new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 15

CoDiEmb: A Collaborative yet Distinct Framework for Unified Representation Learning in Information Retrieval and Semantic Textual Similarity

Learning unified text embeddings that excel across diverse downstream tasks is a central goal in representation learning, yet negative transfer remains a persistent obstacle. This challenge is particularly pronounced when jointly training a single encoder for Information Retrieval (IR) and Semantic Textual Similarity (STS), two essential but fundamentally disparate tasks for which naive co-training typically yields steep performance trade-offs. We argue that resolving this conflict requires systematically decoupling task-specific learning signals throughout the training pipeline. To this end, we introduce CoDiEmb, a unified framework that reconciles the divergent requirements of IR and STS in a collaborative yet distinct manner. CoDiEmb integrates three key innovations for effective joint optimization: (1) Task-specialized objectives paired with a dynamic sampler that forms single-task batches and balances per-task updates, thereby preventing gradient interference. For IR, we employ a contrastive loss with multiple positives and hard negatives, augmented by cross-device sampling. For STS, we adopt order-aware objectives that directly optimize correlation and ranking consistency. (2) A delta-guided model fusion strategy that computes fine-grained merging weights for checkpoints by analyzing each parameter's deviation from its pre-trained initialization, proving more effective than traditional Model Soups. (3) An efficient, single-stage training pipeline that is simple to implement and converges stably. Extensive experiments on 15 standard IR and STS benchmarks across three base encoders validate CoDiEmb. Our results and analysis demonstrate that the framework not only mitigates cross-task trade-offs but also measurably improves the geometric properties of the embedding space.

  • 6 authors
·
Aug 15

Concept-Aware Batch Sampling Improves Language-Image Pretraining

What data should a vision-language model be trained on? To answer this question, many data curation efforts center on the quality of a dataset. However, most of these existing methods are (i) offline, i.e. they produce a static dataset from a set of predetermined filtering criteria, and (ii) concept-agnostic, i.e. they use model-based filters which induce additional data biases. In this work, we go beyond such offline, concept-agnostic methods and advocate for more flexible, task-adaptive online concept-based curation. Our first contribution is DataConcept, a collection of 128M web-crawled image-text pairs annotated with fine-grained details about their concept composition. Building on DataConcept, we introduce Concept-Aware Batch Sampling (CABS), a simple yet effective batch sampling framework that flexibly constructs batches on-the-fly based on specific target distributions. We propose two variants: (i) Diversity Maximization (CABS-DM) to curate batches with a broad coverage of available concepts, and (ii) Frequency Maximization (CABS-FM) to curate batches with high object multiplicity. Through extensive evaluations across 28 benchmarks, we demonstrate that our CABS method significantly benefits CLIP/SigLIP model classes and yields highly performant models. Overall, CABS represents a strong open-source alternative to proprietary online data curation algorithms, enabling practitioners to define custom concept distributions that optimize for specific downstream tasks.

bethgelab Bethgelab
·
Nov 25 2

Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models

Neural sequence models are widely used to model time-series data. Equally ubiquitous is the usage of beam search (BS) as an approximate inference algorithm to decode output sequences from these models. BS explores the search space in a greedy left-right fashion retaining only the top-B candidates - resulting in sequences that differ only slightly from each other. Producing lists of nearly identical sequences is not only computationally wasteful but also typically fails to capture the inherent ambiguity of complex AI tasks. To overcome this problem, we propose Diverse Beam Search (DBS), an alternative to BS that decodes a list of diverse outputs by optimizing for a diversity-augmented objective. We observe that our method finds better top-1 solutions by controlling for the exploration and exploitation of the search space - implying that DBS is a better search algorithm. Moreover, these gains are achieved with minimal computational or memory over- head as compared to beam search. To demonstrate the broad applicability of our method, we present results on image captioning, machine translation and visual question generation using both standard quantitative metrics and qualitative human studies. Further, we study the role of diversity for image-grounded language generation tasks as the complexity of the image changes. We observe that our method consistently outperforms BS and previously proposed techniques for diverse decoding from neural sequence models.

  • 7 authors
·
Oct 7, 2016

Transductive Few-Shot Learning: Clustering is All You Need?

We investigate a general formulation for clustering and transductive few-shot learning, which integrates prototype-based objectives, Laplacian regularization and supervision constraints from a few labeled data points. We propose a concave-convex relaxation of the problem, and derive a computationally efficient block-coordinate bound optimizer, with convergence guarantee. At each iteration,our optimizer computes independent (parallel) updates for each point-to-cluster assignment. Therefore, it could be trivially distributed for large-scale clustering and few-shot tasks. Furthermore, we provides a thorough convergence analysis based on point-to-set maps. Were port comprehensive clustering and few-shot learning experiments over various data sets, showing that our method yields competitive performances, in term of accuracy and optimization quality, while scaling up to large problems. Using standard training on the base classes, without resorting to complex meta-learning and episodic-training strategies, our approach outperforms state-of-the-art few-shot methods by significant margins, across various models, settings and data sets. Surprisingly, we found that even standard clustering procedures (e.g., K-means), which correspond to particular, non-regularized cases of our general model, already achieve competitive performances in comparison to the state-of-the-art in few-shot learning. These surprising results point to the limitations of the current few-shot benchmarks, and question the viability of a large body of convoluted few-shot learning techniques in the recent literature.

  • 5 authors
·
Jun 16, 2021

Fast Controlled Generation from Language Models with Adaptive Weighted Rejection Sampling

The dominant approach to generating from language models subject to some constraint is locally constrained decoding (LCD), incrementally sampling tokens at each time step such that the constraint is never violated. Typically, this is achieved through token masking: looping over the vocabulary and excluding non-conforming tokens. There are two important problems with this approach. (i) Evaluating the constraint on every token can be prohibitively expensive -- LM vocabularies often exceed 100,000 tokens. (ii) LCD can distort the global distribution over strings, sampling tokens based only on local information, even if they lead down dead-end paths. This work introduces a new algorithm that addresses both these problems. First, to avoid evaluating a constraint on the full vocabulary at each step of generation, we propose an adaptive rejection sampling algorithm that typically requires orders of magnitude fewer constraint evaluations. Second, we show how this algorithm can be extended to produce low-variance, unbiased estimates of importance weights at a very small additional cost -- estimates that can be soundly used within previously proposed sequential Monte Carlo algorithms to correct for the myopic behavior of local constraint enforcement. Through extensive empirical evaluation in text-to-SQL, molecular synthesis, goal inference, pattern matching, and JSON domains, we show that our approach is superior to state-of-the-art baselines, supporting a broader class of constraints and improving both runtime and performance. Additional theoretical and empirical analyses show that our method's runtime efficiency is driven by its dynamic use of computation, scaling with the divergence between the unconstrained and constrained LM, and as a consequence, runtime improvements are greater for better models.

Multi-Objective GFlowNets

In many applications of machine learning, like drug discovery and material design, the goal is to generate candidates that simultaneously maximize a set of objectives. As these objectives are often conflicting, there is no single candidate that simultaneously maximizes all objectives, but rather a set of Pareto-optimal candidates where one objective cannot be improved without worsening another. Moreover, in practice, these objectives are often under-specified, making the diversity of candidates a key consideration. The existing multi-objective optimization methods focus predominantly on covering the Pareto front, failing to capture diversity in the space of candidates. Motivated by the success of GFlowNets for generation of diverse candidates in a single objective setting, in this paper we consider Multi-Objective GFlowNets (MOGFNs). MOGFNs consist of a novel Conditional GFlowNet which models a family of single-objective sub-problems derived by decomposing the multi-objective optimization problem. Our work is the first to empirically demonstrate conditional GFlowNets. Through a series of experiments on synthetic and benchmark tasks, we empirically demonstrate that MOGFNs outperform existing methods in terms of Hypervolume, R2-distance and candidate diversity. We also demonstrate the effectiveness of MOGFNs over existing methods in active learning settings. Finally, we supplement our empirical results with a careful analysis of each component of MOGFNs.

  • 7 authors
·
Oct 23, 2022

Knowledge Composition using Task Vectors with Learned Anisotropic Scaling

Pre-trained models produce strong generic representations that can be adapted via fine-tuning. The learned weight difference relative to the pre-trained model, known as a task vector, characterises the direction and stride of fine-tuning. The significance of task vectors is such that simple arithmetic operations on them can be used to combine diverse representations from different domains. This paper builds on these properties of task vectors and aims to answer (1) whether components of task vectors, particularly parameter blocks, exhibit similar characteristics, and (2) how such blocks can be used to enhance knowledge composition and transfer. To this end, we introduce aTLAS, an algorithm that linearly combines parameter blocks with different learned coefficients, resulting in anisotropic scaling at the task vector level. We show that such linear combinations explicitly exploit the low intrinsic dimensionality of pre-trained models, with only a few coefficients being the learnable parameters. Furthermore, composition of parameter blocks leverages the already learned representations, thereby reducing the dependency on large amounts of data. We demonstrate the effectiveness of our method in task arithmetic, few-shot recognition and test-time adaptation, with supervised or unsupervised objectives. In particular, we show that (1) learned anisotropic scaling allows task vectors to be more disentangled, causing less interference in composition; (2) task vector composition excels with scarce or no labeled data and is less prone to domain shift, thus leading to better generalisability; (3) mixing the most informative parameter blocks across different task vectors prior to training can reduce the memory footprint and improve the flexibility of knowledge transfer. Moreover, we show the potential of aTLAS as a PEFT method, particularly with less data, and demonstrate that its scalibility.

  • 5 authors
·
Jul 3, 2024 3

Unconstrained Stochastic CCA: Unifying Multiview and Self-Supervised Learning

The Canonical Correlation Analysis (CCA) family of methods is foundational in multiview learning. Regularised linear CCA methods can be seen to generalise Partial Least Squares (PLS) and be unified with a Generalized Eigenvalue Problem (GEP) framework. However, classical algorithms for these linear methods are computationally infeasible for large-scale data. Extensions to Deep CCA show great promise, but current training procedures are slow and complicated. First we propose a novel unconstrained objective that characterizes the top subspace of GEPs. Our core contribution is a family of fast algorithms for stochastic PLS, stochastic CCA, and Deep CCA, simply obtained by applying stochastic gradient descent (SGD) to the corresponding CCA objectives. Our algorithms show far faster convergence and recover higher correlations than the previous state-of-the-art on all standard CCA and Deep CCA benchmarks. These improvements allow us to perform a first-of-its-kind PLS analysis of an extremely large biomedical dataset from the UK Biobank, with over 33,000 individuals and 500,000 features. Finally, we apply our algorithms to match the performance of `CCA-family' Self-Supervised Learning (SSL) methods on CIFAR-10 and CIFAR-100 with minimal hyper-parameter tuning, and also present theory to clarify the links between these methods and classical CCA, laying the groundwork for future insights.

  • 3 authors
·
Oct 2, 2023

Scalable Graph Attention-based Instance Selection via Mini-Batch Sampling and Hierarchical Hashing

Instance selection (IS) is important in machine learning for reducing dataset size while keeping key characteristics. Current IS methods often struggle with capturing complex relationships in high-dimensional spaces and scale with large datasets. This paper introduces a graph attention-based instance selection (GAIS) method that uses attention mechanisms to identify informative instances through their structural relationships in graph representations. We present two approaches for scalable graph construction: a distance-based mini-batch sampling technique that reduces computation through strategic batch processing, and a hierarchical hashing approach that allows for efficient similarity computation through random projections. The mini-batch approach keeps class distributions through stratified sampling, while the hierarchical hashing method captures relationships at multiple granularities through single-level, multi-level, and multi-view variants. Experiments across 39 datasets show that GAIS achieves reduction rates above 96\% while maintaining or improving model performance relative to state-of-the-art IS methods. The findings shows that the distance-based mini-batch approach offers an optimal balance of efficiency and effectiveness for large-scale datasets, while multi-view variants provide superior performance for complex, high-dimensional data, demonstrating that attention-based importance scoring can effectively identify instances crucial for maintaining decision boundaries without requiring exhaustive pairwise comparisons.

  • 3 authors
·
Feb 27

Survival of the Most Influential Prompts: Efficient Black-Box Prompt Search via Clustering and Pruning

Prompt-based learning has been an effective paradigm for large pretrained language models (LLM), enabling few-shot or even zero-shot learning. Black-box prompt search has received growing interest recently for its distinctive properties of gradient-free optimization, proven particularly useful and powerful for model-as-a-service usage. However, the discrete nature and the complexity of combinatorial optimization hinder the efficiency of modern black-box approaches. Despite extensive research on search algorithms, the crucial aspect of search space design and optimization has been largely overlooked. In this paper, we first conduct a sensitivity analysis by prompting LLM, revealing that only a small number of tokens exert a disproportionate amount of influence on LLM predictions. Leveraging this insight, we propose the Clustering and Pruning for Efficient Black-box Prompt Search (ClaPS), a simple black-box search method that first clusters and prunes the search space to focus exclusively on influential prompt tokens. By employing even simple search methods within the pruned search space, ClaPS achieves state-of-the-art performance across various tasks and LLMs, surpassing the performance of complex approaches while significantly reducing search costs. Our findings underscore the critical role of search space design and optimization in enhancing both the usefulness and the efficiency of black-box prompt-based learning.

  • 4 authors
·
Oct 19, 2023

UL2: Unifying Language Learning Paradigms

Existing pre-trained models are generally geared towards a particular class of problems. To date, there seems to be still no consensus on what the right architecture and pre-training setup should be. This paper presents a unified framework for pre-training models that are universally effective across datasets and setups. We begin by disentangling architectural archetypes with pre-training objectives -- two concepts that are commonly conflated. Next, we present a generalized & unified perspective for self-supervision in NLP and show how different pre-training objectives can be cast as one another and how interpolating between different objectives can be effective. We then propose Mixture-of-Denoisers (MoD), a pre-training objective that combines diverse pre-training paradigms together. We furthermore introduce a notion of mode switching, wherein downstream fine-tuning is associated with specific pre-training schemes. We conduct extensive ablative experiments to compare multiple pre-training objectives and find that our method pushes the Pareto-frontier by outperforming T5 & GPT-like models across multiple diverse setups. By scaling our model up to 20B parameters, we achieve SOTA performance on 50 well-established supervised finetuning based NLP tasks. Our model also achieve strong results at in-context learning, outperforming 175B GPT-3 on zero-shot SuperGLUE and tripling the performance of T5-XXL on one-shot summarization. On 0-shot MMLU, UL2 20B outperforms T0 and T5 models. UL2 20B also works well with chain-of-thought prompting and reasoning, making it an appealing choice for research into reasoning at a small to medium scale of 20B parameters. Finally, we apply FLAN instruction tuning to the UL2 20B model, achieving MMLU and Big-Bench scores competitive to FLAN-PaLM 62B. We release Flax-based T5X checkpoints for the UL2 20B & Flan-UL2 20B.

  • 14 authors
·
May 10, 2022

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

Current language models generate chain-of-thought traces by autoregressively sampling tokens from a finite vocabulary. While this discrete sampling has achieved remarkable success, conducting chain-of-thought with continuously-valued tokens (CoT2) offers a richer and more expressive alternative. Our work examines the benefits of CoT2 through logical reasoning tasks that inherently require search capabilities and provide optimization and exploration methods for CoT2. Theoretically, we show that CoT2 allows the model to track multiple traces in parallel and quantify its benefits for inference efficiency. Notably, one layer transformer equipped with CoT2 can provably solve the combinatorial "subset sum problem" given sufficient embedding dimension. These insights lead to a novel and effective supervision strategy where we match the softmax outputs to the empirical token distributions of a set of target traces. Complementing this, we introduce sampling strategies that unlock policy optimization and self-improvement for CoT2. Our first strategy samples and composes K discrete tokens at each decoding step to control the level of parallelism, and reduces to standard CoT when K=1. Our second strategy relies on continuous exploration over the probability simplex. Experiments confirm that policy optimization with CoT2 indeed improves the performance of the model beyond its initial discrete or continuous supervision.

  • 6 authors
·
May 29

A Study of Bayesian Neural Network Surrogates for Bayesian Optimization

Bayesian optimization is a highly efficient approach to optimizing objective functions which are expensive to query. These objectives are typically represented by Gaussian process (GP) surrogate models which are easy to optimize and support exact inference. While standard GP surrogates have been well-established in Bayesian optimization, Bayesian neural networks (BNNs) have recently become practical function approximators, with many benefits over standard GPs such as the ability to naturally handle non-stationarity and learn representations for high-dimensional data. In this paper, we study BNNs as alternatives to standard GP surrogates for optimization. We consider a variety of approximate inference procedures for finite-width BNNs, including high-quality Hamiltonian Monte Carlo, low-cost stochastic MCMC, and heuristics such as deep ensembles. We also consider infinite-width BNNs and partially stochastic models such as deep kernel learning. We evaluate this collection of surrogate models on diverse problems with varying dimensionality, number of objectives, non-stationarity, and discrete and continuous inputs. We find: (i) the ranking of methods is highly problem dependent, suggesting the need for tailored inductive biases; (ii) HMC is the most successful approximate inference procedure for fully stochastic BNNs; (iii) full stochasticity may be unnecessary as deep kernel learning is relatively competitive; (iv) infinite-width BNNs are particularly promising, especially in high dimensions.

  • 3 authors
·
May 31, 2023

Improved Active Multi-Task Representation Learning via Lasso

To leverage the copious amount of data from source tasks and overcome the scarcity of the target task samples, representation learning based on multi-task pretraining has become a standard approach in many applications. However, up until now, most existing works design a source task selection strategy from a purely empirical perspective. Recently, chen2022active gave the first active multi-task representation learning (A-MTRL) algorithm which adaptively samples from source tasks and can provably reduce the total sample complexity using the L2-regularized-target-source-relevance parameter nu^2. But their work is theoretically suboptimal in terms of total source sample complexity and is less practical in some real-world scenarios where sparse training source task selection is desired. In this paper, we address both issues. Specifically, we show the strict dominance of the L1-regularized-relevance-based (nu^1-based) strategy by giving a lower bound for the nu^2-based strategy. When nu^1 is unknown, we propose a practical algorithm that uses the LASSO program to estimate nu^1. Our algorithm successfully recovers the optimal result in the known case. In addition to our sample complexity results, we also characterize the potential of our nu^1-based strategy in sample-cost-sensitive settings. Finally, we provide experiments on real-world computer vision datasets to illustrate the effectiveness of our proposed method.

  • 4 authors
·
Jun 4, 2023

GeneCIS: A Benchmark for General Conditional Image Similarity

We argue that there are many notions of 'similarity' and that models, like humans, should be able to adapt to these dynamically. This contrasts with most representation learning methods, supervised or self-supervised, which learn a fixed embedding function and hence implicitly assume a single notion of similarity. For instance, models trained on ImageNet are biased towards object categories, while a user might prefer the model to focus on colors, textures or specific elements in the scene. In this paper, we propose the GeneCIS ('genesis') benchmark, which measures models' ability to adapt to a range of similarity conditions. Extending prior work, our benchmark is designed for zero-shot evaluation only, and hence considers an open-set of similarity conditions. We find that baselines from powerful CLIP models struggle on GeneCIS and that performance on the benchmark is only weakly correlated with ImageNet accuracy, suggesting that simply scaling existing methods is not fruitful. We further propose a simple, scalable solution based on automatically mining information from existing image-caption datasets. We find our method offers a substantial boost over the baselines on GeneCIS, and further improves zero-shot performance on related image retrieval benchmarks. In fact, though evaluated zero-shot, our model surpasses state-of-the-art supervised models on MIT-States. Project page at https://sgvaze.github.io/genecis/.

  • 3 authors
·
Jun 13, 2023

Binary Classifier Optimization for Large Language Model Alignment

Aligning Large Language Models (LLMs) to human preferences through preference optimization has been crucial but labor-intensive, necessitating for each prompt a comparison of both a chosen and a rejected text completion by evaluators. Recently, Kahneman-Tversky Optimization (KTO) has demonstrated that LLMs can be aligned using merely binary "thumbs-up" or "thumbs-down" signals on each prompt-completion pair. In this paper, we present theoretical foundations to explain the successful alignment achieved through these binary signals. Our analysis uncovers a new perspective: optimizing a binary classifier, whose logit is a reward, implicitly induces minimizing the Direct Preference Optimization (DPO) loss. In the process of this discovery, we identified two techniques for effective alignment: reward shift and underlying distribution matching. Consequently, we propose a new algorithm, Binary Classifier Optimization, that integrates the techniques. We validate our methodology in two settings: first, on a paired preference dataset, where our method performs on par with DPO and KTO; and second, on binary signal datasets simulating real-world conditions with divergent underlying distributions between thumbs-up and thumbs-down data. Our model consistently demonstrates effective and robust alignment across two base LLMs and three different binary signal datasets, showcasing the strength of our approach to learning from binary feedback.

  • 4 authors
·
Apr 6, 2024

Unifying Self-Supervised Clustering and Energy-Based Models

Self-supervised learning excels at learning representations from large amounts of data. At the same time, generative models offer the complementary property of learning information about the underlying data generation process. In this study, we aim at establishing a principled connection between these two paradigms and highlight the benefits of their complementarity. In particular, we perform an analysis of self-supervised learning objectives, elucidating the underlying probabilistic graphical models and presenting a standardized methodology for their derivation from first principles. The analysis suggests a natural means of integrating self-supervised learning with likelihood-based generative models. We instantiate this concept within the realm of cluster-based self-supervised learning and energy models, introducing a lower bound proven to reliably penalize the most important failure modes and unlocking full unification. Our theoretical findings are substantiated through experiments on synthetic and real-world data, including SVHN, CIFAR10, and CIFAR100, demonstrating that our objective function allows to jointly train a backbone network in a discriminative and generative fashion, consequently outperforming existing self-supervised learning strategies in terms of clustering, generation and out-of-distribution detection performance by a wide margin. We also demonstrate that the solution can be integrated into a neuro-symbolic framework to tackle a simple yet non-trivial instantiation of the symbol grounding problem. The code is publicly available at https://github.com/emsansone/GEDI.

  • 2 authors
·
Dec 29, 2023

CROMA: Remote Sensing Representations with Contrastive Radar-Optical Masked Autoencoders

A vital and rapidly growing application, remote sensing offers vast yet sparsely labeled, spatially aligned multimodal data; this makes self-supervised learning algorithms invaluable. We present CROMA: a framework that combines contrastive and reconstruction self-supervised objectives to learn rich unimodal and multimodal representations. Our method separately encodes masked-out multispectral optical and synthetic aperture radar samples -- aligned in space and time -- and performs cross-modal contrastive learning. Another encoder fuses these sensors, producing joint multimodal encodings that are used to predict the masked patches via a lightweight decoder. We show that these objectives are complementary when leveraged on spatially aligned multimodal data. We also introduce X- and 2D-ALiBi, which spatially biases our cross- and self-attention matrices. These strategies improve representations and allow our models to effectively extrapolate to images up to 17.6x larger at test-time. CROMA outperforms the current SoTA multispectral model, evaluated on: four classification benchmarks -- finetuning (avg. 1.8%), linear (avg. 2.4%) and nonlinear (avg. 1.4%) probing, kNN classification (avg. 3.5%), and K-means clustering (avg. 8.4%); and three segmentation benchmarks (avg. 6.4%). CROMA's rich, optionally multimodal representations can be widely leveraged across remote sensing applications.

  • 3 authors
·
Nov 1, 2023

How to Capture Higher-order Correlations? Generalizing Matrix Softmax Attention to Kronecker Computation

In the classical transformer attention scheme, we are given three n times d size matrices Q, K, V (the query, key, and value tokens), and the goal is to compute a new n times d size matrix D^{-1} exp(QK^top) V where D = diag( exp(QK^top) {bf 1}_n ). In this work, we study a generalization of attention which captures triple-wise correlations. This generalization is able to solve problems about detecting triple-wise connections that were shown to be impossible for transformers. The potential downside of this generalization is that it appears as though computations are even more difficult, since the straightforward algorithm requires cubic time in n. However, we show that in the bounded-entry setting (which arises in practice, and which is well-studied in both theory and practice), there is actually a near-linear time algorithm. More precisely, we show that bounded entries are both necessary and sufficient for quickly performing generalized computations: bullet On the positive side, if all entries of the input matrices are bounded above by o(sqrt[3]{log n}) then we show how to approximate the ``tensor-type'' attention matrix in n^{1+o(1)} time. bullet On the negative side, we show that if the entries of the input matrices may be as large as Omega(sqrt[3]{log n}), then there is no algorithm that runs faster than n^{3-o(1)} (assuming the Strong Exponential Time Hypothesis from fine-grained complexity theory). We also show that our construction, algorithms, and lower bounds naturally generalize to higher-order tensors and correlations. Interestingly, the higher the order of the tensors, the lower the bound on the entries needs to be for an efficient algorithm. Our results thus yield a natural tradeoff between the boundedness of the entries, and order of the tensor one may use for more expressive, efficient attention computation.

  • 2 authors
·
Oct 6, 2023

Alignment and Safety in Large Language Models: Safety Mechanisms, Training Paradigms, and Emerging Challenges

Due to the remarkable capabilities and growing impact of large language models (LLMs), they have been deeply integrated into many aspects of society. Thus, ensuring their alignment with human values and intentions has emerged as a critical challenge. This survey provides a comprehensive overview of practical alignment techniques, training protocols, and empirical findings in LLM alignment. We analyze the development of alignment methods across diverse paradigms, characterizing the fundamental trade-offs between core alignment objectives. Our analysis shows that while supervised fine-tuning enables basic instruction-following, preference-based methods offer more flexibility for aligning with nuanced human intent. We discuss state-of-the-art techniques, including Direct Preference Optimization (DPO), Constitutional AI, brain-inspired methods, and alignment uncertainty quantification (AUQ), highlighting their approaches to balancing quality and efficiency. We review existing evaluation frameworks and benchmarking datasets, emphasizing limitations such as reward misspecification, distributional robustness, and scalable oversight. We summarize strategies adopted by leading AI labs to illustrate the current state of practice. We conclude by outlining open problems in oversight, value pluralism, robustness, and continuous alignment. This survey aims to inform both researchers and practitioners navigating the evolving landscape of LLM alignment.

  • 50 authors
·
Jul 25

Large Language Models to Enhance Bayesian Optimization

Bayesian optimization (BO) is a powerful approach for optimizing complex and expensive-to-evaluate black-box functions. Its importance is underscored in many applications, notably including hyperparameter tuning, but its efficacy depends on efficiently balancing exploration and exploitation. While there has been substantial progress in BO methods, striking this balance remains a delicate process. In this light, we present LLAMBO, a novel approach that integrates the capabilities of Large Language Models (LLM) within BO. At a high level, we frame the BO problem in natural language, enabling LLMs to iteratively propose and evaluate promising solutions conditioned on historical evaluations. More specifically, we explore how combining contextual understanding, few-shot learning proficiency, and domain knowledge of LLMs can improve model-based BO. Our findings illustrate that LLAMBO is effective at zero-shot warmstarting, and enhances surrogate modeling and candidate sampling, especially in the early stages of search when observations are sparse. Our approach is performed in context and does not require LLM finetuning. Additionally, it is modular by design, allowing individual components to be integrated into existing BO frameworks, or function cohesively as an end-to-end method. We empirically validate LLAMBO's efficacy on the problem of hyperparameter tuning, highlighting strong empirical performance across a range of diverse benchmarks, proprietary, and synthetic tasks.

  • 4 authors
·
Feb 6, 2024

From Noisy Traces to Stable Gradients: Bias-Variance Optimized Preference Optimization for Aligning Large Reasoning Models

Large reasoning models (LRMs) generate intermediate reasoning traces before producing final answers, yielding strong gains on multi-step and mathematical tasks. Yet aligning LRMs with human preferences, a crucial prerequisite for model deployment, remains underexplored. The statistically correct objective for preference alignment requires marginalizing over reasoning traces, but this computation is intractable in practice. A common workaround optimizes a single sampled trajectory, which introduces substantial gradient variance from stochastic trace sampling. To address this challenge, we frame preference optimization for LRMs through the lens of the bias--variance trade-off and propose Bias--Variance Optimized Preference Optimization (BVPO), a simple, drop-in method that mixes two gradient estimators: a high-variance trace-based estimator and a low-variance empty-trace estimator obtained by disabling reasoning trace generation. Our theory shows that BVPO strictly reduces trace-induced variance for any nontrivial mixture, provides a closed-form choice of the mixing weight that minimizes mean-squared error relative to the true marginal gradient, and under standard smoothness and step-size conditions, tightens classical convergence bounds for stochastic gradient descent. Empirically, BVPO improves alignment over the best baseline by up to 7.8 points on AlpacaEval~2 and 6.8 points on Arena-Hard. Despite being trained only on general conversational data, BVPO also boosts reasoning performance for base models by up to 4.0 points on the average of six math reasoning benchmarks. These results identify variance from trace sampling as a key bottleneck and demonstrate that directly optimizing the bias--variance trade-off yields more stable training and stronger overall performance.

  • 5 authors
·
Oct 6

Fine-Grained Alignment and Noise Refinement for Compositional Text-to-Image Generation

Text-to-image generative models have made significant advancements in recent years; however, accurately capturing intricate details in textual prompts, such as entity missing, attribute binding errors, and incorrect relationships remains a formidable challenge. In response, we present an innovative, training-free method that directly addresses these challenges by incorporating tailored objectives to account for textual constraints. Unlike layout-based approaches that enforce rigid structures and limit diversity, our proposed approach offers a more flexible arrangement of the scene by imposing just the extracted constraints from the text, without any unnecessary additions. These constraints are formulated as losses-entity missing, entity mixing, attribute binding, and spatial relationships, integrated into a unified loss that is applied in the first generation stage. Furthermore, we introduce a feedback-driven system for fine-grained initial noise refinement. This system integrates a verifier that evaluates the generated image, identifies inconsistencies, and provides corrective feedback. Leveraging this feedback, our refinement method first targets the unmet constraints by refining the faulty attention maps caused by initial noise, through the optimization of selective losses associated with these constraints. Subsequently, our unified loss function is reapplied to proceed the second generation phase. Experimental results demonstrate that our method, relying solely on our proposed objective functions, significantly enhances compositionality, achieving a 24% improvement in human evaluation and a 25% gain in spatial relationships. Furthermore, our fine-grained noise refinement proves effective, boosting performance by up to 5%. Code is available at https://github.com/hadi-hosseini/noise-refinement.

  • 6 authors
·
Mar 9

Stationary Representations: Optimally Approximating Compatibility and Implications for Improved Model Replacements

Learning compatible representations enables the interchangeable use of semantic features as models are updated over time. This is particularly relevant in search and retrieval systems where it is crucial to avoid reprocessing of the gallery images with the updated model. While recent research has shown promising empirical evidence, there is still a lack of comprehensive theoretical understanding about learning compatible representations. In this paper, we demonstrate that the stationary representations learned by the d-Simplex fixed classifier optimally approximate compatibility representation according to the two inequality constraints of its formal definition. This not only establishes a solid foundation for future works in this line of research but also presents implications that can be exploited in practical learning scenarios. An exemplary application is the now-standard practice of downloading and fine-tuning new pre-trained models. Specifically, we show the strengths and critical issues of stationary representations in the case in which a model undergoing sequential fine-tuning is asynchronously replaced by downloading a better-performing model pre-trained elsewhere. Such a representation enables seamless delivery of retrieval service (i.e., no reprocessing of gallery images) and offers improved performance without operational disruptions during model replacement. Code available at: https://github.com/miccunifi/iamcl2r.

  • 4 authors
·
May 4, 2024

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments

Unsupervised image representations have significantly reduced the gap with supervised pretraining, notably with the recent achievements of contrastive learning methods. These contrastive methods typically work online and rely on a large number of explicit pairwise feature comparisons, which is computationally challenging. In this paper, we propose an online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise comparisons. Specifically, our method simultaneously clusters the data while enforcing consistency between cluster assignments produced for different augmentations (or views) of the same image, instead of comparing features directly as in contrastive learning. Simply put, we use a swapped prediction mechanism where we predict the cluster assignment of a view from the representation of another view. Our method can be trained with large and small batches and can scale to unlimited amounts of data. Compared to previous contrastive methods, our method is more memory efficient since it does not require a large memory bank or a special momentum network. In addition, we also propose a new data augmentation strategy, multi-crop, that uses a mix of views with different resolutions in place of two full-resolution views, without increasing the memory or compute requirements much. We validate our findings by achieving 75.3% top-1 accuracy on ImageNet with ResNet-50, as well as surpassing supervised pretraining on all the considered transfer tasks.

  • 6 authors
·
Jun 17, 2020

Probing Preference Representations: A Multi-Dimensional Evaluation and Analysis Method for Reward Models

Previous methods evaluate reward models by testing them on a fixed pairwise ranking test set, but they typically do not provide performance information on each preference dimension. In this work, we address the evaluation challenge of reward models by probing preference representations. To confirm the effectiveness of this evaluation method, we construct a Multi-dimensional Reward Model Benchmark (MRMBench), a collection of six probing tasks for different preference dimensions. We design it to favor and encourage reward models that better capture preferences across different dimensions. Furthermore, we introduce an analysis method, inference-time probing, which identifies the dimensions used during the reward prediction and enhances its interpretability. Through extensive experiments, we find that MRMBench strongly correlates with the alignment performance of large language models (LLMs), making it a reliable reference for developing advanced reward models. Our analysis of MRMBench evaluation results reveals that reward models often struggle to capture preferences across multiple dimensions, highlighting the potential of multi-objective optimization in reward modeling. Additionally, our findings show that the proposed inference-time probing method offers a reliable metric for assessing the confidence of reward predictions, which ultimately improves the alignment of LLMs.

  • 13 authors
·
Nov 16

Towards Exact Computation of Inductive Bias

Much research in machine learning involves finding appropriate inductive biases (e.g. convolutional neural networks, momentum-based optimizers, transformers) to promote generalization on tasks. However, quantification of the amount of inductive bias associated with these architectures and hyperparameters has been limited. We propose a novel method for efficiently computing the inductive bias required for generalization on a task with a fixed training data budget; formally, this corresponds to the amount of information required to specify well-generalizing models within a specific hypothesis space of models. Our approach involves modeling the loss distribution of random hypotheses drawn from a hypothesis space to estimate the required inductive bias for a task relative to these hypotheses. Unlike prior work, our method provides a direct estimate of inductive bias without using bounds and is applicable to diverse hypothesis spaces. Moreover, we derive approximation error bounds for our estimation approach in terms of the number of sampled hypotheses. Consistent with prior results, our empirical results demonstrate that higher dimensional tasks require greater inductive bias. We show that relative to other expressive model classes, neural networks as a model class encode large amounts of inductive bias. Furthermore, our measure quantifies the relative difference in inductive bias between different neural network architectures. Our proposed inductive bias metric provides an information-theoretic interpretation of the benefits of specific model architectures for certain tasks and provides a quantitative guide to developing tasks requiring greater inductive bias, thereby encouraging the development of more powerful inductive biases.

  • 5 authors
·
Jun 22, 2024

Ask One More Time: Self-Agreement Improves Reasoning of Language Models in (Almost) All Scenarios

Although chain-of-thought (CoT) prompting combined with language models has achieved encouraging results on complex reasoning tasks, the naive greedy decoding used in CoT prompting usually causes the repetitiveness and local optimality. To address this shortcoming, ensemble-optimization tries to obtain multiple reasoning paths to get the final answer assembly. However, current ensemble-optimization methods either simply employ rule-based post-processing such as self-consistency, or train an additional model based on several task-related human annotations to select the best one among multiple reasoning paths, yet fail to generalize to realistic settings where the type of input questions is unknown or the answer format of reasoning paths is unknown. To avoid their limitations, we propose self-agreement, a generalizable ensemble-optimization method applying in almost all scenarios where the type of input questions and the answer format of reasoning paths may be known or unknown. Self-agreement firstly samples from language model's decoder to generate a diverse set of reasoning paths, and subsequently prompts the language model one more time to determine the optimal answer by selecting the most agreed answer among the sampled reasoning paths. Self-agreement simultaneously achieves remarkable performance on six public reasoning benchmarks and superior generalization capabilities.

  • 8 authors
·
Nov 14, 2023