Space Telescope (JWST) spectra obtained +29 and +61 days post-merger for AT 2023vfi (the kilonova associated with GRB 230307A). After re-reducing and photometrically flux-calibrating the data, we empirically model the observed X-ray to mid-infrared continua with a power law and a blackbody, to replicate the non-thermal afterglow and apparent thermal continuum gtrsim 2 , mum. We fit Gaussians to the apparent emission features, obtaining line centroids of 20218_{-38}^{+37}, 21874 pm 89 and 44168_{-152}^{+153}\,\AA, and velocity widths spanning 0.057 - 0.110\,c. These line centroid constraints facilitated a detailed forbidden line identification search, from which we shortlist a number of r-process species spanning all three r-process peaks. We rule out Ba II and Ra II as candidates and propose Te I-III, Er I-III and W III as the most promising ions for further investigation, as they plausibly produce multiple emission features from one (W III) or multiple (Te I-III, Er I-III) ion stages. We compare to the spectra of AT 2017gfo, which also exhibit prominent emission at sim 2.1 , mum, and conclude that [Te III] lambda21050 remains the most plausible cause of the observed sim 2.1 , mum emission in both kilonovae. However, the observed line centroids are not consistent between both objects, and they are significantly offset from [Te III] lambda21050. The next strongest [Te III] transition at 29290\,\AA\ is not observed, and we quantify its detectability. Further study is required, with particular emphasis on expanding the available atomic data to enable quantitative non-LTE spectral modelling.

  • 2 authors
·
Aug 20, 2024

Pre-perihelion Development of Interstellar Comet 3I/ATLAS

We describe pre-perihelion optical observations of interstellar comet 3I/ATLAS taken during July - September 2025 using the Nordic Optical Telescope. Fixed aperture photometry of the comet is well described by a power law function of heliocentric distance, rH, with the exponent (``index") n = 3.8+/-0.3 across the 4.6 au to 1.8 au distance range (phase function 0.04+/-0.02 magnitude/degree assumed). This indicates that the dust production rates vary in proportion to rH**(-1.8+/-0.3). An rH**(-2) variation is expected of a strongly volatile material, and consistent with independent spectroscopic observations showing that carbon dioxide is the primary driver of activity. The measured heliocentric index is unremarkable in the context of solar system comets, for which n is widely dispersed, and provides no basis on which to describe 3I as either dynamically old (thermally processed) or new (pristine). The morphology of the comet changes from a Sun-facing dust fan in the early 2025 July observations, to one dominated by an antisolar dust tail at later dates. We attribute the delayed emergence of the tail to the large size (effective radius 0.1 mm) and slow ejection (5 m/s) of the optically dominant dust particles, and their consequently sluggish response to solar radiation pressure. Small (micron-sized) particles may be present but not in numbers sufficient to dominate the scattering cross-section. Their relative depletion possibly reflects interparticle cohesion, which binds small particles more effectively than large ones. A similar preponderance of 0.1 mm grains was reported in 2I/Borisov. However, 2I differed from 3I in having a much smaller (asteroid-like) heliocentric index, n = 1.9+/-0.1. Dust production rates in 3I are 180 kg/s at 2 au, compared with 70 kg/s in 2I/Borisov at the same distance.

  • 2 authors
·
Oct 21

Biomolecular Analysis of Soil Samples and Rock Imagery for Tracing Evidence of Life Using a Mobile Robot

The search for evidence of past life on Mars presents a tremendous challenge that requires the usage of very advanced robotic technologies to overcome it. Current digital microscopic imagers and spectrometers used for astrobiological examination suffer from limitations such as insufficient resolution, narrow detection range, and lack of portability. To overcome these challenges, this research study presents modifications to the Phoenix rover to expand its capability for detecting biosignatures on Mars. This paper examines the modifications implemented on the Phoenix rover to enhance its capability to detect a broader spectrum of biosignatures. One of the notable improvements comprises the integration of advanced digital microscopic imagers and spectrometers, enabling high-resolution examination of soil samples. Additionally, the mechanical components of the device have been reinforced to enhance maneuverability and optimize subsurface sampling capabilities. Empirical investigations have demonstrated that Phoenix has the capability to navigate diverse geological environments and procure samples for the purpose of biomolecular analysis. The biomolecular instrumentation and hybrid analytical methods showcased in this study demonstrate considerable potential for future astrobiology missions on Mars. The potential for enhancing the system lies in the possibility of broadening the range of detectable biomarkers and biosignatures.

  • 5 authors
·
Nov 27, 2024

The impact of stellar winds and tidal locking effects on the habitability of Earth-like exoplanets around M dwarf stars

We present an assessment of the effects of stellar wind magnetic and mechanical components on the habitability of Earth-like exoplanets orbiting the inner and outer radii of the habitable zone (HZ) of M dwarfs. We consider stars with masses in the range of 0.09 - 0.75 M_odot and planets with a surface dipolar magnetic field of 0.5 G. We estimate the size of the magnetospheres of such exoplanets using the pressure balance equation including the contribution of magnetic and ram pressures from stellar winds. We explore different scenarios, including fast and slow stellar winds, to assess the relevance of kinetic contribution. Furthermore, the effect of tidal locking and potential deviations from the Parker spiral, typically used to describe the interplanetary magnetic field, are analyzed. We show that for low mass stars (M < 0.15 M_odot), the ram pressure exerted by stellar winds affects the size of the magnetosphere more than the stellar wind magnetic pressure. Interestingly, when the ram pressure is not much stronger than the magnetic pressure, typically for higher mass stars, the inclusion of ram pressure can be beneficial to the magnetosphere due to the magnetopause currents. A magnetosphere with the size of that of modern Earth is difficult to achieve with the current assumptions. However, an early Earth magnetosphere is achieved by roughly half of our hypothetical planets orbiting the outer radius of the HZ in most of the considered cases. We find that deviations from the Parker spiral can affect the results significantly, reducing the magnetosphere by 56% in extreme cases. Most of the hypothetical planets are most likely (or might be) tidally locked, with the notable exception of those orbiting the outer HZ of GJ 846 and V1005 Ori.

  • 3 authors
·
Oct 23

MCTED: A Machine-Learning-Ready Dataset for Digital Elevation Model Generation From Mars Imagery

This work presents a new dataset for the Martian digital elevation model prediction task, ready for machine learning applications called MCTED. The dataset has been generated using a comprehensive pipeline designed to process high-resolution Mars orthoimage and DEM pairs from Day et al., yielding a dataset consisting of 80,898 data samples. The source images are data gathered by the Mars Reconnaissance Orbiter using the CTX instrument, providing a very diverse and comprehensive coverage of the Martian surface. Given the complexity of the processing pipelines used in large-scale DEMs, there are often artefacts and missing data points in the original data, for which we developed tools to solve or mitigate their impact. We divide the processed samples into training and validation splits, ensuring samples in both splits cover no mutual areas to avoid data leakage. Every sample in the dataset is represented by the optical image patch, DEM patch, and two mask patches, indicating values that were originally missing or were altered by us. This allows future users of the dataset to handle altered elevation regions as they please. We provide statistical insights of the generated dataset, including the spatial distribution of samples, the distributions of elevation values, slopes and more. Finally, we train a small U-Net architecture on the MCTED dataset and compare its performance to a monocular depth estimation foundation model, DepthAnythingV2, on the task of elevation prediction. We find that even a very small architecture trained on this dataset specifically, beats a zero-shot performance of a depth estimation foundation model like DepthAnythingV2. We make the dataset and code used for its generation completely open source in public repositories.

ESA-Datalabs ESA Datalabs
·
Sep 9

Mass-Radius Relationships for Solid Exoplanets

We use new interior models of cold planets to investigate the mass-radius relationships of solid exoplanets, considering planets made primarily of iron, silicates, water, and carbon compounds. We find that the mass-radius relationships for cold terrestrial-mass planets of all compositions we considered follow a generic functional form that is not a simple power law: log_{10} R_s = k_1 + 1/3 log_{10}(M_s) - k_2 M_s^{k_3} for up to M_p approx 20 M_{oplus}, where M_s and R_s are scaled mass and radius values. This functional form arises because the common building blocks of solid planets all have equations of state that are well approximated by a modified polytrope of the form rho = rho_0 + c P^n. We find that highly detailed planet interior models, including temperature structure and phase changes, are not necessary to derive solid exoplanet bulk composition from mass and radius measurements. For solid exoplanets with no substantial atmosphere we have also found that: with 5% fractional uncertainty in planet mass and radius it is possible to distinguish among planets composed predominantly of iron or silicates or water ice but not more detailed compositions; with sim~5% uncertainty water ice planets with gtrsim 25% water by mass may be identified; the minimum plausible planet size for a given mass is that of a pure iron planet; and carbon planet mass-radius relationships overlap with those of silicate and water planets due to similar zero-pressure densities and equations of state. We propose a definition of "super Earths'' based on the clear distinction in radii between planets with significant gas envelopes and those without.

  • 4 authors
·
Jul 19, 2007

Characterizing WASP-43b's interior structure: unveiling tidal decay and apsidal motion

Context. Recent developments in exoplanetary research highlight the importance of Love numbers in understanding their internal dynamics, formation, migration history and their potential habitability. Love numbers represent crucial parameters that gauge how exoplanets respond to external forces such as tidal interactions and rotational effects. By measuring these responses, we can gain insights into the internal structure, composition, and density distribution of exoplanets. The rate of apsidal precession of a planetary orbit is directly linked to the second-order fluid Love number, thus we can gain valuable insights into the mass distribution of the planet. Aims. In this context, we aim to re-determine the orbital parameters of WASP-43b-in particular, orbital period, eccentricity, and argument of the periastron-and its orbital evolution. We study the outcomes of the tidal interaction with the host star:whether tidal decay and periastron precession are occurring in the system. Method. We observed the system with HARPS, whose data we present for the first time, and we also analyse the newly acquired JWST full-phase light curve. We fit jointly archival and new radial velocity and transit and occultation mid-times, including tidal decay, periastron precession and long-term acceleration in the system. Results. We detected a tidal decay rate of \dotP_a=(-1.99pm0.50) and a periastron precession rate of \dotomega=(0.1851+0.0070-0.0077)=(0.1727+0.0083-0.0089)deg/d=(621.72+29.88-32.04)arcsec/d. This is the first time that both periastron precession and tidal decay are simultaneously detected in an exoplanetary system. The observed tidal interactions can neither be explained by the tidal contribution to apsidal motion of a non-aligned stellar or planetary rotation axis nor by assuming non-synchronous rotation for the planet, and a value for the planetary Love number cannot be derived. [...]

  • 11 authors
·
Jan 7