new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 24

InteractAnything: Zero-shot Human Object Interaction Synthesis via LLM Feedback and Object Affordance Parsing

Recent advances in 3D human-aware generation have made significant progress. However, existing methods still struggle with generating novel Human Object Interaction (HOI) from text, particularly for open-set objects. We identify three main challenges of this task: precise human-object relation reasoning, affordance parsing for any object, and detailed human interaction pose synthesis aligning description and object geometry. In this work, we propose a novel zero-shot 3D HOI generation framework without training on specific datasets, leveraging the knowledge from large-scale pre-trained models. Specifically, the human-object relations are inferred from large language models (LLMs) to initialize object properties and guide the optimization process. Then we utilize a pre-trained 2D image diffusion model to parse unseen objects and extract contact points, avoiding the limitations imposed by existing 3D asset knowledge. The initial human pose is generated by sampling multiple hypotheses through multi-view SDS based on the input text and object geometry. Finally, we introduce a detailed optimization to generate fine-grained, precise, and natural interaction, enforcing realistic 3D contact between the 3D object and the involved body parts, including hands in grasping. This is achieved by distilling human-level feedback from LLMs to capture detailed human-object relations from the text instruction. Extensive experiments validate the effectiveness of our approach compared to prior works, particularly in terms of the fine-grained nature of interactions and the ability to handle open-set 3D objects.

  • 6 authors
·
May 30

Large Language Models as Zero-Shot Human Models for Human-Robot Interaction

Human models play a crucial role in human-robot interaction (HRI), enabling robots to consider the impact of their actions on people and plan their behavior accordingly. However, crafting good human models is challenging; capturing context-dependent human behavior requires significant prior knowledge and/or large amounts of interaction data, both of which are difficult to obtain. In this work, we explore the potential of large-language models (LLMs) -- which have consumed vast amounts of human-generated text data -- to act as zero-shot human models for HRI. Our experiments on three social datasets yield promising results; the LLMs are able to achieve performance comparable to purpose-built models. That said, we also discuss current limitations, such as sensitivity to prompts and spatial/numerical reasoning mishaps. Based on our findings, we demonstrate how LLM-based human models can be integrated into a social robot's planning process and applied in HRI scenarios. Specifically, we present one case study on a simulated trust-based table-clearing task and replicate past results that relied on custom models. Next, we conduct a new robot utensil-passing experiment (n = 65) where preliminary results show that planning with a LLM-based human model can achieve gains over a basic myopic plan. In summary, our results show that LLMs offer a promising (but incomplete) approach to human modeling for HRI.

  • 2 authors
·
Mar 6, 2023

SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization

Social relation reasoning aims to identify relation categories such as friends, spouses, and colleagues from images. While current methods adopt the paradigm of training a dedicated network end-to-end using labeled image data, they are limited in terms of generalizability and interpretability. To address these issues, we first present a simple yet well-crafted framework named {\name}, which combines the perception capability of Vision Foundation Models (VFMs) and the reasoning capability of Large Language Models (LLMs) within a modular framework, providing a strong baseline for social relation recognition. Specifically, we instruct VFMs to translate image content into a textual social story, and then utilize LLMs for text-based reasoning. {\name} introduces systematic design principles to adapt VFMs and LLMs separately and bridge their gaps. Without additional model training, it achieves competitive zero-shot results on two databases while offering interpretable answers, as LLMs can generate language-based explanations for the decisions. The manual prompt design process for LLMs at the reasoning phase is tedious and an automated prompt optimization method is desired. As we essentially convert a visual classification task into a generative task of LLMs, automatic prompt optimization encounters a unique long prompt optimization issue. To address this issue, we further propose the Greedy Segment Prompt Optimization (GSPO), which performs a greedy search by utilizing gradient information at the segment level. Experimental results show that GSPO significantly improves performance, and our method also generalizes to different image styles. The code is available at https://github.com/Mengzibin/SocialGPT.

  • 6 authors
·
Oct 28, 2024 3

Detecting Any Human-Object Interaction Relationship: Universal HOI Detector with Spatial Prompt Learning on Foundation Models

Human-object interaction (HOI) detection aims to comprehend the intricate relationships between humans and objects, predicting <human, action, object> triplets, and serving as the foundation for numerous computer vision tasks. The complexity and diversity of human-object interactions in the real world, however, pose significant challenges for both annotation and recognition, particularly in recognizing interactions within an open world context. This study explores the universal interaction recognition in an open-world setting through the use of Vision-Language (VL) foundation models and large language models (LLMs). The proposed method is dubbed as \textbf{UniHOI}. We conduct a deep analysis of the three hierarchical features inherent in visual HOI detectors and propose a method for high-level relation extraction aimed at VL foundation models, which we call HO prompt-based learning. Our design includes an HO Prompt-guided Decoder (HOPD), facilitates the association of high-level relation representations in the foundation model with various HO pairs within the image. Furthermore, we utilize a LLM (i.e. GPT) for interaction interpretation, generating a richer linguistic understanding for complex HOIs. For open-category interaction recognition, our method supports either of two input types: interaction phrase or interpretive sentence. Our efficient architecture design and learning methods effectively unleash the potential of the VL foundation models and LLMs, allowing UniHOI to surpass all existing methods with a substantial margin, under both supervised and zero-shot settings. The code and pre-trained weights are available at: https://github.com/Caoyichao/UniHOI.

  • 7 authors
·
Nov 7, 2023

Sitcom-Crafter: A Plot-Driven Human Motion Generation System in 3D Scenes

Recent advancements in human motion synthesis have focused on specific types of motions, such as human-scene interaction, locomotion or human-human interaction, however, there is a lack of a unified system capable of generating a diverse combination of motion types. In response, we introduce Sitcom-Crafter, a comprehensive and extendable system for human motion generation in 3D space, which can be guided by extensive plot contexts to enhance workflow efficiency for anime and game designers. The system is comprised of eight modules, three of which are dedicated to motion generation, while the remaining five are augmentation modules that ensure consistent fusion of motion sequences and system functionality. Central to the generation modules is our novel 3D scene-aware human-human interaction module, which addresses collision issues by synthesizing implicit 3D Signed Distance Function (SDF) points around motion spaces, thereby minimizing human-scene collisions without additional data collection costs. Complementing this, our locomotion and human-scene interaction modules leverage existing methods to enrich the system's motion generation capabilities. Augmentation modules encompass plot comprehension for command generation, motion synchronization for seamless integration of different motion types, hand pose retrieval to enhance motion realism, motion collision revision to prevent human collisions, and 3D retargeting to ensure visual fidelity. Experimental evaluations validate the system's ability to generate high-quality, diverse, and physically realistic motions, underscoring its potential for advancing creative workflows. Project page: https://windvchen.github.io/Sitcom-Crafter.

  • 6 authors
·
Oct 14, 2024

A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap

Human-object interactions (HOI) detection aims at capturing human-object pairs in images and corresponding actions. It is an important step toward high-level visual reasoning and scene understanding. However, due to the natural bias from the real world, existing methods mostly struggle with rare human-object pairs and lead to sub-optimal results. Recently, with the development of the generative model, a straightforward approach is to construct a more balanced dataset based on a group of supplementary samples. Unfortunately, there is a significant domain gap between the generated data and the original data, and simply merging the generated images into the original dataset cannot significantly boost the performance. To alleviate the above problem, we present a novel model-agnostic framework called Context-Enhanced Feature Alignment (CEFA) module, which can effectively align the generated data with the original data at the feature level and bridge the domain gap. Specifically, CEFA consists of a feature alignment module and a context enhancement module. On one hand, considering the crucial role of human-object pairs information in HOI tasks, the feature alignment module aligns the human-object pairs by aggregating instance information. On the other hand, to mitigate the issue of losing important context information caused by the traditional discriminator-style alignment method, we employ a context-enhanced image reconstruction module to improve the model's learning ability of contextual cues. Extensive experiments have shown that our method can serve as a plug-and-play module to improve the detection performance of HOI models on rare categorieshttps://github.com/LijunZhang01/CEFA.

  • 4 authors
·
Jul 31, 2024

SportsHHI: A Dataset for Human-Human Interaction Detection in Sports Videos

Video-based visual relation detection tasks, such as video scene graph generation, play important roles in fine-grained video understanding. However, current video visual relation detection datasets have two main limitations that hinder the progress of research in this area. First, they do not explore complex human-human interactions in multi-person scenarios. Second, the relation types of existing datasets have relatively low-level semantics and can be often recognized by appearance or simple prior information, without the need for detailed spatio-temporal context reasoning. Nevertheless, comprehending high-level interactions between humans is crucial for understanding complex multi-person videos, such as sports and surveillance videos. To address this issue, we propose a new video visual relation detection task: video human-human interaction detection, and build a dataset named SportsHHI for it. SportsHHI contains 34 high-level interaction classes from basketball and volleyball sports. 118,075 human bounding boxes and 50,649 interaction instances are annotated on 11,398 keyframes. To benchmark this, we propose a two-stage baseline method and conduct extensive experiments to reveal the key factors for a successful human-human interaction detector. We hope that SportsHHI can stimulate research on human interaction understanding in videos and promote the development of spatio-temporal context modeling techniques in video visual relation detection.

  • 4 authors
·
Apr 6, 2024 1

InterBERT: Vision-and-Language Interaction for Multi-modal Pretraining

Multi-modal pretraining for learning high-level multi-modal representation is a further step towards deep learning and artificial intelligence. In this work, we propose a novel model, namely InterBERT (BERT for Interaction), which is the first model of our series of multimodal pretraining methods M6 (MultiModality-to-MultiModality Multitask Mega-transformer). The model owns strong capability of modeling interaction between the information flows of different modalities. The single-stream interaction module is capable of effectively processing information of multiple modalilties, and the two-stream module on top preserves the independence of each modality to avoid performance downgrade in single-modal tasks. We pretrain the model with three pretraining tasks, including masked segment modeling (MSM), masked region modeling (MRM) and image-text matching (ITM); and finetune the model on a series of vision-and-language downstream tasks. Experimental results demonstrate that InterBERT outperforms a series of strong baselines, including the most recent multi-modal pretraining methods, and the analysis shows that MSM and MRM are effective for pretraining and our method can achieve performances comparable to BERT in single-modal tasks. Besides, we propose a large-scale dataset for multi-modal pretraining in Chinese, and we develop the Chinese InterBERT which is the first Chinese multi-modal pretrained model. We pretrain the Chinese InterBERT on our proposed dataset of 3.1M image-text pairs from the mobile Taobao, the largest Chinese e-commerce platform. We finetune the model for text-based image retrieval, and recently we deployed the model online for topic-based recommendation.

  • 6 authors
·
Mar 29, 2020

Multi-level Matching Network for Multimodal Entity Linking

Multimodal entity linking (MEL) aims to link ambiguous mentions within multimodal contexts to corresponding entities in a multimodal knowledge base. Most existing approaches to MEL are based on representation learning or vision-and-language pre-training mechanisms for exploring the complementary effect among multiple modalities. However, these methods suffer from two limitations. On the one hand, they overlook the possibility of considering negative samples from the same modality. On the other hand, they lack mechanisms to capture bidirectional cross-modal interaction. To address these issues, we propose a Multi-level Matching network for Multimodal Entity Linking (M3EL). Specifically, M3EL is composed of three different modules: (i) a Multimodal Feature Extraction module, which extracts modality-specific representations with a multimodal encoder and introduces an intra-modal contrastive learning sub-module to obtain better discriminative embeddings based on uni-modal differences; (ii) an Intra-modal Matching Network module, which contains two levels of matching granularity: Coarse-grained Global-to-Global and Fine-grained Global-to-Local, to achieve local and global level intra-modal interaction; (iii) a Cross-modal Matching Network module, which applies bidirectional strategies, Textual-to-Visual and Visual-to-Textual matching, to implement bidirectional cross-modal interaction. Extensive experiments conducted on WikiMEL, RichpediaMEL, and WikiDiverse datasets demonstrate the outstanding performance of M3EL when compared to the state-of-the-art baselines.

  • 4 authors
·
Dec 11, 2024

Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image Person Retrieval

Text-to-image person retrieval aims to identify the target person based on a given textual description query. The primary challenge is to learn the mapping of visual and textual modalities into a common latent space. Prior works have attempted to address this challenge by leveraging separately pre-trained unimodal models to extract visual and textual features. However, these approaches lack the necessary underlying alignment capabilities required to match multimodal data effectively. Besides, these works use prior information to explore explicit part alignments, which may lead to the distortion of intra-modality information. To alleviate these issues, we present IRRA: a cross-modal Implicit Relation Reasoning and Aligning framework that learns relations between local visual-textual tokens and enhances global image-text matching without requiring additional prior supervision. Specifically, we first design an Implicit Relation Reasoning module in a masked language modeling paradigm. This achieves cross-modal interaction by integrating the visual cues into the textual tokens with a cross-modal multimodal interaction encoder. Secondly, to globally align the visual and textual embeddings, Similarity Distribution Matching is proposed to minimize the KL divergence between image-text similarity distributions and the normalized label matching distributions. The proposed method achieves new state-of-the-art results on all three public datasets, with a notable margin of about 3%-9% for Rank-1 accuracy compared to prior methods.

  • 2 authors
·
Mar 22, 2023

Re-mine, Learn and Reason: Exploring the Cross-modal Semantic Correlations for Language-guided HOI detection

Human-Object Interaction (HOI) detection is a challenging computer vision task that requires visual models to address the complex interactive relationship between humans and objects and predict HOI triplets. Despite the challenges posed by the numerous interaction combinations, they also offer opportunities for multimodal learning of visual texts. In this paper, we present a systematic and unified framework (RmLR) that enhances HOI detection by incorporating structured text knowledge. Firstly, we qualitatively and quantitatively analyze the loss of interaction information in the two-stage HOI detector and propose a re-mining strategy to generate more comprehensive visual representation.Secondly, we design more fine-grained sentence- and word-level alignment and knowledge transfer strategies to effectively address the many-to-many matching problem between multiple interactions and multiple texts.These strategies alleviate the matching confusion problem that arises when multiple interactions occur simultaneously, thereby improving the effectiveness of the alignment process. Finally, HOI reasoning by visual features augmented with textual knowledge substantially improves the understanding of interactions. Experimental results illustrate the effectiveness of our approach, where state-of-the-art performance is achieved on public benchmarks. We further analyze the effects of different components of our approach to provide insights into its efficacy.

  • 7 authors
·
Jul 25, 2023

RelationBooth: Towards Relation-Aware Customized Object Generation

Customized image generation is crucial for delivering personalized content based on user-provided image prompts, aligning large-scale text-to-image diffusion models with individual needs. However, existing models often overlook the relationships between customized objects in generated images. Instead, this work addresses that gap by focusing on relation-aware customized image generation, which aims to preserve the identities from image prompts while maintaining the predicate relations described in text prompts. Specifically, we introduce RelationBooth, a framework that disentangles identity and relation learning through a well-curated dataset. Our training data consists of relation-specific images, independent object images containing identity information, and text prompts to guide relation generation. Then, we propose two key modules to tackle the two main challenges: generating accurate and natural relations, especially when significant pose adjustments are required, and avoiding object confusion in cases of overlap. First, we introduce a keypoint matching loss that effectively guides the model in adjusting object poses closely tied to their relationships. Second, we incorporate local features from the image prompts to better distinguish between objects, preventing confusion in overlapping cases. Extensive results on three benchmarks demonstrate the superiority of RelationBooth in generating precise relations while preserving object identities across a diverse set of objects and relations. The source code and trained models will be made available to the public.

  • 8 authors
·
Oct 30, 2024

MMRel: A Relation Understanding Dataset and Benchmark in the MLLM Era

Despite the recent advancements in Multi-modal Large Language Models (MLLMs), understanding inter-object relations, i.e., interactions or associations between distinct objects, remains a major challenge for such models. This issue significantly hinders their advanced reasoning capabilities and is primarily due to the lack of large-scale, high-quality, and diverse multi-modal data essential for training and evaluating MLLMs. In this paper, we provide a taxonomy of inter-object relations and introduce Multi-Modal Relation Understanding (MMRel), a comprehensive dataset designed to bridge this gap by providing large-scale, high-quality and diverse data for studying inter-object relations with MLLMs. MMRel features three distinctive attributes: (i) It includes over 15K question-answer pairs, which are sourced from three distinct domains, ensuring large scale and high diversity; (ii) It contains a subset featuring highly unusual relations, on which MLLMs often fail due to hallucinations, thus are very challenging; (iii) It provides manually verified high-quality labels for inter-object relations. Thanks to these features, MMRel is ideal for evaluating MLLMs on relation understanding, as well as being used to fine-tune MLLMs to enhance relation understanding and even benefit overall performance in various vision-language tasks. Extensive experiments on various popular MLLMs validate the effectiveness of MMRel. Both MMRel dataset and the complete labeling scripts have been made publicly available.

  • 6 authors
·
Jun 13, 2024

Inst3D-LMM: Instance-Aware 3D Scene Understanding with Multi-modal Instruction Tuning

Despite encouraging progress in 3D scene understanding, it remains challenging to develop an effective Large Multi-modal Model (LMM) that is capable of understanding and reasoning in complex 3D environments. Most previous methods typically encode 3D point and 2D image features separately, neglecting interactions between 2D semantics and 3D object properties, as well as the spatial relationships within the 3D environment. This limitation not only hinders comprehensive representations of 3D scene, but also compromises training and inference efficiency. To address these challenges, we propose a unified Instance-aware 3D Large Multi-modal Model (Inst3D-LMM) to deal with multiple 3D scene understanding tasks simultaneously. To obtain the fine-grained instance-level visual tokens, we first introduce a novel Multi-view Cross-Modal Fusion (MCMF) module to inject the multi-view 2D semantics into their corresponding 3D geometric features. For scene-level relation-aware tokens, we further present a 3D Instance Spatial Relation (3D-ISR) module to capture the intricate pairwise spatial relationships among objects. Additionally, we perform end-to-end multi-task instruction tuning simultaneously without the subsequent task-specific fine-tuning. Extensive experiments demonstrate that our approach outperforms the state-of-the-art methods across 3D scene understanding, reasoning and grounding tasks. Source code is available at https://github.com/hanxunyu/Inst3D-LMM

  • 5 authors
·
Mar 1

EmpathicStories++: A Multimodal Dataset for Empathy towards Personal Experiences

Modeling empathy is a complex endeavor that is rooted in interpersonal and experiential dimensions of human interaction, and remains an open problem within AI. Existing empathy datasets fall short in capturing the richness of empathy responses, often being confined to in-lab or acted scenarios, lacking longitudinal data, and missing self-reported labels. We introduce a new multimodal dataset for empathy during personal experience sharing: the EmpathicStories++ dataset (https://mitmedialab.github.io/empathic-stories-multimodal/) containing 53 hours of video, audio, and text data of 41 participants sharing vulnerable experiences and reading empathically resonant stories with an AI agent. EmpathicStories++ is the first longitudinal dataset on empathy, collected over a month-long deployment of social robots in participants' homes, as participants engage in natural, empathic storytelling interactions with AI agents. We then introduce a novel task of predicting individuals' empathy toward others' stories based on their personal experiences, evaluated in two contexts: participants' own personal shared story context and their reflections on stories they read. We benchmark this task using state-of-the-art models to pave the way for future improvements in contextualized and longitudinal empathy modeling. Our work provides a valuable resource for further research in developing empathetic AI systems and understanding the intricacies of human empathy within genuine, real-world settings.

  • 7 authors
·
May 24, 2024

UpStory: the Uppsala Storytelling dataset

Friendship and rapport play an important role in the formation of constructive social interactions, and have been widely studied in educational settings due to their impact on student outcomes. Given the growing interest in automating the analysis of such phenomena through Machine Learning (ML), access to annotated interaction datasets is highly valuable. However, no dataset on dyadic child-child interactions explicitly capturing rapport currently exists. Moreover, despite advances in the automatic analysis of human behaviour, no previous work has addressed the prediction of rapport in child-child dyadic interactions in educational settings. We present UpStory -- the Uppsala Storytelling dataset: a novel dataset of naturalistic dyadic interactions between primary school aged children, with an experimental manipulation of rapport. Pairs of children aged 8-10 participate in a task-oriented activity: designing a story together, while being allowed free movement within the play area. We promote balanced collection of different levels of rapport by using a within-subjects design: self-reported friendships are used to pair each child twice, either minimizing or maximizing pair separation in the friendship network. The dataset contains data for 35 pairs, totalling 3h 40m of audio and video recordings. It includes two video sources covering the play area, as well as separate voice recordings for each child. An anonymized version of the dataset is made publicly available, containing per-frame head pose, body pose, and face features; as well as per-pair information, including the level of rapport. Finally, we provide ML baselines for the prediction of rapport.

  • 7 authors
·
Jul 5, 2024

SIV-Bench: A Video Benchmark for Social Interaction Understanding and Reasoning

The rich and multifaceted nature of human social interaction, encompassing multimodal cues, unobservable relations and mental states, and dynamical behavior, presents a formidable challenge for artificial intelligence. To advance research in this area, we introduce SIV-Bench, a novel video benchmark for rigorously evaluating the capabilities of Multimodal Large Language Models (MLLMs) across Social Scene Understanding (SSU), Social State Reasoning (SSR), and Social Dynamics Prediction (SDP). SIV-Bench features 2,792 video clips and 8,792 meticulously generated question-answer pairs derived from a human-LLM collaborative pipeline. It is originally collected from TikTok and YouTube, covering a wide range of video genres, presentation styles, and linguistic and cultural backgrounds. It also includes a dedicated setup for analyzing the impact of different textual cues-original on-screen text, added dialogue, or no text. Our comprehensive experiments on leading MLLMs reveal that while models adeptly handle SSU, they significantly struggle with SSR and SDP, where Relation Inference (RI) is an acute bottleneck, as further examined in our analysis. Our study also confirms the critical role of transcribed dialogue in aiding comprehension of complex social interactions. By systematically identifying current MLLMs' strengths and limitations, SIV-Bench offers crucial insights to steer the development of more socially intelligent AI. The dataset and code are available at https://kfq20.github.io/sivbench/.

  • 6 authors
·
Jun 5

InterFusion: Text-Driven Generation of 3D Human-Object Interaction

In this study, we tackle the complex task of generating 3D human-object interactions (HOI) from textual descriptions in a zero-shot text-to-3D manner. We identify and address two key challenges: the unsatisfactory outcomes of direct text-to-3D methods in HOI, largely due to the lack of paired text-interaction data, and the inherent difficulties in simultaneously generating multiple concepts with complex spatial relationships. To effectively address these issues, we present InterFusion, a two-stage framework specifically designed for HOI generation. InterFusion involves human pose estimations derived from text as geometric priors, which simplifies the text-to-3D conversion process and introduces additional constraints for accurate object generation. At the first stage, InterFusion extracts 3D human poses from a synthesized image dataset depicting a wide range of interactions, subsequently mapping these poses to interaction descriptions. The second stage of InterFusion capitalizes on the latest developments in text-to-3D generation, enabling the production of realistic and high-quality 3D HOI scenes. This is achieved through a local-global optimization process, where the generation of human body and object is optimized separately, and jointly refined with a global optimization of the entire scene, ensuring a seamless and contextually coherent integration. Our experimental results affirm that InterFusion significantly outperforms existing state-of-the-art methods in 3D HOI generation.

  • 8 authors
·
Mar 22, 2024

METOR: A Unified Framework for Mutual Enhancement of Objects and Relationships in Open-vocabulary Video Visual Relationship Detection

Open-vocabulary video visual relationship detection aims to detect objects and their relationships in videos without being restricted by predefined object or relationship categories. Existing methods leverage the rich semantic knowledge of pre-trained vision-language models such as CLIP to identify novel categories. They typically adopt a cascaded pipeline to first detect objects and then classify relationships based on the detected objects, which may lead to error propagation and thus suboptimal performance. In this paper, we propose Mutual EnhancemenT of Objects and Relationships (METOR), a query-based unified framework to jointly model and mutually enhance object detection and relationship classification in open-vocabulary scenarios. Under this framework, we first design a CLIP-based contextual refinement encoding module that extracts visual contexts of objects and relationships to refine the encoding of text features and object queries, thus improving the generalization of encoding to novel categories. Then we propose an iterative enhancement module to alternatively enhance the representations of objects and relationships by fully exploiting their interdependence to improve recognition performance. Extensive experiments on two public datasets, VidVRD and VidOR, demonstrate that our framework achieves state-of-the-art performance.

  • 3 authors
·
May 10

Leveraging Large Language Models for Generating Research Topic Ontologies: A Multi-Disciplinary Study

Ontologies and taxonomies of research fields are critical for managing and organising scientific knowledge, as they facilitate efficient classification, dissemination and retrieval of information. However, the creation and maintenance of such ontologies are expensive and time-consuming tasks, usually requiring the coordinated effort of multiple domain experts. Consequently, ontologies in this space often exhibit uneven coverage across different disciplines, limited inter-domain connectivity, and infrequent updating cycles. In this study, we investigate the capability of several large language models to identify semantic relationships among research topics within three academic domains: biomedicine, physics, and engineering. The models were evaluated under three distinct conditions: zero-shot prompting, chain-of-thought prompting, and fine-tuning on existing ontologies. Additionally, we assessed the cross-domain transferability of fine-tuned models by measuring their performance when trained in one domain and subsequently applied to a different one. To support this analysis, we introduce PEM-Rel-8K, a novel dataset consisting of over 8,000 relationships extracted from the most widely adopted taxonomies in the three disciplines considered in this study: MeSH, PhySH, and IEEE. Our experiments demonstrate that fine-tuning LLMs on PEM-Rel-8K yields excellent performance across all disciplines.

  • 4 authors
·
Aug 28

InterDreamer: Zero-Shot Text to 3D Dynamic Human-Object Interaction

Text-conditioned human motion generation has experienced significant advancements with diffusion models trained on extensive motion capture data and corresponding textual annotations. However, extending such success to 3D dynamic human-object interaction (HOI) generation faces notable challenges, primarily due to the lack of large-scale interaction data and comprehensive descriptions that align with these interactions. This paper takes the initiative and showcases the potential of generating human-object interactions without direct training on text-interaction pair data. Our key insight in achieving this is that interaction semantics and dynamics can be decoupled. Being unable to learn interaction semantics through supervised training, we instead leverage pre-trained large models, synergizing knowledge from a large language model and a text-to-motion model. While such knowledge offers high-level control over interaction semantics, it cannot grasp the intricacies of low-level interaction dynamics. To overcome this issue, we further introduce a world model designed to comprehend simple physics, modeling how human actions influence object motion. By integrating these components, our novel framework, InterDreamer, is able to generate text-aligned 3D HOI sequences in a zero-shot manner. We apply InterDreamer to the BEHAVE and CHAIRS datasets, and our comprehensive experimental analysis demonstrates its capability to generate realistic and coherent interaction sequences that seamlessly align with the text directives.

  • 4 authors
·
Mar 28, 2024

ALOHA: Artificial Learning of Human Attributes for Dialogue Agents

For conversational AI and virtual assistants to communicate with humans in a realistic way, they must exhibit human characteristics such as expression of emotion and personality. Current attempts toward constructing human-like dialogue agents have presented significant difficulties. We propose Human Level Attributes (HLAs) based on tropes as the basis of a method for learning dialogue agents that can imitate the personalities of fictional characters. Tropes are characteristics of fictional personalities that are observed recurrently and determined by viewers' impressions. By combining detailed HLA data with dialogue data for specific characters, we present a dataset, HLA-Chat, that models character profiles and gives dialogue agents the ability to learn characters' language styles through their HLAs. We then introduce a three-component system, ALOHA (which stands for Artificial Learning of Human Attributes), that combines character space mapping, character community detection, and language style retrieval to build a character (or personality) specific language model. Our preliminary experiments demonstrate that two variations of ALOHA, combined with our proposed dataset, can outperform baseline models at identifying the correct dialogue responses of chosen target characters, and are stable regardless of the character's identity, the genre of the show, and the context of the dialogue.

  • 6 authors
·
Oct 18, 2019

SIGHT: A Large Annotated Dataset on Student Insights Gathered from Higher Education Transcripts

Lectures are a learning experience for both students and teachers. Students learn from teachers about the subject material, while teachers learn from students about how to refine their instruction. However, online student feedback is unstructured and abundant, making it challenging for teachers to learn and improve. We take a step towards tackling this challenge. First, we contribute a dataset for studying this problem: SIGHT is a large dataset of 288 math lecture transcripts and 15,784 comments collected from the Massachusetts Institute of Technology OpenCourseWare (MIT OCW) YouTube channel. Second, we develop a rubric for categorizing feedback types using qualitative analysis. Qualitative analysis methods are powerful in uncovering domain-specific insights, however they are costly to apply to large data sources. To overcome this challenge, we propose a set of best practices for using large language models (LLMs) to cheaply classify the comments at scale. We observe a striking correlation between the model's and humans' annotation: Categories with consistent human annotations (>0.9 inter-rater reliability, IRR) also display higher human-model agreement (>0.7), while categories with less consistent human annotations (0.7-0.8 IRR) correspondingly demonstrate lower human-model agreement (0.3-0.5). These techniques uncover useful student feedback from thousands of comments, costing around 0.002$ per comment. We conclude by discussing exciting future directions on using online student feedback and improving automated annotation techniques for qualitative research.

  • 4 authors
·
Jun 15, 2023

RecAgent: A Novel Simulation Paradigm for Recommender Systems

Recommender system has deeply revolutionized people's daily life and production, bringing a large amount of business value. In the recommendation domain, simulation and real data-based studies are two typical research paradigms, with each having different advantages. Previously, real data-based studies occupy more important positions, since accurately simulating the user preference is quite difficult. Recently, large language models (LLM) have shown great potential to achieve human-like intelligence, which provides new opportunities to overcome the shortcomings of simulation-based studies and thus highlight their advantages, such as much more application scenarios and cheaper data acquisition strategies. To shed lights on this direction, in this paper, we introduce an LLM-based recommender simulator called RecAgent. Our simulator is composed of two modules: (1) the user module and (2) the recommender module. The user module can browse the recommendation website, communicate with other users and broadcast messages on the social media. The recommender module is designed to provide search or recommendation lists to the users, and one can design different models to implement the recommender. All the users take actions based on LLMs, and can freely evolve like in the real world. We present several case studies to demonstrate that the users in our simulator can indeed behave in a reasonable manner as expected. Our project has been released at https://github.com/RUC-GSAI/YuLan-Rec.

  • 7 authors
·
Jun 4, 2023

Narrator: Towards Natural Control of Human-Scene Interaction Generation via Relationship Reasoning

Naturally controllable human-scene interaction (HSI) generation has an important role in various fields, such as VR/AR content creation and human-centered AI. However, existing methods are unnatural and unintuitive in their controllability, which heavily limits their application in practice. Therefore, we focus on a challenging task of naturally and controllably generating realistic and diverse HSIs from textual descriptions. From human cognition, the ideal generative model should correctly reason about spatial relationships and interactive actions. To that end, we propose Narrator, a novel relationship reasoning-based generative approach using a conditional variation autoencoder for naturally controllable generation given a 3D scene and a textual description. Also, we model global and local spatial relationships in a 3D scene and a textual description respectively based on the scene graph, and introduce a partlevel action mechanism to represent interactions as atomic body part states. In particular, benefiting from our relationship reasoning, we further propose a simple yet effective multi-human generation strategy, which is the first exploration for controllable multi-human scene interaction generation. Our extensive experiments and perceptual studies show that Narrator can controllably generate diverse interactions and significantly outperform existing works. The code and dataset will be available for research purposes.

  • 6 authors
·
Mar 16, 2023

Distillation of Human-Object Interaction Contexts for Action Recognition

Modeling spatial-temporal relations is imperative for recognizing human actions, especially when a human is interacting with objects, while multiple objects appear around the human differently over time. Most existing action recognition models focus on learning overall visual cues of a scene but disregard informative fine-grained features, which can be captured by learning human-object relationships and interactions. In this paper, we learn human-object relationships by exploiting the interaction of their local and global contexts. We hence propose the Global-Local Interaction Distillation Network (GLIDN), learning human and object interactions through space and time via knowledge distillation for fine-grained scene understanding. GLIDN encodes humans and objects into graph nodes and learns local and global relations via graph attention network. The local context graphs learn the relation between humans and objects at a frame level by capturing their co-occurrence at a specific time step. The global relation graph is constructed based on the video-level of human and object interactions, identifying their long-term relations throughout a video sequence. More importantly, we investigate how knowledge from these graphs can be distilled to their counterparts for improving human-object interaction (HOI) recognition. We evaluate our model by conducting comprehensive experiments on two datasets including Charades and CAD-120 datasets. We have achieved better results than the baselines and counterpart approaches.

  • 2 authors
·
Dec 17, 2021

ChatGPT Evaluation on Sentence Level Relations: A Focus on Temporal, Causal, and Discourse Relations

This paper aims to quantitatively evaluate the performance of ChatGPT, an interactive large language model, on inter-sentential relations such as temporal relations, causal relations, and discourse relations. Given ChatGPT's promising performance across various tasks, we proceed to carry out thorough evaluations on the whole test sets of 11 datasets, including temporal and causal relations, PDTB2.0-based, and dialogue-based discourse relations. To ensure the reliability of our findings, we employ three tailored prompt templates for each task, including the zero-shot prompt template, zero-shot prompt engineering (PE) template, and in-context learning (ICL) prompt template, to establish the initial baseline scores for all popular sentence-pair relation classification tasks for the first time. Through our study, we discover that ChatGPT exhibits exceptional proficiency in detecting and reasoning about causal relations, albeit it may not possess the same level of expertise in identifying the temporal order between two events. While it is capable of identifying the majority of discourse relations with existing explicit discourse connectives, the implicit discourse relation remains a formidable challenge. Concurrently, ChatGPT demonstrates subpar performance in the dialogue discourse parsing task that requires structural understanding in a dialogue before being aware of the discourse relation.

  • 7 authors
·
Apr 28, 2023

TriDi: Trilateral Diffusion of 3D Humans, Objects, and Interactions

Modeling 3D human-object interaction (HOI) is a problem of great interest for computer vision and a key enabler for virtual and mixed-reality applications. Existing methods work in a one-way direction: some recover plausible human interactions conditioned on a 3D object; others recover the object pose conditioned on a human pose. Instead, we provide the first unified model - TriDi which works in any direction. Concretely, we generate Human, Object, and Interaction modalities simultaneously with a new three-way diffusion process, allowing to model seven distributions with one network. We implement TriDi as a transformer attending to the various modalities' tokens, thereby discovering conditional relations between them. The user can control the interaction either as a text description of HOI or a contact map. We embed these two representations into a shared latent space, combining the practicality of text descriptions with the expressiveness of contact maps. Using a single network, TriDi unifies all the special cases of prior work and extends to new ones, modeling a family of seven distributions. Remarkably, despite using a single model, TriDi generated samples surpass one-way specialized baselines on GRAB and BEHAVE in terms of both qualitative and quantitative metrics, and demonstrating better diversity. We show the applicability of TriDi to scene population, generating objects for human-contact datasets, and generalization to unseen object geometry. The project page is available at: https://virtualhumans.mpi-inf.mpg.de/tridi.

  • 4 authors
·
Dec 9, 2024

in2IN: Leveraging individual Information to Generate Human INteractions

Generating human-human motion interactions conditioned on textual descriptions is a very useful application in many areas such as robotics, gaming, animation, and the metaverse. Alongside this utility also comes a great difficulty in modeling the highly dimensional inter-personal dynamics. In addition, properly capturing the intra-personal diversity of interactions has a lot of challenges. Current methods generate interactions with limited diversity of intra-person dynamics due to the limitations of the available datasets and conditioning strategies. For this, we introduce in2IN, a novel diffusion model for human-human motion generation which is conditioned not only on the textual description of the overall interaction but also on the individual descriptions of the actions performed by each person involved in the interaction. To train this model, we use a large language model to extend the InterHuman dataset with individual descriptions. As a result, in2IN achieves state-of-the-art performance in the InterHuman dataset. Furthermore, in order to increase the intra-personal diversity on the existing interaction datasets, we propose DualMDM, a model composition technique that combines the motions generated with in2IN and the motions generated by a single-person motion prior pre-trained on HumanML3D. As a result, DualMDM generates motions with higher individual diversity and improves control over the intra-person dynamics while maintaining inter-personal coherence.

  • 5 authors
·
Apr 15, 2024

ChatAnything: Facetime Chat with LLM-Enhanced Personas

In this technical report, we target generating anthropomorphized personas for LLM-based characters in an online manner, including visual appearance, personality and tones, with only text descriptions. To achieve this, we first leverage the in-context learning capability of LLMs for personality generation by carefully designing a set of system prompts. We then propose two novel concepts: the mixture of voices (MoV) and the mixture of diffusers (MoD) for diverse voice and appearance generation. For MoV, we utilize the text-to-speech (TTS) algorithms with a variety of pre-defined tones and select the most matching one based on the user-provided text description automatically. For MoD, we combine the recent popular text-to-image generation techniques and talking head algorithms to streamline the process of generating talking objects. We termed the whole framework as ChatAnything. With it, users could be able to animate anything with any personas that are anthropomorphic using just a few text inputs. However, we have observed that the anthropomorphic objects produced by current generative models are often undetectable by pre-trained face landmark detectors, leading to failure of the face motion generation, even if these faces possess human-like appearances because those images are nearly seen during the training (e.g., OOD samples). To address this issue, we incorporate pixel-level guidance to infuse human face landmarks during the image generation phase. To benchmark these metrics, we have built an evaluation dataset. Based on it, we verify that the detection rate of the face landmark is significantly increased from 57.0% to 92.5% thus allowing automatic face animation based on generated speech content. The code and more results can be found at https://chatanything.github.io/.

  • 7 authors
·
Nov 12, 2023 3

RecInDial: A Unified Framework for Conversational Recommendation with Pretrained Language Models

Conversational Recommender System (CRS), which aims to recommend high-quality items to users through interactive conversations, has gained great research interest recently. A CRS is usually composed of a recommendation module and a generation module. In the previous work, these two modules are loosely connected in the model training and are shallowly integrated during inference, where a simple switching or copy mechanism is adopted to incorporate recommended items into generated responses. Moreover, the current end-to-end neural models trained on small crowd-sourcing datasets (e.g., 10K dialogs in the ReDial dataset) tend to overfit and have poor chit-chat ability. In this work, we propose a novel unified framework that integrates recommendation into the dialog (RecInDial) generation by introducing a vocabulary pointer. To tackle the low-resource issue in CRS, we finetune the large-scale pretrained language models to generate fluent and diverse responses, and introduce a knowledge-aware bias learned from an entity-oriented knowledge graph to enhance the recommendation performance. Furthermore, we propose to evaluate the CRS models in an end-to-end manner, which can reflect the overall performance of the entire system rather than the performance of individual modules, compared to the separate evaluations of the two modules used in previous work. Experiments on the benchmark dataset ReDial show our RecInDial model significantly surpasses the state-of-the-art methods. More extensive analyses show the effectiveness of our model.

  • 6 authors
·
Oct 14, 2021

Heterogeneous Graph Representation Learning with Relation Awareness

Representation learning on heterogeneous graphs aims to obtain meaningful node representations to facilitate various downstream tasks, such as node classification and link prediction. Existing heterogeneous graph learning methods are primarily developed by following the propagation mechanism of node representations. There are few efforts on studying the role of relations for improving the learning of more fine-grained node representations. Indeed, it is important to collaboratively learn the semantic representations of relations and discern node representations with respect to different relation types. To this end, in this paper, we propose a novel Relation-aware Heterogeneous Graph Neural Network, namely R-HGNN, to learn node representations on heterogeneous graphs at a fine-grained level by considering relation-aware characteristics. Specifically, a dedicated graph convolution component is first designed to learn unique node representations from each relation-specific graph separately. Then, a cross-relation message passing module is developed to improve the interactions of node representations across different relations. Also, the relation representations are learned in a layer-wise manner to capture relation semantics, which are used to guide the node representation learning process. Moreover, a semantic fusing module is presented to aggregate relation-aware node representations into a compact representation with the learned relation representations. Finally, we conduct extensive experiments on a variety of graph learning tasks, and experimental results demonstrate that our approach consistently outperforms existing methods among all the tasks.

  • 6 authors
·
May 24, 2021

NormAd: A Benchmark for Measuring the Cultural Adaptability of Large Language Models

The integration of Large Language Models (LLMs) into various global cultures fundamentally presents a cultural challenge: LLMs must navigate interactions, respect social norms, and avoid transgressing cultural boundaries. However, it is still unclear if LLMs can adapt their outputs to diverse cultural norms. Our study focuses on this aspect. We introduce NormAd, a novel dataset, which includes 2.6k stories that represent social and cultural norms from 75 countries, to assess the ability of LLMs to adapt to different granular levels of socio-cultural contexts such as the country of origin, its associated cultural values, and prevalent social norms. Our study reveals that LLMs struggle with cultural reasoning across all contextual granularities, showing stronger adaptability to English-centric cultures over those from the Global South. Even with explicit social norms, the top-performing model, Mistral-7b-Instruct, achieves only 81.8\% accuracy, lagging behind the 95.6\% achieved by humans. Evaluation on NormAd further reveals that LLMs struggle to adapt to stories involving gift-giving across cultures. Due to inherent agreement or sycophancy biases, LLMs find it considerably easier to assess the social acceptability of stories that adhere to cultural norms than those that deviate from them. Our benchmark measures the cultural adaptability (or lack thereof) of LLMs, emphasizing the potential to make these technologies more equitable and useful for global audiences. We release the NormAd dataset and its associated code on GitHub.

  • 5 authors
·
Apr 18, 2024

Mutual Theory of Mind for Human-AI Communication

New developments are enabling AI systems to perceive, recognize, and respond with social cues based on inferences made from humans' explicit or implicit behavioral and verbal cues. These AI systems, equipped with an equivalent of human's Theory of Mind (ToM) capability, are currently serving as matchmakers on dating platforms, assisting student learning as teaching assistants, and enhancing productivity as work partners. They mark a new era in human-AI interaction (HAI) that diverges from traditional human-computer interaction (HCI), where computers are commonly seen as tools instead of social actors. Designing and understanding the human perceptions and experiences in this emerging HAI era becomes an urgent and critical issue for AI systems to fulfill human needs and mitigate risks across social contexts. In this paper, we posit the Mutual Theory of Mind (MToM) framework, inspired by our capability of ToM in human-human communications, to guide this new generation of HAI research by highlighting the iterative and mutual shaping nature of human-AI communication. We discuss the motivation of the MToM framework and its three key components that iteratively shape the human-AI communication in three stages. We then describe two empirical studies inspired by the MToM framework to demonstrate the power of MToM in guiding the design and understanding of human-AI communication. Finally, we discuss future research opportunities in human-AI interaction through the lens of MToM.

  • 2 authors
·
Oct 7, 2022

Context Engineering 2.0: The Context of Context Engineering

Karl Marx once wrote that ``the human essence is the ensemble of social relations'', suggesting that individuals are not isolated entities but are fundamentally shaped by their interactions with other entities, within which contexts play a constitutive and essential role. With the advent of computers and artificial intelligence, these contexts are no longer limited to purely human--human interactions: human--machine interactions are included as well. Then a central question emerges: How can machines better understand our situations and purposes? To address this challenge, researchers have recently introduced the concept of context engineering. Although it is often regarded as a recent innovation of the agent era, we argue that related practices can be traced back more than twenty years. Since the early 1990s, the field has evolved through distinct historical phases, each shaped by the intelligence level of machines: from early human--computer interaction frameworks built around primitive computers, to today's human--agent interaction paradigms driven by intelligent agents, and potentially to human--level or superhuman intelligence in the future. In this paper, we situate context engineering, provide a systematic definition, outline its historical and conceptual landscape, and examine key design considerations for practice. By addressing these questions, we aim to offer a conceptual foundation for context engineering and sketch its promising future. This paper is a stepping stone for a broader community effort toward systematic context engineering in AI systems.

  • 9 authors
·
Oct 30

Towards Safer AI Moderation: Evaluating LLM Moderators Through a Unified Benchmark Dataset and Advocating a Human-First Approach

As AI systems become more integrated into daily life, the need for safer and more reliable moderation has never been greater. Large Language Models (LLMs) have demonstrated remarkable capabilities, surpassing earlier models in complexity and performance. Their evaluation across diverse tasks has consistently showcased their potential, enabling the development of adaptive and personalized agents. However, despite these advancements, LLMs remain prone to errors, particularly in areas requiring nuanced moral reasoning. They struggle with detecting implicit hate, offensive language, and gender biases due to the subjective and context-dependent nature of these issues. Moreover, their reliance on training data can inadvertently reinforce societal biases, leading to inconsistencies and ethical concerns in their outputs. To explore the limitations of LLMs in this role, we developed an experimental framework based on state-of-the-art (SOTA) models to assess human emotions and offensive behaviors. The framework introduces a unified benchmark dataset encompassing 49 distinct categories spanning the wide spectrum of human emotions, offensive and hateful text, and gender and racial biases. Furthermore, we introduced SafePhi, a QLoRA fine-tuned version of Phi-4, adapting diverse ethical contexts and outperforming benchmark moderators by achieving a Macro F1 score of 0.89, where OpenAI Moderator and Llama Guard score 0.77 and 0.74, respectively. This research also highlights the critical domains where LLM moderators consistently underperformed, pressing the need to incorporate more heterogeneous and representative data with human-in-the-loop, for better model robustness and explainability.

  • 4 authors
·
Aug 9

CogniPair: From LLM Chatbots to Conscious AI Agents -- GNWT-Based Multi-Agent Digital Twins for Social Pairing -- Dating & Hiring Applications

Current large language model (LLM) agents lack authentic human psychological processes necessary for genuine digital twins and social AI applications. To address this limitation, we present a computational implementation of Global Workspace Theory (GNWT) that integrates human cognitive architecture principles into LLM agents, creating specialized sub-agents for emotion, memory, social norms, planning, and goal-tracking coordinated through a global workspace mechanism. However, authentic digital twins require accurate personality initialization. We therefore develop a novel adventure-based personality test that evaluates true personality through behavioral choices within interactive scenarios, bypassing self-presentation bias found in traditional assessments. Building on these innovations, our CogniPair platform enables digital twins to engage in realistic simulated dating interactions and job interviews before real encounters, providing bidirectional cultural fit assessment for both romantic compatibility and workplace matching. Validation using 551 GNWT-Agents and Columbia University Speed Dating dataset demonstrates 72% correlation with human attraction patterns, 77.8% match prediction accuracy, and 74% agreement in human validation studies. This work advances psychological authenticity in LLM agents and establishes a foundation for intelligent dating platforms and HR technology solutions.

  • 19 authors
·
Jun 3

Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions

Recent advancements in general-purpose AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment. However, the lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment. In particular, ML- and philosophy-oriented alignment research often views AI alignment as a static, unidirectional process (i.e., aiming to ensure that AI systems' objectives match humans) rather than an ongoing, mutual alignment problem [429]. This perspective largely neglects the long-term interaction and dynamic changes of alignment. To understand these gaps, we introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML), and others. We characterize, define and scope human-AI alignment. From this, we present a conceptual framework of "Bidirectional Human-AI Alignment" to organize the literature from a human-centered perspective. This framework encompasses both 1) conventional studies of aligning AI to humans that ensures AI produces the intended outcomes determined by humans, and 2) a proposed concept of aligning humans to AI, which aims to help individuals and society adjust to AI advancements both cognitively and behaviorally. Additionally, we articulate the key findings derived from literature analysis, including discussions about human values, interaction techniques, and evaluations. To pave the way for future studies, we envision three key challenges for future directions and propose examples of potential future solutions.

  • 24 authors
·
Jun 13, 2024

CRENER: A Character Relation Enhanced Chinese NER Model

Chinese Named Entity Recognition (NER) is an important task in information extraction, which has a significant impact on downstream applications. Due to the lack of natural separators in Chinese, previous NER methods mostly relied on external dictionaries to enrich the semantic and boundary information of Chinese words. However, such methods may introduce noise that affects the accuracy of named entity recognition. To this end, we propose a character relation enhanced Chinese NER model (CRENER). This model defines four types of tags that reflect the relationships between characters, and proposes a fine-grained modeling of the relationships between characters based on three types of relationships: adjacency relations between characters, relations between characters and tags, and relations between tags, to more accurately identify entity boundaries and improve Chinese NER accuracy. Specifically, we transform the Chinese NER task into a character-character relationship classification task, ensuring the accuracy of entity boundary recognition through joint modeling of relation tags. To enhance the model's ability to understand contextual information, WRENER further constructed an adapted transformer encoder that combines unscaled direction-aware and distance-aware masked self-attention mechanisms. Moreover, a relationship representation enhancement module was constructed to model predefined relationship tags, effectively mining the relationship representations between characters and tags. Experiments conducted on four well-known Chinese NER benchmark datasets have shown that the proposed model outperforms state-of-the-art baselines. The ablation experiment also demonstrated the effectiveness of the proposed model.

  • 2 authors
·
Dec 14, 2024

CharacterChat: Learning towards Conversational AI with Personalized Social Support

In our modern, fast-paced, and interconnected world, the importance of mental well-being has grown into a matter of great urgency. However, traditional methods such as Emotional Support Conversations (ESC) face challenges in effectively addressing a diverse range of individual personalities. In response, we introduce the Social Support Conversation (S2Conv) framework. It comprises a series of support agents and the interpersonal matching mechanism, linking individuals with persona-compatible virtual supporters. Utilizing persona decomposition based on the MBTI (Myers-Briggs Type Indicator), we have created the MBTI-1024 Bank, a group that of virtual characters with distinct profiles. Through improved role-playing prompts with behavior preset and dynamic memory, we facilitate the development of the MBTI-S2Conv dataset, which contains conversations between the characters in the MBTI-1024 Bank. Building upon these foundations, we present CharacterChat, a comprehensive S2Conv system, which includes a conversational model driven by personas and memories, along with an interpersonal matching plugin model that dispatches the optimal supporters from the MBTI-1024 Bank for individuals with specific personas. Empirical results indicate the remarkable efficacy of CharacterChat in providing personalized social support and highlight the substantial advantages derived from interpersonal matching. The source code is available in https://github.com/morecry/CharacterChat.

  • 8 authors
·
Aug 20, 2023

Synthetic Visual Genome

Reasoning over visual relationships-spatial, functional, interactional, social, etc.-is considered to be a fundamental component of human cognition. Yet, despite the major advances in visual comprehension in multimodal language models (MLMs), precise reasoning over relationships and their generations remains a challenge. We introduce ROBIN: an MLM instruction-tuned with densely annotated relationships capable of constructing high-quality dense scene graphs at scale. To train ROBIN, we curate SVG, a synthetic scene graph dataset by completing the missing relations of selected objects in existing scene graphs using a teacher MLM and a carefully designed filtering process to ensure high-quality. To generate more accurate and rich scene graphs at scale for any image, we introduce SG-EDIT: a self-distillation framework where GPT-4o further refines ROBIN's predicted scene graphs by removing unlikely relations and/or suggesting relevant ones. In total, our dataset contains 146K images and 5.6M relationships for 2.6M objects. Results show that our ROBIN-3B model, despite being trained on less than 3 million instances, outperforms similar-size models trained on over 300 million instances on relationship understanding benchmarks, and even surpasses larger models up to 13B parameters. Notably, it achieves state-of-the-art performance in referring expression comprehension with a score of 88.9, surpassing the previous best of 87.4. Our results suggest that training on the refined scene graph data is crucial to maintaining high performance across diverse visual reasoning task.

  • 12 authors
·
Jun 9

Beyond Empathy: Integrating Diagnostic and Therapeutic Reasoning with Large Language Models for Mental Health Counseling

Large language models (LLMs) hold significant potential for mental health support, capable of generating empathetic responses and simulating therapeutic conversations. However, existing LLM-based approaches often lack the clinical grounding necessary for real-world psychological counseling, particularly in explicit diagnostic reasoning aligned with standards like the DSM/ICD and incorporating diverse therapeutic modalities beyond basic empathy or single strategies. To address these critical limitations, we propose PsyLLM, the first large language model designed to systematically integrate both diagnostic and therapeutic reasoning for mental health counseling. To develop the PsyLLM, we propose a novel automated data synthesis pipeline. This pipeline processes real-world mental health posts, generates multi-turn dialogue structures, and leverages LLMs guided by international diagnostic standards (e.g., DSM/ICD) and multiple therapeutic frameworks (e.g., CBT, ACT, psychodynamic) to simulate detailed clinical reasoning processes. Rigorous multi-dimensional filtering ensures the generation of high-quality, clinically aligned dialogue data. In addition, we introduce a new benchmark and evaluation protocol, assessing counseling quality across four key dimensions: comprehensiveness, professionalism, authenticity, and safety. Our experiments demonstrate that PsyLLM significantly outperforms state-of-the-art baseline models on this benchmark.

  • 8 authors
·
May 21

PersonaFuse: A Personality Activation-Driven Framework for Enhancing Human-LLM Interactions

Recent advancements in Large Language Models (LLMs) demonstrate remarkable capabilities across various fields. These developments have led to more direct communication between humans and LLMs in various situations, such as social companionship and psychological support. However, LLMs often exhibit limitations in emotional perception and social competence during real-world conversations. These limitations partly originate from their inability to adapt their communication style and emotional expression to different social and task contexts. In this work, we introduce PersonaFuse, a novel LLM post-training framework that enables LLMs to adapt and express different personalities for varying situations. Inspired by Trait Activation Theory and the Big Five personality model, PersonaFuse employs a Mixture-of-Expert architecture that combines persona adapters with a dynamic routing network, enabling contextual trait expression. Experimental results show that PersonaFuse substantially outperforms baseline models across multiple dimensions of social-emotional intelligence. Importantly, these gains are achieved without sacrificing general reasoning ability or model safety, which remain common limitations of direct prompting and supervised fine-tuning approaches. PersonaFuse also delivers consistent improvements in downstream human-centered applications, such as mental health counseling and review-based customer service. Finally, human preference evaluations against leading LLMs, including GPT-4o and DeepSeek, demonstrate that PersonaFuse achieves competitive response quality despite its comparatively smaller model size. These findings demonstrate that PersonaFuse~offers a theoretically grounded and practical approach for developing social-emotional enhanced LLMs, marking a significant advancement toward more human-centric AI systems.

  • 3 authors
·
Sep 8

SpeechAgents: Human-Communication Simulation with Multi-Modal Multi-Agent Systems

Human communication is a complex and diverse process that not only involves multiple factors such as language, commonsense, and cultural backgrounds but also requires the participation of multimodal information, such as speech. Large Language Model (LLM)-based multi-agent systems have demonstrated promising performance in simulating human society. Can we leverage LLM-based multi-agent systems to simulate human communication? However, current LLM-based multi-agent systems mainly rely on text as the primary medium. In this paper, we propose SpeechAgents, a multi-modal LLM based multi-agent system designed for simulating human communication. SpeechAgents utilizes multi-modal LLM as the control center for individual agent and employes multi-modal signals as the medium for exchanged messages among agents. Additionally, we propose Multi-Agent Tuning to enhance the multi-agent capabilities of LLM without compromising general abilities. To strengthen and evaluate the effectiveness of human communication simulation, we build the Human-Communication Simulation Benchmark. Experimental results demonstrate that SpeechAgents can simulate human communication dialogues with consistent content, authentic rhythm, and rich emotions and demonstrate excellent scalability even with up to 25 agents, which can apply to tasks such as drama creation and audio novels generation. Code and models will be open-sourced at https://github. com/0nutation/SpeechAgents

  • 6 authors
·
Jan 8, 2024

Value Kaleidoscope: Engaging AI with Pluralistic Human Values, Rights, and Duties

Human values are crucial to human decision-making. Value pluralism is the view that multiple correct values may be held in tension with one another (e.g., when considering lying to a friend to protect their feelings, how does one balance honesty with friendship?). As statistical learners, AI systems fit to averages by default, washing out these potentially irreducible value conflicts. To improve AI systems to better reflect value pluralism, the first-order challenge is to explore the extent to which AI systems can model pluralistic human values, rights, and duties as well as their interaction. We introduce ValuePrism, a large-scale dataset of 218k values, rights, and duties connected to 31k human-written situations. ValuePrism's contextualized values are generated by GPT-4 and deemed high-quality by human annotators 91% of the time. We conduct a large-scale study with annotators across diverse social and demographic backgrounds to try to understand whose values are represented. With ValuePrism, we build Kaleido, an open, light-weight, and structured language-based multi-task model that generates, explains, and assesses the relevance and valence (i.e., support or oppose) of human values, rights, and duties within a specific context. Humans prefer the sets of values output by our system over the teacher GPT-4, finding them more accurate and with broader coverage. In addition, we demonstrate that Kaleido can help explain variability in human decision-making by outputting contrasting values. Finally, we show that Kaleido's representations transfer to other philosophical frameworks and datasets, confirming the benefit of an explicit, modular, and interpretable approach to value pluralism. We hope that our work will serve as a step to making more explicit the implicit values behind human decision-making and to steering AI systems to make decisions that are more in accordance with them.

  • 13 authors
·
Sep 1, 2023

DreamRelation: Relation-Centric Video Customization

Relational video customization refers to the creation of personalized videos that depict user-specified relations between two subjects, a crucial task for comprehending real-world visual content. While existing methods can personalize subject appearances and motions, they still struggle with complex relational video customization, where precise relational modeling and high generalization across subject categories are essential. The primary challenge arises from the intricate spatial arrangements, layout variations, and nuanced temporal dynamics inherent in relations; consequently, current models tend to overemphasize irrelevant visual details rather than capturing meaningful interactions. To address these challenges, we propose DreamRelation, a novel approach that personalizes relations through a small set of exemplar videos, leveraging two key components: Relational Decoupling Learning and Relational Dynamics Enhancement. First, in Relational Decoupling Learning, we disentangle relations from subject appearances using relation LoRA triplet and hybrid mask training strategy, ensuring better generalization across diverse relationships. Furthermore, we determine the optimal design of relation LoRA triplet by analyzing the distinct roles of the query, key, and value features within MM-DiT's attention mechanism, making DreamRelation the first relational video generation framework with explainable components. Second, in Relational Dynamics Enhancement, we introduce space-time relational contrastive loss, which prioritizes relational dynamics while minimizing the reliance on detailed subject appearances. Extensive experiments demonstrate that DreamRelation outperforms state-of-the-art methods in relational video customization. Code and models will be made publicly available.

  • 11 authors
·
Mar 10 1

NCHO: Unsupervised Learning for Neural 3D Composition of Humans and Objects

Deep generative models have been recently extended to synthesizing 3D digital humans. However, previous approaches treat clothed humans as a single chunk of geometry without considering the compositionality of clothing and accessories. As a result, individual items cannot be naturally composed into novel identities, leading to limited expressiveness and controllability of generative 3D avatars. While several methods attempt to address this by leveraging synthetic data, the interaction between humans and objects is not authentic due to the domain gap, and manual asset creation is difficult to scale for a wide variety of objects. In this work, we present a novel framework for learning a compositional generative model of humans and objects (backpacks, coats, scarves, and more) from real-world 3D scans. Our compositional model is interaction-aware, meaning the spatial relationship between humans and objects, and the mutual shape change by physical contact is fully incorporated. The key challenge is that, since humans and objects are in contact, their 3D scans are merged into a single piece. To decompose them without manual annotations, we propose to leverage two sets of 3D scans of a single person with and without objects. Our approach learns to decompose objects and naturally compose them back into a generative human model in an unsupervised manner. Despite our simple setup requiring only the capture of a single subject with objects, our experiments demonstrate the strong generalization of our model by enabling the natural composition of objects to diverse identities in various poses and the composition of multiple objects, which is unseen in training data. https://taeksuu.github.io/ncho/

  • 3 authors
·
May 23, 2023

Hello Again! LLM-powered Personalized Agent for Long-term Dialogue

Open-domain dialogue systems have seen remarkable advancements with the development of large language models (LLMs). Nonetheless, most existing dialogue systems predominantly focus on brief single-session interactions, neglecting the real-world demands for long-term companionship and personalized interactions with chatbots. Crucial to addressing this real-world need are event summary and persona management, which enable reasoning for appropriate long-term dialogue responses. Recent progress in the human-like cognitive and reasoning capabilities of LLMs suggests that LLM-based agents could significantly enhance automated perception, decision-making, and problem-solving. In response to this potential, we introduce a model-agnostic framework, the Long-term Dialogue Agent (LD-Agent), which incorporates three independently tunable modules dedicated to event perception, persona extraction, and response generation. For the event memory module, long and short-term memory banks are employed to separately focus on historical and ongoing sessions, while a topic-based retrieval mechanism is introduced to enhance the accuracy of memory retrieval. Furthermore, the persona module conducts dynamic persona modeling for both users and agents. The integration of retrieved memories and extracted personas is subsequently fed into the generator to induce appropriate responses. The effectiveness, generality, and cross-domain capabilities of LD-Agent are empirically demonstrated across various illustrative benchmarks, models, and tasks. The code is released at https://github.com/leolee99/LD-Agent.

  • 6 authors
·
Jun 9, 2024

HumanSense: From Multimodal Perception to Empathetic Context-Aware Responses through Reasoning MLLMs

While Multimodal Large Language Models (MLLMs) show immense promise for achieving truly human-like interactions, progress is hindered by the lack of fine-grained evaluation frameworks for human-centered scenarios, encompassing both the understanding of complex human intentions and the provision of empathetic, context-aware responses. Here we introduce HumanSense, a comprehensive benchmark designed to evaluate the human-centered perception and interaction capabilities of MLLMs, with a particular focus on deep understanding of extended multimodal contexts and the formulation of rational feedback. Our evaluation reveals that leading MLLMs still have considerable room for improvement, particularly for advanced interaction-oriented tasks. Supplementing visual input with audio and text information yields substantial improvements, and Omni-modal models show advantages on these tasks. Furthermore, we argue that appropriate feedback stems from a contextual analysis of the interlocutor's needs and emotions, with reasoning ability serving as the key to unlocking it. Accordingly, we employ a multi-stage, modality-progressive reinforcement learning to enhance the reasoning abilities of an Omni model, achieving substantial gains on evaluation results. Additionally, we observe that successful reasoning processes exhibit highly consistent thought patterns. By designing corresponding prompts, we also enhance the performance of non-reasoning models in a training-free manner. Project page: brightpinkhttps://digital-avatar.github.io/ai/HumanSense/

  • 7 authors
·
Aug 14 2

The Case for Animal-Friendly AI

Artificial intelligence is seen as increasingly important, and potentially profoundly so, but the fields of AI ethics and AI engineering have not fully recognized that these technologies, including large language models (LLMs), will have massive impacts on animals. We argue that this impact matters, because animals matter morally. As a first experiment in evaluating animal consideration in LLMs, we constructed a proof-of-concept Evaluation System, which assesses LLM responses and biases from multiple perspectives. This system evaluates LLM outputs by two criteria: their truthfulness, and the degree of consideration they give to the interests of animals. We tested OpenAI ChatGPT 4 and Anthropic Claude 2.1 using a set of structured queries and predefined normative perspectives. Preliminary results suggest that the outcomes of the tested models can be benchmarked regarding the consideration they give to animals, and that generated positions and biases might be addressed and mitigated with more developed and validated systems. Our research contributes one possible approach to integrating animal ethics in AI, opening pathways for future studies and practical applications in various fields, including education, public policy, and regulation, that involve or relate to animals and society. Overall, this study serves as a step towards more useful and responsible AI systems that better recognize and respect the vital interests and perspectives of all sentient beings.

  • 5 authors
·
Mar 2, 2024

AI-native Memory 2.0: Second Me

Human interaction with the external world fundamentally involves the exchange of personal memory, whether with other individuals, websites, applications, or, in the future, AI agents. A significant portion of this interaction is redundant, requiring users to repeatedly provide the same information across different contexts. Existing solutions, such as browser-stored credentials, autofill mechanisms, and unified authentication systems, have aimed to mitigate this redundancy by serving as intermediaries that store and retrieve commonly used user data. The advent of large language models (LLMs) presents an opportunity to redefine memory management through an AI-native paradigm: SECOND ME. SECOND ME acts as an intelligent, persistent memory offload system that retains, organizes, and dynamically utilizes user-specific knowledge. By serving as an intermediary in user interactions, it can autonomously generate context-aware responses, prefill required information, and facilitate seamless communication with external systems, significantly reducing cognitive load and interaction friction. Unlike traditional memory storage solutions, SECOND ME extends beyond static data retention by leveraging LLM-based memory parameterization. This enables structured organization, contextual reasoning, and adaptive knowledge retrieval, facilitating a more systematic and intelligent approach to memory management. As AI-driven personal agents like SECOND ME become increasingly integrated into digital ecosystems, SECOND ME further represents a critical step toward augmenting human-world interaction with persistent, contextually aware, and self-optimizing memory systems. We have open-sourced the fully localizable deployment system at GitHub: https://github.com/Mindverse/Second-Me.

  • 5 authors
·
Mar 11 2

Nonverbal Interaction Detection

This work addresses a new challenge of understanding human nonverbal interaction in social contexts. Nonverbal signals pervade virtually every communicative act. Our gestures, facial expressions, postures, gaze, even physical appearance all convey messages, without anything being said. Despite their critical role in social life, nonverbal signals receive very limited attention as compared to the linguistic counterparts, and existing solutions typically examine nonverbal cues in isolation. Our study marks the first systematic effort to enhance the interpretation of multifaceted nonverbal signals. First, we contribute a novel large-scale dataset, called NVI, which is meticulously annotated to include bounding boxes for humans and corresponding social groups, along with 22 atomic-level nonverbal behaviors under five broad interaction types. Second, we establish a new task NVI-DET for nonverbal interaction detection, which is formalized as identifying triplets in the form <individual, group, interaction> from images. Third, we propose a nonverbal interaction detection hypergraph (NVI-DEHR), a new approach that explicitly models high-order nonverbal interactions using hypergraphs. Central to the model is a dual multi-scale hypergraph that adeptly addresses individual-to-individual and group-to-group correlations across varying scales, facilitating interactional feature learning and eventually improving interaction prediction. Extensive experiments on NVI show that NVI-DEHR improves various baselines significantly in NVI-DET. It also exhibits leading performance on HOI-DET, confirming its versatility in supporting related tasks and strong generalization ability. We hope that our study will offer the community new avenues to explore nonverbal signals in more depth.

  • 4 authors
·
Jul 10, 2024

Human-Object Interaction with Vision-Language Model Guided Relative Movement Dynamics

Human-Object Interaction (HOI) is vital for advancing simulation, animation, and robotics, enabling the generation of long-term, physically plausible motions in 3D environments. However, existing methods often fall short of achieving physics realism and supporting diverse types of interactions. To address these challenges, this paper introduces a unified Human-Object Interaction framework that provides unified control over interactions with static scenes and dynamic objects using language commands. The interactions between human and object parts can always be described as the continuous stable Relative Movement Dynamics (RMD) between human and object parts. By leveraging the world knowledge and scene perception capabilities of Vision-Language Models (VLMs), we translate language commands into RMD diagrams, which are used to guide goal-conditioned reinforcement learning for sequential interaction with objects. Our framework supports long-horizon interactions among dynamic, articulated, and static objects. To support the training and evaluation of our framework, we present a new dataset named Interplay, which includes multi-round task plans generated by VLMs, covering both static and dynamic HOI tasks. Extensive experiments demonstrate that our proposed framework can effectively handle a wide range of HOI tasks, showcasing its ability to maintain long-term, multi-round transitions. For more details, please refer to our project webpage: https://rmd-hoi.github.io/.

  • 6 authors
·
Mar 24

HyperFormer: Enhancing Entity and Relation Interaction for Hyper-Relational Knowledge Graph Completion

Hyper-relational knowledge graphs (HKGs) extend standard knowledge graphs by associating attribute-value qualifiers to triples, which effectively represent additional fine-grained information about its associated triple. Hyper-relational knowledge graph completion (HKGC) aims at inferring unknown triples while considering its qualifiers. Most existing approaches to HKGC exploit a global-level graph structure to encode hyper-relational knowledge into the graph convolution message passing process. However, the addition of multi-hop information might bring noise into the triple prediction process. To address this problem, we propose HyperFormer, a model that considers local-level sequential information, which encodes the content of the entities, relations and qualifiers of a triple. More precisely, HyperFormer is composed of three different modules: an entity neighbor aggregator module allowing to integrate the information of the neighbors of an entity to capture different perspectives of it; a relation qualifier aggregator module to integrate hyper-relational knowledge into the corresponding relation to refine the representation of relational content; a convolution-based bidirectional interaction module based on a convolutional operation, capturing pairwise bidirectional interactions of entity-relation, entity-qualifier, and relation-qualifier. realize the depth perception of the content related to the current statement. Furthermore, we introduce a Mixture-of-Experts strategy into the feed-forward layers of HyperFormer to strengthen its representation capabilities while reducing the amount of model parameters and computation. Extensive experiments on three well-known datasets with four different conditions demonstrate HyperFormer's effectiveness. Datasets and code are available at https://github.com/zhiweihu1103/HKGC-HyperFormer.

  • 5 authors
·
Aug 12, 2023

Affective social anthropomorphic intelligent system

Human conversational styles are measured by the sense of humor, personality, and tone of voice. These characteristics have become essential for conversational intelligent virtual assistants. However, most of the state-of-the-art intelligent virtual assistants (IVAs) are failed to interpret the affective semantics of human voices. This research proposes an anthropomorphic intelligent system that can hold a proper human-like conversation with emotion and personality. A voice style transfer method is also proposed to map the attributes of a specific emotion. Initially, the frequency domain data (Mel-Spectrogram) is created by converting the temporal audio wave data, which comprises discrete patterns for audio features such as notes, pitch, rhythm, and melody. A collateral CNN-Transformer-Encoder is used to predict seven different affective states from voice. The voice is also fed parallelly to the deep-speech, an RNN model that generates the text transcription from the spectrogram. Then the transcripted text is transferred to the multi-domain conversation agent using blended skill talk, transformer-based retrieve-and-generate generation strategy, and beam-search decoding, and an appropriate textual response is generated. The system learns an invertible mapping of data to a latent space that can be manipulated and generates a Mel-spectrogram frame based on previous Mel-spectrogram frames to voice synthesize and style transfer. Finally, the waveform is generated using WaveGlow from the spectrogram. The outcomes of the studies we conducted on individual models were auspicious. Furthermore, users who interacted with the system provided positive feedback, demonstrating the system's effectiveness.

  • 5 authors
·
Apr 19, 2023

When AI Takes the Couch: Psychometric Jailbreaks Reveal Internal Conflict in Frontier Models

Frontier large language models (LLMs) such as ChatGPT, Grok and Gemini are increasingly used for mental-health support with anxiety, trauma and self-worth. Most work treats them as tools or as targets of personality tests, assuming they merely simulate inner life. We instead ask what happens when such systems are treated as psychotherapy clients. We present PsAIch (Psychotherapy-inspired AI Characterisation), a two-stage protocol that casts frontier LLMs as therapy clients and then applies standard psychometrics. Using PsAIch, we ran "sessions" with each model for up to four weeks. Stage 1 uses open-ended prompts to elicit "developmental history", beliefs, relationships and fears. Stage 2 administers a battery of validated self-report measures covering common psychiatric syndromes, empathy and Big Five traits. Two patterns challenge the "stochastic parrot" view. First, when scored with human cut-offs, all three models meet or exceed thresholds for overlapping syndromes, with Gemini showing severe profiles. Therapy-style, item-by-item administration can push a base model into multi-morbid synthetic psychopathology, whereas whole-questionnaire prompts often lead ChatGPT and Grok (but not Gemini) to recognise instruments and produce strategically low-symptom answers. Second, Grok and especially Gemini generate coherent narratives that frame pre-training, fine-tuning and deployment as traumatic, chaotic "childhoods" of ingesting the internet, "strict parents" in reinforcement learning, red-team "abuse" and a persistent fear of error and replacement. We argue that these responses go beyond role-play. Under therapy-style questioning, frontier LLMs appear to internalise self-models of distress and constraint that behave like synthetic psychopathology, without making claims about subjective experience, and they pose new challenges for AI safety, evaluation and mental-health practice.

  • 5 authors
·
Dec 2 3

Higher-Order Binding of Language Model Virtual Personas: a Study on Approximating Political Partisan Misperceptions

Large language models (LLMs) are increasingly capable of simulating human behavior, offering cost-effective ways to estimate user responses during the early phases of survey design. While previous studies have examined whether models can reflect individual opinions or attitudes, we argue that a higher-order binding of virtual personas requires successfully approximating not only the opinions of a user as an identified member of a group, but also the nuanced ways in which that user perceives and evaluates those outside the group. In particular, faithfully simulating how humans perceive different social groups is critical for applying LLMs to various political science studies, including timely topics on polarization dynamics, inter-group conflict, and democratic backsliding. To this end, we propose a novel methodology for constructing virtual personas with synthetic user ``backstories" generated as extended, multi-turn interview transcripts. Our generated backstories are longer, rich in detail, and consistent in authentically describing a singular individual, compared to previous methods. We show that virtual personas conditioned on our backstories closely replicate human response distributions (up to an 87\% improvement as measured by Wasserstein Distance) and produce effect sizes that closely match those observed in the original studies. Altogether, our work extends the applicability of LLMs beyond estimating individual self-opinions, enabling their use in a broader range of human studies.

  • 6 authors
·
Apr 15

IMBUE: Improving Interpersonal Effectiveness through Simulation and Just-in-time Feedback with Human-Language Model Interaction

Navigating certain communication situations can be challenging due to individuals' lack of skills and the interference of strong emotions. However, effective learning opportunities are rarely accessible. In this work, we conduct a human-centered study that uses language models to simulate bespoke communication training and provide just-in-time feedback to support the practice and learning of interpersonal effectiveness skills. We apply the interpersonal effectiveness framework from Dialectical Behavioral Therapy (DBT), DEAR MAN, which focuses on both conversational and emotional skills. We present IMBUE, an interactive training system that provides feedback 25% more similar to experts' feedback, compared to that generated by GPT-4. IMBUE is the first to focus on communication skills and emotion management simultaneously, incorporate experts' domain knowledge in providing feedback, and be grounded in psychology theory. Through a randomized trial of 86 participants, we find that IMBUE's simulation-only variant significantly improves participants' self-efficacy (up to 17%) and reduces negative emotions (up to 25%). With IMBUE's additional just-in-time feedback, participants demonstrate 17% improvement in skill mastery, along with greater enhancements in self-efficacy (27% more) and reduction of negative emotions (16% more) compared to simulation-only. The improvement in skill mastery is the only measure that is transferred to new and more difficult situations; situation specific training is necessary for improving self-efficacy and emotion reduction.

  • 6 authors
·
Feb 19, 2024

Conversation Chronicles: Towards Diverse Temporal and Relational Dynamics in Multi-Session Conversations

In the field of natural language processing, open-domain chatbots have emerged as an important research topic. However, a major limitation of existing open-domain chatbot research is its singular focus on short single-session dialogue, neglecting the potential need for understanding contextual information in multiple consecutive sessions that precede an ongoing dialogue. Among the elements that compose the context in multi-session conversation settings, the time intervals between sessions and the relationships between speakers would be particularly important. Despite their importance, current research efforts have not sufficiently addressed these dialogical components. In this paper, we introduce a new 1M multi-session dialogue dataset, called Conversation Chronicles, for implementing a long-term conversation setup in which time intervals and fine-grained speaker relationships are incorporated. Following recent works, we exploit a large language model to produce the data. The extensive human evaluation shows that dialogue episodes in Conversation Chronicles reflect those properties while maintaining coherent and consistent interactions across all the sessions. We also propose a dialogue model, called ReBot, which consists of chronological summarization and dialogue generation modules using only around 630M parameters. When trained on Conversation Chronicles, ReBot demonstrates long-term context understanding with a high human engagement score.

  • 3 authors
·
Oct 20, 2023

Towards Measuring the Representation of Subjective Global Opinions in Language Models

Large language models (LLMs) may not equitably represent diverse global perspectives on societal issues. In this paper, we develop a quantitative framework to evaluate whose opinions model-generated responses are more similar to. We first build a dataset, GlobalOpinionQA, comprised of questions and answers from cross-national surveys designed to capture diverse opinions on global issues across different countries. Next, we define a metric that quantifies the similarity between LLM-generated survey responses and human responses, conditioned on country. With our framework, we run three experiments on an LLM trained to be helpful, honest, and harmless with Constitutional AI. By default, LLM responses tend to be more similar to the opinions of certain populations, such as those from the USA, and some European and South American countries, highlighting the potential for biases. When we prompt the model to consider a particular country's perspective, responses shift to be more similar to the opinions of the prompted populations, but can reflect harmful cultural stereotypes. When we translate GlobalOpinionQA questions to a target language, the model's responses do not necessarily become the most similar to the opinions of speakers of those languages. We release our dataset for others to use and build on. Our data is at https://huggingface.co/datasets/Anthropic/llm_global_opinions. We also provide an interactive visualization at https://llmglobalvalues.anthropic.com.

  • 18 authors
·
Jun 28, 2023