- Boundary-Aware Geometric Encoding for Semantic Segmentation of Point Clouds Boundary information plays a significant role in 2D image segmentation, while usually being ignored in 3D point cloud segmentation where ambiguous features might be generated in feature extraction, leading to misclassification in the transition area between two objects. In this paper, firstly, we propose a Boundary Prediction Module (BPM) to predict boundary points. Based on the predicted boundary, a boundary-aware Geometric Encoding Module (GEM) is designed to encode geometric information and aggregate features with discrimination in a neighborhood, so that the local features belonging to different categories will not be polluted by each other. To provide extra geometric information for boundary-aware GEM, we also propose a light-weight Geometric Convolution Operation (GCO), making the extracted features more distinguishing. Built upon the boundary-aware GEM, we build our network and test it on benchmarks like ScanNet v2, S3DIS. Results show our methods can significantly improve the baseline and achieve state-of-the-art performance. Code is available at https://github.com/JchenXu/BoundaryAwareGEM. 7 authors · Jan 7, 2021
- OPFormer: Object Pose Estimation leveraging foundation model with geometric encoding We introduce a unified, end-to-end framework that seamlessly integrates object detection and pose estimation with a versatile onboarding process. Our pipeline begins with an onboarding stage that generates object representations from either traditional 3D CAD models or, in their absence, by rapidly reconstructing a high-fidelity neural representation (NeRF) from multi-view images. Given a test image, our system first employs the CNOS detector to localize target objects. For each detection, our novel pose estimation module, OPFormer, infers the precise 6D pose. The core of OPFormer is a transformer-based architecture that leverages a foundation model for robust feature extraction. It uniquely learns a comprehensive object representation by jointly encoding multiple template views and enriches these features with explicit 3D geometric priors using Normalized Object Coordinate Space (NOCS). A decoder then establishes robust 2D-3D correspondences to determine the final pose. Evaluated on the challenging BOP benchmarks, our integrated system demonstrates a strong balance between accuracy and efficiency, showcasing its practical applicability in both model-based and model-free scenarios. 7 authors · Nov 16, 2025
- Towards scalable surrogate models based on Neural Fields for large scale aerodynamic simulations This paper introduces a novel surrogate modeling framework for aerodynamic applications based on Neural Fields. The proposed approach, MARIO (Modulated Aerodynamic Resolution Invariant Operator), addresses non parametric geometric variability through an efficient shape encoding mechanism and exploits the discretization-invariant nature of Neural Fields. It enables training on significantly downsampled meshes, while maintaining consistent accuracy during full-resolution inference. These properties allow for efficient modeling of diverse flow conditions, while reducing computational cost and memory requirements compared to traditional CFD solvers and existing surrogate methods. The framework is validated on two complementary datasets that reflect industrial constraints. First, the AirfRANS dataset consists in a two-dimensional airfoil benchmark with non-parametric shape variations. Performance evaluation of MARIO on this case demonstrates an order of magnitude improvement in prediction accuracy over existing methods across velocity, pressure, and turbulent viscosity fields, while accurately capturing boundary layer phenomena and aerodynamic coefficients. Second, the NASA Common Research Model features three-dimensional pressure distributions on a full aircraft surface mesh, with parametric control surface deflections. This configuration confirms MARIO's accuracy and scalability. Benchmarking against state-of-the-art methods demonstrates that Neural Field surrogates can provide rapid and accurate aerodynamic predictions under the computational and data limitations characteristic of industrial applications. 6 authors · May 14, 2025
- IGEV++: Iterative Multi-range Geometry Encoding Volumes for Stereo Matching Stereo matching is a core component in many computer vision and robotics systems. Despite significant advances over the last decade, handling matching ambiguities in ill-posed regions and large disparities remains an open challenge. In this paper, we propose a new deep network architecture, called IGEV++, for stereo matching. The proposed IGEV++ constructs Multi-range Geometry Encoding Volumes (MGEV), which encode coarse-grained geometry information for ill-posed regions and large disparities, while preserving fine-grained geometry information for details and small disparities. To construct MGEV, we introduce an adaptive patch matching module that efficiently and effectively computes matching costs for large disparity ranges and/or ill-posed regions. We further propose a selective geometry feature fusion module to adaptively fuse multi-range and multi-granularity geometry features in MGEV. Then, we input the fused geometry features into ConvGRUs to iteratively update the disparity map. MGEV allows to efficiently handle large disparities and ill-posed regions, such as occlusions and textureless regions, and enjoys rapid convergence during iterations. Our IGEV++ achieves the best performance on the Scene Flow test set across all disparity ranges, up to 768px. Our IGEV++ also achieves state-of-the-art accuracy on the Middlebury, ETH3D, KITTI 2012, and 2015 benchmarks. Specifically, IGEV++ achieves a 3.23\% 2-pixel outlier rate (Bad 2.0) on the large disparity benchmark, Middlebury, representing error reductions of 31.9\% and 54.8\% compared to RAFT-Stereo and GMStereo, respectively. We also present a real-time version of IGEV++ that achieves the best performance among all published real-time methods on the KITTI benchmarks. The code is publicly available at https://github.com/gangweix/IGEV and https://github.com/gangweix/IGEV-plusplus. 6 authors · Sep 1, 2024
- Generalized Geometry Encoding Volume for Real-time Stereo Matching Real-time stereo matching methods primarily focus on enhancing in-domain performance but often overlook the critical importance of generalization in real-world applications. In contrast, recent stereo foundation models leverage monocular foundation models (MFMs) to improve generalization, but typically suffer from substantial inference latency. To address this trade-off, we propose Generalized Geometry Encoding Volume (GGEV), a novel real-time stereo matching network that achieves strong generalization. We first extract depth-aware features that encode domain-invariant structural priors as guidance for cost aggregation. Subsequently, we introduce a Depth-aware Dynamic Cost Aggregation (DDCA) module that adaptively incorporates these priors into each disparity hypothesis, effectively enhancing fragile matching relationships in unseen scenes. Both steps are lightweight and complementary, leading to the construction of a generalized geometry encoding volume with strong generalization capability. Experimental results demonstrate that our GGEV surpasses all existing real-time methods in zero-shot generalization capability, and achieves state-of-the-art performance on the KITTI 2012, KITTI 2015, and ETH3D benchmarks. 5 authors · Dec 7, 2025
- ClawMachine: Learning to Fetch Visual Tokens for Referential Comprehension Aligning vision and language concepts at a finer level remains an essential topic of multimodal large language models (MLLMs), particularly for tasks such as referring and grounding. Existing methods, such as proxy encoding and geometry encoding, incorporate additional syntax to encode spatial information, imposing extra burdens when communicating between language and vision modules. In this study, we propose ClawMachine, offering a new methodology that explicitly notates each entity using token collectives groups of visual tokens that collaboratively represent higher level semantics. A hybrid perception mechanism is also explored to perceive and understand scenes from both discrete and continuous spaces. Our method unifies the prompt and answer of visual referential tasks without using additional syntax. By leveraging a joint vision-language vocabulary, ClawMachine further integrates referring and grounding in an auto-regressive manner, demonstrating great potential with scaled-up pre-training data. Experiments show that ClawMachine achieves superior performance on scene-level and referential understanding tasks with higher efficiency. It also exhibits the potential to integrate multi-source information for complex visual reasoning, which is beyond the capability of many MLLMs. Our code is available at github.com/martian422/ClawMachine. 5 authors · Jun 17, 2024