new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

CreAgent: Towards Long-Term Evaluation of Recommender System under Platform-Creator Information Asymmetry

Ensuring the long-term sustainability of recommender systems (RS) emerges as a crucial issue. Traditional offline evaluation methods for RS typically focus on immediate user feedback, such as clicks, but they often neglect the long-term impact of content creators. On real-world content platforms, creators can strategically produce and upload new items based on user feedback and preference trends. While previous studies have attempted to model creator behavior, they often overlook the role of information asymmetry. This asymmetry arises because creators primarily have access to feedback on the items they produce, while platforms possess data on the entire spectrum of user feedback. Current RS simulators, however, fail to account for this asymmetry, leading to inaccurate long-term evaluations. To address this gap, we propose CreAgent, a Large Language Model (LLM)-empowered creator simulation agent. By incorporating game theory's belief mechanism and the fast-and-slow thinking framework, CreAgent effectively simulates creator behavior under conditions of information asymmetry. Additionally, we enhance CreAgent's simulation ability by fine-tuning it using Proximal Policy Optimization (PPO). Our credibility validation experiments show that CreAgent aligns well with the behaviors between real-world platform and creator, thus improving the reliability of long-term RS evaluations. Moreover, through the simulation of RS involving CreAgents, we can explore how fairness- and diversity-aware RS algorithms contribute to better long-term performance for various stakeholders. CreAgent and the simulation platform are publicly available at https://github.com/shawnye2000/CreAgent.

  • 7 authors
·
Feb 11, 2025

Qilin: A Multimodal Information Retrieval Dataset with APP-level User Sessions

User-generated content (UGC) communities, especially those featuring multimodal content, improve user experiences by integrating visual and textual information into results (or items). The challenge of improving user experiences in complex systems with search and recommendation (S\&R) services has drawn significant attention from both academia and industry these years. However, the lack of high-quality datasets has limited the research progress on multimodal S\&R. To address the growing need for developing better S\&R services, we present a novel multimodal information retrieval dataset in this paper, namely Qilin. The dataset is collected from Xiaohongshu, a popular social platform with over 300 million monthly active users and an average search penetration rate of over 70\%. In contrast to existing datasets, Qilin offers a comprehensive collection of user sessions with heterogeneous results like image-text notes, video notes, commercial notes, and direct answers, facilitating the development of advanced multimodal neural retrieval models across diverse task settings. To better model user satisfaction and support the analysis of heterogeneous user behaviors, we also collect extensive APP-level contextual signals and genuine user feedback. Notably, Qilin contains user-favored answers and their referred results for search requests triggering the Deep Query Answering (DQA) module. This allows not only the training \& evaluation of a Retrieval-augmented Generation (RAG) pipeline, but also the exploration of how such a module would affect users' search behavior. Through comprehensive analysis and experiments, we provide interesting findings and insights for further improving S\&R systems. We hope that Qilin will significantly contribute to the advancement of multimodal content platforms with S\&R services in the future.

  • 12 authors
·
Mar 1, 2025 2

Modality Alignment with Multi-scale Bilateral Attention for Multimodal Recommendation

Multimodal recommendation systems are increasingly becoming foundational technologies for e-commerce and content platforms, enabling personalized services by jointly modeling users' historical behaviors and the multimodal features of items (e.g., visual and textual). However, most existing methods rely on either static fusion strategies or graph-based local interaction modeling, facing two critical limitations: (1) insufficient ability to model fine-grained cross-modal associations, leading to suboptimal fusion quality; and (2) a lack of global distribution-level consistency, causing representational bias. To address these, we propose MambaRec, a novel framework that integrates local feature alignment and global distribution regularization via attention-guided learning. At its core, we introduce the Dilated Refinement Attention Module (DREAM), which uses multi-scale dilated convolutions with channel-wise and spatial attention to align fine-grained semantic patterns between visual and textual modalities. This module captures hierarchical relationships and context-aware associations, improving cross-modal semantic modeling. Additionally, we apply Maximum Mean Discrepancy (MMD) and contrastive loss functions to constrain global modality alignment, enhancing semantic consistency. This dual regularization reduces mode-specific deviations and boosts robustness. To improve scalability, MambaRec employs a dimensionality reduction strategy to lower the computational cost of high-dimensional multimodal features. Extensive experiments on real-world e-commerce datasets show that MambaRec outperforms existing methods in fusion quality, generalization, and efficiency. Our code has been made publicly available at https://github.com/rkl71/MambaRec.

  • 3 authors
·
Sep 10, 2025 2

Protecting Copyrighted Material with Unique Identifiers in Large Language Model Training

A primary concern regarding training large language models (LLMs) is whether they abuse copyrighted online text. With the increasing training data scale and the prevalence of LLMs in daily lives, two problems arise: 1) false positive membership inference results misled by similar examples; 2) membership inference methods are usually too complex for end users to understand and use. To address these issues, we propose an alternative insert-and-detect methodology, advocating that web users and content platforms employ \textit{unique identifiers} for reliable and independent membership inference. Users and platforms can create their identifiers, embed them in copyrighted text, and independently detect them in future LLMs. As an initial demonstration, we introduce \textbf{ghost sentences} and a user-friendly last-k words test, allowing end users to chat with LLMs for membership inference. Ghost sentences consist primarily of unique passphrases of random natural words, which can come with customized elements to bypass possible filter rules. The last-k words test requires a significant repetition time of ghost sentences~(ge10). For cases with fewer repetitions, we designed an extra perplexity test, as LLMs exhibit high perplexity when encountering unnatural passphrases. We also conduct a comprehensive study on the memorization and membership inference of ghost sentences, examining factors such as training data scales, model sizes, repetition times, insertion positions, wordlist of passphrases, alignment, etc. Our study shows the possibility of applying ghost sentences in real scenarios and provides instructions for the potential application.

  • 4 authors
·
Mar 23, 2024

MMHCL: Multi-Modal Hypergraph Contrastive Learning for Recommendation

The burgeoning presence of multimodal content-sharing platforms propels the development of personalized recommender systems. Previous works usually suffer from data sparsity and cold-start problems, and may fail to adequately explore semantic user-product associations from multimodal data. To address these issues, we propose a novel Multi-Modal Hypergraph Contrastive Learning (MMHCL) framework for user recommendation. For a comprehensive information exploration from user-product relations, we construct two hypergraphs, i.e. a user-to-user (u2u) hypergraph and an item-to-item (i2i) hypergraph, to mine shared preferences among users and intricate multimodal semantic resemblance among items, respectively. This process yields denser second-order semantics that are fused with first-order user-item interaction as complementary to alleviate the data sparsity issue. Then, we design a contrastive feature enhancement paradigm by applying synergistic contrastive learning. By maximizing/minimizing the mutual information between second-order (e.g. shared preference pattern for users) and first-order (information of selected items for users) embeddings of the same/different users and items, the feature distinguishability can be effectively enhanced. Compared with using sparse primary user-item interaction only, our MMHCL obtains denser second-order hypergraphs and excavates more abundant shared attributes to explore the user-product associations, which to a certain extent alleviates the problems of data sparsity and cold-start. Extensive experiments have comprehensively demonstrated the effectiveness of our method. Our code is publicly available at: https://github.com/Xu107/MMHCL.

  • 7 authors
·
Apr 23, 2025

CAMP-VQA: Caption-Embedded Multimodal Perception for No-Reference Quality Assessment of Compressed Video

The prevalence of user-generated content (UGC) on platforms such as YouTube and TikTok has rendered no-reference (NR) perceptual video quality assessment (VQA) vital for optimizing video delivery. Nonetheless, the characteristics of non-professional acquisition and the subsequent transcoding of UGC video on sharing platforms present significant challenges for NR-VQA. Although NR-VQA models attempt to infer mean opinion scores (MOS), their modeling of subjective scores for compressed content remains limited due to the absence of fine-grained perceptual annotations of artifact types. To address these challenges, we propose CAMP-VQA, a novel NR-VQA framework that exploits the semantic understanding capabilities of large vision-language models. Our approach introduces a quality-aware prompting mechanism that integrates video metadata (e.g., resolution, frame rate, bitrate) with key fragments extracted from inter-frame variations to guide the BLIP-2 pretraining approach in generating fine-grained quality captions. A unified architecture has been designed to model perceptual quality across three dimensions: semantic alignment, temporal characteristics, and spatial characteristics. These multimodal features are extracted and fused, then regressed to video quality scores. Extensive experiments on a wide variety of UGC datasets demonstrate that our model consistently outperforms existing NR-VQA methods, achieving improved accuracy without the need for costly manual fine-grained annotations. Our method achieves the best performance in terms of average rank and linear correlation (SRCC: 0.928, PLCC: 0.938) compared to state-of-the-art methods. The source code and trained models, along with a user-friendly demo, are available at: https://github.com/xinyiW915/CAMP-VQA.

  • 4 authors
·
Nov 10, 2025

Pruning Overparameterized Multi-Task Networks for Degraded Web Image Restoration

Image quality is a critical factor in delivering visually appealing content on web platforms. However, images often suffer from degradation due to lossy operations applied by online social networks (OSNs), negatively affecting user experience. Image restoration is the process of recovering a clean high-quality image from a given degraded input. Recently, multi-task (all-in-one) image restoration models have gained significant attention, due to their ability to simultaneously handle different types of image degradations. However, these models often come with an excessively high number of trainable parameters, making them computationally inefficient. In this paper, we propose a strategy for compressing multi-task image restoration models. We aim to discover highly sparse subnetworks within overparameterized deep models that can match or even surpass the performance of their dense counterparts. The proposed model, namely MIR-L, utilizes an iterative pruning strategy that removes low-magnitude weights across multiple rounds, while resetting the remaining weights to their original initialization. This iterative process is important for the multi-task image restoration model's optimization, effectively uncovering "winning tickets" that maintain or exceed state-of-the-art performance at high sparsity levels. Experimental evaluation on benchmark datasets for the deraining, dehazing, and denoising tasks shows that MIR-L retains only 10% of the trainable parameters while maintaining high image restoration performance. Our code, datasets and pre-trained models are made publicly available at https://github.com/Thomkat/MIR-L.

  • 2 authors
·
Oct 16, 2025 2

Safe-SD: Safe and Traceable Stable Diffusion with Text Prompt Trigger for Invisible Generative Watermarking

Recently, stable diffusion (SD) models have typically flourished in the field of image synthesis and personalized editing, with a range of photorealistic and unprecedented images being successfully generated. As a result, widespread interest has been ignited to develop and use various SD-based tools for visual content creation. However, the exposure of AI-created content on public platforms could raise both legal and ethical risks. In this regard, the traditional methods of adding watermarks to the already generated images (i.e. post-processing) may face a dilemma (e.g., being erased or modified) in terms of copyright protection and content monitoring, since the powerful image inversion and text-to-image editing techniques have been widely explored in SD-based methods. In this work, we propose a Safe and high-traceable Stable Diffusion framework (namely Safe-SD) to adaptively implant the graphical watermarks (e.g., QR code) into the imperceptible structure-related pixels during the generative diffusion process for supporting text-driven invisible watermarking and detection. Different from the previous high-cost injection-then-detection training framework, we design a simple and unified architecture, which makes it possible to simultaneously train watermark injection and detection in a single network, greatly improving the efficiency and convenience of use. Moreover, to further support text-driven generative watermarking and deeply explore its robustness and high-traceability, we elaborately design lambda sampling and encryption algorithm to fine-tune a latent diffuser wrapped by a VAE for balancing high-fidelity image synthesis and high-traceable watermark detection. We present our quantitative and qualitative results on two representative datasets LSUN, COCO and FFHQ, demonstrating state-of-the-art performance of Safe-SD and showing it significantly outperforms the previous approaches.

  • 4 authors
·
Jul 18, 2024

RAG-IGBench: Innovative Evaluation for RAG-based Interleaved Generation in Open-domain Question Answering

In real-world scenarios, providing user queries with visually enhanced responses can considerably benefit understanding and memory, underscoring the great value of interleaved image-text generation. Despite recent progress, like the visual autoregressive model that unifies text and image processing in a single transformer architecture, generating high-quality interleaved content remains challenging. Moreover, evaluations of these interleaved sequences largely remain underexplored, with existing benchmarks often limited by unimodal metrics that inadequately assess the intricacies of combined image-text outputs. To address these issues, we present RAG-IGBench, a thorough benchmark designed specifically to evaluate the task of Interleaved Generation based on Retrieval-Augmented Generation (RAG-IG) in open-domain question answering. RAG-IG integrates multimodal large language models (MLLMs) with retrieval mechanisms, enabling the models to access external image-text information for generating coherent multimodal content. Distinct from previous datasets, RAG-IGBench draws on the latest publicly available content from social platforms and introduces innovative evaluation metrics that measure the quality of text and images, as well as their consistency. Through extensive experiments with state-of-the-art MLLMs (both open-source and proprietary) on RAG-IGBench, we provide an in-depth analysis examining the capabilities and limitations of these models. Additionally, we validate our evaluation metrics by demonstrating their high correlation with human assessments. Models fine-tuned on RAG-IGBench's training set exhibit improved performance across multiple benchmarks, confirming both the quality and practical utility of our dataset. Our benchmark is available at https://github.com/USTC-StarTeam/RAG-IGBench.

  • 11 authors
·
Oct 10, 2025

Computer Vision for Clinical Gait Analysis: A Gait Abnormality Video Dataset

Clinical gait analysis (CGA) using computer vision is an emerging field in artificial intelligence that faces barriers of accessible, real-world data, and clear task objectives. This paper lays the foundation for current developments in CGA as well as vision-based methods and datasets suitable for gait analysis. We introduce The Gait Abnormality in Video Dataset (GAVD) in response to our review of over 150 current gait-related computer vision datasets, which highlighted the need for a large and accessible gait dataset clinically annotated for CGA. GAVD stands out as the largest video gait dataset, comprising 1874 sequences of normal, abnormal and pathological gaits. Additionally, GAVD includes clinically annotated RGB data sourced from publicly available content on online platforms. It also encompasses over 400 subjects who have undergone clinical grade visual screening to represent a diverse range of abnormal gait patterns, captured in various settings, including hospital clinics and urban uncontrolled outdoor environments. We demonstrate the validity of the dataset and utility of action recognition models for CGA using pretrained models Temporal Segment Networks(TSN) and SlowFast network to achieve video abnormality detection of 94% and 92% respectively when tested on GAVD dataset. A GitHub repository https://github.com/Rahmyyy/GAVD consisting of convenient URL links, and clinically relevant annotation for CGA is provided for over 450 online videos, featuring diverse subjects performing a range of normal, pathological, and abnormal gait patterns.

  • 4 authors
·
Jul 4, 2024

Countering Malicious Content Moderation Evasion in Online Social Networks: Simulation and Detection of Word Camouflage

Content moderation is the process of screening and monitoring user-generated content online. It plays a crucial role in stopping content resulting from unacceptable behaviors such as hate speech, harassment, violence against specific groups, terrorism, racism, xenophobia, homophobia, or misogyny, to mention some few, in Online Social Platforms. These platforms make use of a plethora of tools to detect and manage malicious information; however, malicious actors also improve their skills, developing strategies to surpass these barriers and continuing to spread misleading information. Twisting and camouflaging keywords are among the most used techniques to evade platform content moderation systems. In response to this recent ongoing issue, this paper presents an innovative approach to address this linguistic trend in social networks through the simulation of different content evasion techniques and a multilingual Transformer model for content evasion detection. In this way, we share with the rest of the scientific community a multilingual public tool, named "pyleetspeak" to generate/simulate in a customizable way the phenomenon of content evasion through automatic word camouflage and a multilingual Named-Entity Recognition (NER) Transformer-based model tuned for its recognition and detection. The multilingual NER model is evaluated in different textual scenarios, detecting different types and mixtures of camouflage techniques, achieving an overall weighted F1 score of 0.8795. This article contributes significantly to countering malicious information by developing multilingual tools to simulate and detect new methods of evasion of content on social networks, making the fight against information disorders more effective.

  • 4 authors
·
Dec 27, 2022

EVADE: Multimodal Benchmark for Evasive Content Detection in E-Commerce Applications

E-commerce platforms increasingly rely on Large Language Models (LLMs) and Vision-Language Models (VLMs) to detect illicit or misleading product content. However, these models remain vulnerable to evasive content: inputs (text or images) that superficially comply with platform policies while covertly conveying prohibited claims. Unlike traditional adversarial attacks that induce overt failures, evasive content exploits ambiguity and context, making it far harder to detect. Existing robustness benchmarks provide little guidance for this demanding, real-world challenge. We introduce EVADE, the first expert-curated, Chinese, multimodal benchmark specifically designed to evaluate foundation models on evasive content detection in e-commerce. The dataset contains 2,833 annotated text samples and 13,961 images spanning six demanding product categories, including body shaping, height growth, and health supplements. Two complementary tasks assess distinct capabilities: Single-Violation, which probes fine-grained reasoning under short prompts, and All-in-One, which tests long-context reasoning by merging overlapping policy rules into unified instructions. Notably, the All-in-One setting significantly narrows the performance gap between partial and full-match accuracy, suggesting that clearer rule definitions improve alignment between human and model judgment. We benchmark 26 mainstream LLMs and VLMs and observe substantial performance gaps: even state-of-the-art models frequently misclassify evasive samples. By releasing EVADE and strong baselines, we provide the first rigorous standard for evaluating evasive-content detection, expose fundamental limitations in current multimodal reasoning, and lay the groundwork for safer and more transparent content moderation systems in e-commerce. The dataset is publicly available at https://huggingface.co/datasets/koenshen/EVADE-Bench.

  • 12 authors
·
May 23, 2025

Advancing Content Moderation: Evaluating Large Language Models for Detecting Sensitive Content Across Text, Images, and Videos

The widespread dissemination of hate speech, harassment, harmful and sexual content, and violence across websites and media platforms presents substantial challenges and provokes widespread concern among different sectors of society. Governments, educators, and parents are often at odds with media platforms about how to regulate, control, and limit the spread of such content. Technologies for detecting and censoring the media contents are a key solution to addressing these challenges. Techniques from natural language processing and computer vision have been used widely to automatically identify and filter out sensitive content such as offensive languages, violence, nudity, and addiction in both text, images, and videos, enabling platforms to enforce content policies at scale. However, existing methods still have limitations in achieving high detection accuracy with fewer false positives and false negatives. Therefore, more sophisticated algorithms for understanding the context of both text and image may open rooms for improvement in content censorship to build a more efficient censorship system. In this paper, we evaluate existing LLM-based content moderation solutions such as OpenAI moderation model and Llama-Guard3 and study their capabilities to detect sensitive contents. Additionally, we explore recent LLMs such as GPT, Gemini, and Llama in identifying inappropriate contents across media outlets. Various textual and visual datasets like X tweets, Amazon reviews, news articles, human photos, cartoons, sketches, and violence videos have been utilized for evaluation and comparison. The results demonstrate that LLMs outperform traditional techniques by achieving higher accuracy and lower false positive and false negative rates. This highlights the potential to integrate LLMs into websites, social media platforms, and video-sharing services for regulatory and content moderation purposes.

  • 4 authors
·
Nov 26, 2024

Simulation of Language Evolution under Regulated Social Media Platforms: A Synergistic Approach of Large Language Models and Genetic Algorithms

Social media platforms frequently impose restrictive policies to moderate user content, prompting the emergence of creative evasion language strategies. This paper presents a multi-agent framework based on Large Language Models (LLMs) to simulate the iterative evolution of language strategies under regulatory constraints. In this framework, participant agents, as social media users, continuously evolve their language expression, while supervisory agents emulate platform-level regulation by assessing policy violations. To achieve a more faithful simulation, we employ a dual design of language strategies (constraint and expression) to differentiate conflicting goals and utilize an LLM-driven GA (Genetic Algorithm) for the selection, mutation, and crossover of language strategies. The framework is evaluated using two distinct scenarios: an abstract password game and a realistic simulated illegal pet trade scenario. Experimental results demonstrate that as the number of dialogue rounds increases, both the number of uninterrupted dialogue turns and the accuracy of information transmission improve significantly. Furthermore, a user study with 40 participants validates the real-world relevance of the generated dialogues and strategies. Moreover, ablation studies validate the importance of the GA, emphasizing its contribution to long-term adaptability and improved overall results.

  • 6 authors
·
Feb 26, 2025

Cross-Domain Product Representation Learning for Rich-Content E-Commerce

The proliferation of short video and live-streaming platforms has revolutionized how consumers engage in online shopping. Instead of browsing product pages, consumers are now turning to rich-content e-commerce, where they can purchase products through dynamic and interactive media like short videos and live streams. This emerging form of online shopping has introduced technical challenges, as products may be presented differently across various media domains. Therefore, a unified product representation is essential for achieving cross-domain product recognition to ensure an optimal user search experience and effective product recommendations. Despite the urgent industrial need for a unified cross-domain product representation, previous studies have predominantly focused only on product pages without taking into account short videos and live streams. To fill the gap in the rich-content e-commerce area, in this paper, we introduce a large-scale cRoss-dOmain Product Ecognition dataset, called ROPE. ROPE covers a wide range of product categories and contains over 180,000 products, corresponding to millions of short videos and live streams. It is the first dataset to cover product pages, short videos, and live streams simultaneously, providing the basis for establishing a unified product representation across different media domains. Furthermore, we propose a Cross-dOmain Product rEpresentation framework, namely COPE, which unifies product representations in different domains through multimodal learning including text and vision. Extensive experiments on downstream tasks demonstrate the effectiveness of COPE in learning a joint feature space for all product domains.

  • 6 authors
·
Aug 10, 2023

Can Loyalty to Creators Dilute Loyalty to Promoted Products? Examining the Heterogeneous Effects of Live-Streamed Content on Video Game Usage

Social media platforms have led to online consumption communities, or fandoms, that involve complex networks of ancillary creators and consumers focused on some core product or intellectual property. For example, video game communities include networks of players and content creators centered around a specific video game. These networks are complex in that video game publishers often sponsor creators, but creators and publishers may have divergent incentives. Specifically, creators can potentially benefit from content that builds their own following at the expense of the core game. Our research investigates the relationship between consuming live-streamed content and engagement with a specific video game. We examine the causal effect of viewing live-streamed content on subsequent gameplay for a specific game, using an unexpected service interruption of the livestreaming platform and time zone differences among users. We find live-streamed content significantly increases gameplay as a 10% increase in live-streamed viewing minutes results in a 3.08% increase in gameplay minutes. We also explore how this effect varies by user loyalty to different types of streamer channels (firm-owned, mega, and micro). The positive effects of live-streamed content are greatest for micro-streamers and smallest for mega-streamers. These findings are salient for firms allocating sponsorship resources.

  • 3 authors
·
Nov 1, 2024

Understanding Gen Alpha Digital Language: Evaluation of LLM Safety Systems for Content Moderation

This research offers a unique evaluation of how AI systems interpret the digital language of Generation Alpha (Gen Alpha, born 2010-2024). As the first cohort raised alongside AI, Gen Alpha faces new forms of online risk due to immersive digital engagement and a growing mismatch between their evolving communication and existing safety tools. Their distinct language, shaped by gaming, memes, and AI-driven trends, often conceals harmful interactions from both human moderators and automated systems. We assess four leading AI models (GPT-4, Claude, Gemini, and Llama 3) on their ability to detect masked harassment and manipulation within Gen Alpha discourse. Using a dataset of 100 recent expressions from gaming platforms, social media, and video content, the study reveals critical comprehension failures with direct implications for online safety. This work contributes: (1) a first-of-its-kind dataset capturing Gen Alpha expressions; (2) a framework to improve AI moderation systems for youth protection; (3) a multi-perspective evaluation including AI systems, human moderators, and parents, with direct input from Gen Alpha co-researchers; and (4) an analysis of how linguistic divergence increases youth vulnerability. Findings highlight the urgent need to redesign safety systems attuned to youth communication, especially given Gen Alpha reluctance to seek help when adults fail to understand their digital world. This study combines the insight of a Gen Alpha researcher with systematic academic analysis to address critical digital safety challenges.

  • 2 authors
·
May 14, 2025 3

ImagiNet: A Multi-Content Dataset for Generalizable Synthetic Image Detection via Contrastive Learning

Generative models, such as diffusion models (DMs), variational autoencoders (VAEs), and generative adversarial networks (GANs), produce images with a level of authenticity that makes them nearly indistinguishable from real photos and artwork. While this capability is beneficial for many industries, the difficulty of identifying synthetic images leaves online media platforms vulnerable to impersonation and misinformation attempts. To support the development of defensive methods, we introduce ImagiNet, a high-resolution and balanced dataset for synthetic image detection, designed to mitigate potential biases in existing resources. It contains 200K examples, spanning four content categories: photos, paintings, faces, and uncategorized. Synthetic images are produced with open-source and proprietary generators, whereas real counterparts of the same content type are collected from public datasets. The structure of ImagiNet allows for a two-track evaluation system: i) classification as real or synthetic and ii) identification of the generative model. To establish a baseline, we train a ResNet-50 model using a self-supervised contrastive objective (SelfCon) for each track. The model demonstrates state-of-the-art performance and high inference speed across established benchmarks, achieving an AUC of up to 0.99 and balanced accuracy ranging from 86% to 95%, even under social network conditions that involve compression and resizing. Our data and code are available at https://github.com/delyan-boychev/imaginet.

  • 2 authors
·
Jul 29, 2024 2

Ad-load Balancing via Off-policy Learning in a Content Marketplace

Ad-load balancing is a critical challenge in online advertising systems, particularly in the context of social media platforms, where the goal is to maximize user engagement and revenue while maintaining a satisfactory user experience. This requires the optimization of conflicting objectives, such as user satisfaction and ads revenue. Traditional approaches to ad-load balancing rely on static allocation policies, which fail to adapt to changing user preferences and contextual factors. In this paper, we present an approach that leverages off-policy learning and evaluation from logged bandit feedback. We start by presenting a motivating analysis of the ad-load balancing problem, highlighting the conflicting objectives between user satisfaction and ads revenue. We emphasize the nuances that arise due to user heterogeneity and the dependence on the user's position within a session. Based on this analysis, we define the problem as determining the optimal ad-load for a particular feed fetch. To tackle this problem, we propose an off-policy learning framework that leverages unbiased estimators such as Inverse Propensity Scoring (IPS) and Doubly Robust (DR) to learn and estimate the policy values using offline collected stochastic data. We present insights from online A/B experiments deployed at scale across over 80 million users generating over 200 million sessions, where we find statistically significant improvements in both user satisfaction metrics and ads revenue for the platform.

  • 4 authors
·
Sep 19, 2023

Studying the role of named entities for content preservation in text style transfer

Text style transfer techniques are gaining popularity in Natural Language Processing, finding various applications such as text detoxification, sentiment, or formality transfer. However, the majority of the existing approaches were tested on such domains as online communications on public platforms, music, or entertainment yet none of them were applied to the domains which are typical for task-oriented production systems, such as personal plans arrangements (e.g. booking of flights or reserving a table in a restaurant). We fill this gap by studying formality transfer in this domain. We noted that the texts in this domain are full of named entities, which are very important for keeping the original sense of the text. Indeed, if for example, someone communicates the destination city of a flight it must not be altered. Thus, we concentrate on the role of named entities in content preservation for formality text style transfer. We collect a new dataset for the evaluation of content similarity measures in text style transfer. It is taken from a corpus of task-oriented dialogues and contains many important entities related to realistic requests that make this dataset particularly useful for testing style transfer models before using them in production. Besides, we perform an error analysis of a pre-trained formality transfer model and introduce a simple technique to use information about named entities to enhance the performance of baseline content similarity measures used in text style transfer.

  • 5 authors
·
Jun 20, 2022

From chambers to echo chambers: Quantifying polarization with a second-neighbor approach applied to Twitter's climate discussion

Social media platforms often foster environments where users primarily engage with content that aligns with their existing beliefs, thereby reinforcing their views and limiting exposure to opposing viewpoints. In this paper, we analyze X (formerly Twitter) discussions on climate change throughout 2019, using an unsupervised method centered on chambers--second-order information sources--to uncover ideological patterns at scale. Beyond direct connections, chambers capture shared sources of influence, revealing polarization dynamics efficiently and effectively. Analyzing retweet patterns, we identify echo chambers of climate believers and skeptics, revealing strong chamber overlap within ideological groups and minimal overlap between them, resulting in a robust bimodal structure that characterizes polarization. Our method enables us to infer the stance of high-impact users based on their audience's chamber alignment, allowing for the classification of over half the retweeting population with minimal cross-group interaction, in what we term augmented echo chamber classification. We benchmark our approach against manual labeling and a state-of-the-art latent ideology model, finding comparable performance but with nearly four times greater coverage. Moreover, we find that echo chamber structures remain stable over time, even as their members change significantly, suggesting that these structures are a persistent and emergent property of the system. Notably, polarization decreases and climate skepticism rises during the #FridaysForFuture strikes in September 2019. This chamber-based analysis offers valuable insights into the persistence and fluidity of ideological polarization on social media.

  • 4 authors
·
Jun 29, 2022 1

KuaiLive: A Real-time Interactive Dataset for Live Streaming Recommendation

Live streaming platforms have become a dominant form of online content consumption, offering dynamically evolving content, real-time interactions, and highly engaging user experiences. These unique characteristics introduce new challenges that differentiate live streaming recommendation from traditional recommendation settings and have garnered increasing attention from industry in recent years. However, research progress in academia has been hindered by the lack of publicly available datasets that accurately reflect the dynamic nature of live streaming environments. To address this gap, we introduce KuaiLive, the first real-time, interactive dataset collected from Kuaishou, a leading live streaming platform in China with over 400 million daily active users. The dataset records the interaction logs of 23,772 users and 452,621 streamers over a 21-day period. Compared to existing datasets, KuaiLive offers several advantages: it includes precise live room start and end timestamps, multiple types of real-time user interactions (click, comment, like, gift), and rich side information features for both users and streamers. These features enable more realistic simulation of dynamic candidate items and better modeling of user and streamer behaviors. We conduct a thorough analysis of KuaiLive from multiple perspectives and evaluate several representative recommendation methods on it, establishing a strong benchmark for future research. KuaiLive can support a wide range of tasks in the live streaming domain, such as top-K recommendation, click-through rate prediction, watch time prediction, and gift price prediction. Moreover, its fine-grained behavioral data also enables research on multi-behavior modeling, multi-task learning, and fairness-aware recommendation. The dataset and related resources are publicly available at https://imgkkk574.github.io/KuaiLive.

  • 7 authors
·
Aug 7, 2025

MuSeD: A Multimodal Spanish Dataset for Sexism Detection in Social Media Videos

Sexism is generally defined as prejudice and discrimination based on sex or gender, affecting every sector of society, from social institutions to relationships and individual behavior. Social media platforms amplify the impact of sexism by conveying discriminatory content not only through text but also across multiple modalities, highlighting the critical need for a multimodal approach to the analysis of sexism online. With the rise of social media platforms where users share short videos, sexism is increasingly spreading through video content. Automatically detecting sexism in videos is a challenging task, as it requires analyzing the combination of verbal, audio, and visual elements to identify sexist content. In this study, (1) we introduce MuSeD, a new Multimodal Spanish dataset for Sexism Detection consisting of approx 11 hours of videos extracted from TikTok and BitChute; (2) we propose an innovative annotation framework for analyzing the contribution of textual and multimodal labels in the classification of sexist and non-sexist content; and (3) we evaluate a range of large language models (LLMs) and multimodal LLMs on the task of sexism detection. We find that visual information plays a key role in labeling sexist content for both humans and models. Models effectively detect explicit sexism; however, they struggle with implicit cases, such as stereotypes, instances where annotators also show low agreement. This highlights the inherent difficulty of the task, as identifying implicit sexism depends on the social and cultural context.

  • 7 authors
·
Apr 15, 2025

ComfyUI-R1: Exploring Reasoning Models for Workflow Generation

AI-generated content has evolved from monolithic models to modular workflows, particularly on platforms like ComfyUI, enabling customization in creative pipelines. However, crafting effective workflows requires great expertise to orchestrate numerous specialized components, presenting a steep learning curve for users. To address this challenge, we introduce ComfyUI-R1, the first large reasoning model for automated workflow generation. Starting with our curated dataset of 4K workflows, we construct long chain-of-thought (CoT) reasoning data, including node selection, workflow planning, and code-level workflow representation. ComfyUI-R1 is trained through a two-stage framework: (1) CoT fine-tuning for cold start, adapting models to the ComfyUI domain; (2) reinforcement learning for incentivizing reasoning capability, guided by a fine-grained rule-metric hybrid reward, ensuring format validity, structural integrity, and node-level fidelity. Experiments show that our 7B-parameter model achieves a 97\% format validity rate, along with high pass rate, node-level and graph-level F1 scores, significantly surpassing prior state-of-the-art methods that employ leading closed-source models such as GPT-4o and Claude series. Further analysis highlights the critical role of the reasoning process and the advantage of transforming workflows into code. Qualitative comparison reveals our strength in synthesizing intricate workflows with diverse nodes, underscoring the potential of long CoT reasoning in AI art creation.

  • 8 authors
·
Jun 11, 2025 4

DeMamba: AI-Generated Video Detection on Million-Scale GenVideo Benchmark

Recently, video generation techniques have advanced rapidly. Given the popularity of video content on social media platforms, these models intensify concerns about the spread of fake information. Therefore, there is a growing demand for detectors capable of distinguishing between fake AI-generated videos and mitigating the potential harm caused by fake information. However, the lack of large-scale datasets from the most advanced video generators poses a barrier to the development of such detectors. To address this gap, we introduce the first AI-generated video detection dataset, GenVideo. It features the following characteristics: (1) a large volume of videos, including over one million AI-generated and real videos collected; (2) a rich diversity of generated content and methodologies, covering a broad spectrum of video categories and generation techniques. We conducted extensive studies of the dataset and proposed two evaluation methods tailored for real-world-like scenarios to assess the detectors' performance: the cross-generator video classification task assesses the generalizability of trained detectors on generators; the degraded video classification task evaluates the robustness of detectors to handle videos that have degraded in quality during dissemination. Moreover, we introduced a plug-and-play module, named Detail Mamba (DeMamba), designed to enhance the detectors by identifying AI-generated videos through the analysis of inconsistencies in temporal and spatial dimensions. Our extensive experiments demonstrate DeMamba's superior generalizability and robustness on GenVideo compared to existing detectors. We believe that the GenVideo dataset and the DeMamba module will significantly advance the field of AI-generated video detection. Our code and dataset will be aviliable at https://github.com/chenhaoxing/DeMamba.

  • 11 authors
·
May 30, 2024

LLMRec: Large Language Models with Graph Augmentation for Recommendation

The problem of data sparsity has long been a challenge in recommendation systems, and previous studies have attempted to address this issue by incorporating side information. However, this approach often introduces side effects such as noise, availability issues, and low data quality, which in turn hinder the accurate modeling of user preferences and adversely impact recommendation performance. In light of the recent advancements in large language models (LLMs), which possess extensive knowledge bases and strong reasoning capabilities, we propose a novel framework called LLMRec that enhances recommender systems by employing three simple yet effective LLM-based graph augmentation strategies. Our approach leverages the rich content available within online platforms (e.g., Netflix, MovieLens) to augment the interaction graph in three ways: (i) reinforcing user-item interaction egde, (ii) enhancing the understanding of item node attributes, and (iii) conducting user node profiling, intuitively from the natural language perspective. By employing these strategies, we address the challenges posed by sparse implicit feedback and low-quality side information in recommenders. Besides, to ensure the quality of the augmentation, we develop a denoised data robustification mechanism that includes techniques of noisy implicit feedback pruning and MAE-based feature enhancement that help refine the augmented data and improve its reliability. Furthermore, we provide theoretical analysis to support the effectiveness of LLMRec and clarify the benefits of our method in facilitating model optimization. Experimental results on benchmark datasets demonstrate the superiority of our LLM-based augmentation approach over state-of-the-art techniques. To ensure reproducibility, we have made our code and augmented data publicly available at: https://github.com/HKUDS/LLMRec.git

  • 9 authors
·
Nov 1, 2023 1

Detection of Somali-written Fake News and Toxic Messages on the Social Media Using Transformer-based Language Models

The fact that everyone with a social media account can create and share content, and the increasing public reliance on social media platforms as a news and information source bring about significant challenges such as misinformation, fake news, harmful content, etc. Although human content moderation may be useful to an extent and used by these platforms to flag posted materials, the use of AI models provides a more sustainable, scalable, and effective way to mitigate these harmful contents. However, low-resourced languages such as the Somali language face limitations in AI automation, including scarce annotated training datasets and lack of language models tailored to their unique linguistic characteristics. This paper presents part of our ongoing research work to bridge some of these gaps for the Somali language. In particular, we created two human-annotated social-media-sourced Somali datasets for two downstream applications, fake news \& toxicity classification, and developed a transformer-based monolingual Somali language model (named SomBERTa) -- the first of its kind to the best of our knowledge. SomBERTa is then fine-tuned and evaluated on toxic content, fake news and news topic classification datasets. Comparative evaluation analysis of the proposed model against related multilingual models (e.g., AfriBERTa, AfroXLMR, etc) demonstrated that SomBERTa consistently outperformed these comparators in both fake news and toxic content classification tasks while achieving the best average accuracy (87.99%) across all tasks. This research contributes to Somali NLP by offering a foundational language model and a replicable framework for other low-resource languages, promoting digital and AI inclusivity and linguistic diversity.

  • 6 authors
·
Mar 23, 2025

MLLM-as-a-Judge for Image Safety without Human Labeling

Image content safety has become a significant challenge with the rise of visual media on online platforms. Meanwhile, in the age of AI-generated content (AIGC), many image generation models are capable of producing harmful content, such as images containing sexual or violent material. Thus, it becomes crucial to identify such unsafe images based on established safety rules. Pre-trained Multimodal Large Language Models (MLLMs) offer potential in this regard, given their strong pattern recognition abilities. Existing approaches typically fine-tune MLLMs with human-labeled datasets, which however brings a series of drawbacks. First, relying on human annotators to label data following intricate and detailed guidelines is both expensive and labor-intensive. Furthermore, users of safety judgment systems may need to frequently update safety rules, making fine-tuning on human-based annotation more challenging. This raises the research question: Can we detect unsafe images by querying MLLMs in a zero-shot setting using a predefined safety constitution (a set of safety rules)? Our research showed that simply querying pre-trained MLLMs does not yield satisfactory results. This lack of effectiveness stems from factors such as the subjectivity of safety rules, the complexity of lengthy constitutions, and the inherent biases in the models. To address these challenges, we propose a MLLM-based method includes objectifying safety rules, assessing the relevance between rules and images, making quick judgments based on debiased token probabilities with logically complete yet simplified precondition chains for safety rules, and conducting more in-depth reasoning with cascaded chain-of-thought processes if necessary. Experiment results demonstrate that our method is highly effective for zero-shot image safety judgment tasks.

  • 15 authors
·
Dec 30, 2024 2

ReLaX-VQA: Residual Fragment and Layer Stack Extraction for Enhancing Video Quality Assessment

With the rapid growth of User-Generated Content (UGC) exchanged between users and sharing platforms, the need for video quality assessment in the wild is increasingly evident. UGC is typically acquired using consumer devices and undergoes multiple rounds of compression (transcoding) before reaching the end user. Therefore, traditional quality metrics that employ the original content as a reference are not suitable. In this paper, we propose ReLaX-VQA, a novel No-Reference Video Quality Assessment (NR-VQA) model that aims to address the challenges of evaluating the quality of diverse video content without reference to the original uncompressed videos. ReLaX-VQA uses frame differences to select spatio-temporal fragments intelligently together with different expressions of spatial features associated with the sampled frames. These are then used to better capture spatial and temporal variabilities in the quality of neighbouring frames. Furthermore, the model enhances abstraction by employing layer-stacking techniques in deep neural network features from Residual Networks and Vision Transformers. Extensive testing across four UGC datasets demonstrates that ReLaX-VQA consistently outperforms existing NR-VQA methods, achieving an average SRCC of 0.8658 and PLCC of 0.8873. Open-source code and trained models that will facilitate further research and applications of NR-VQA can be found at https://github.com/xinyiW915/ReLaX-VQA.

  • 3 authors
·
Jul 16, 2024

Zero-Shot Statistical Tests for LLM-Generated Text Detection using Finite Sample Concentration Inequalities

Verifying the provenance of content is crucial to the function of many organizations, e.g., educational institutions, social media platforms, firms, etc. This problem is becoming increasingly difficult as text generated by Large Language Models (LLMs) becomes almost indistinguishable from human-generated content. In addition, many institutions utilize in-house LLMs and want to ensure that external, non-sanctioned LLMs do not produce content within the institution. In this paper, we answer the following question: Given a piece of text, can we identify whether it was produced by LLM A or B (where B can be a human)? We model LLM-generated text as a sequential stochastic process with complete dependence on history and design zero-shot statistical tests to distinguish between (i) the text generated by two different sets of LLMs A (in-house) and B (non-sanctioned) and also (ii) LLM-generated and human-generated texts. We prove that the type I and type II errors for our tests decrease exponentially in the text length. In designing our tests, we derive concentration inequalities on the difference between log-perplexity and the average entropy of the string under A. Specifically, for a given string, we demonstrate that if the string is generated by A, the log-perplexity of the string under A converges to the average entropy of the string under A, except with an exponentially small probability in string length. We also show that if B generates the text, except with an exponentially small probability in string length, the log-perplexity of the string under A converges to the average cross-entropy of B and A. Lastly, we present preliminary experimental results to support our theoretical results. By enabling guaranteed (with high probability) finding of the origin of harmful LLM-generated text with arbitrary size, we can help combat misinformation.

  • 4 authors
·
Jan 4, 2025

Binary BPE: A Family of Cross-Platform Tokenizers for Binary Analysis

Sequence models for binary analysis are bottlenecked by byte-level tokenization: raw bytes waste precious context window capacity for transformers and other neural network architectures, and many existing text-oriented tokenizers fail on arbitrary 0x00--0xFF sequences. To address this issue, we introduce the Binary BPE tokenizer family, a set of cross-platform Byte Pair Encoding (BPE) tokenizers for executables trained on a large corpus of binaries spanning multiple platforms, architectures, and operating systems, including Linux, Windows, macOS, Android, and malware sources. We release trained tokenizers with vocabularies of 4K, 8K, 16K, 32K, and 64K tokens, enabling both systematic scaling studies and practical deployment from resource-constrained edge devices to high-throughput datacenters. These tokenizers discover interpretable patterns (ELF/PE headers, instruction sequences, cross-platform strings) while yielding multi-byte compression per token. On representative uncompressed executables (e.g., ELF/PE/Mach-O rather than compressed APKs), the Binary BPE tokenizers typically allow for roughly 2-3x more binary content per fixed-length transformer context window than raw bytes, enabling more efficient research and practical deployment for content identification, malware detection, reverse engineering, and optimization. We release the trained Binary BPE tokenizers on HuggingFace, providing a drop-in, open-source foundation for binary-focused language models and context-efficient agentic tools.

  • 1 authors
·
Nov 14, 2025

Advancing Human Action Recognition with Foundation Models trained on Unlabeled Public Videos

The increasing variety and quantity of tagged multimedia content on a variety of online platforms offer a unique opportunity to advance the field of human action recognition. In this study, we utilize 283,582 unique, unlabeled TikTok video clips, categorized into 386 hashtags, to train a domain-specific foundation model for action recognition. We employ VideoMAE V2, an advanced model integrating Masked Autoencoders (MAE) with Vision Transformers (ViT), pre-trained on this diverse collection of unstructured videos. Our model, fine-tuned on established action recognition benchmarks such as UCF101 and HMDB51, achieves state-of-the-art results: 99.05% on UCF101, 86.08% on HMDB51, 85.51% on Kinetics-400, and 74.27% on Something-Something V2 using the ViT-giant backbone. These results highlight the potential of using unstructured and unlabeled videos as a valuable source of diverse and dynamic content for training foundation models. Our investigation confirms that while initial increases in pre-training data volume significantly enhance model performance, the gains diminish as the dataset size continues to expand. Our findings emphasize two critical axioms in self-supervised learning for computer vision: (1) additional pre-training data can yield diminishing benefits for some datasets and (2) quality is more important than quantity in self-supervised learning, especially when building foundation models.

  • 10 authors
·
Feb 13, 2024

Hierarchical Reinforcement Learning for Modeling User Novelty-Seeking Intent in Recommender Systems

Recommending novel content, which expands user horizons by introducing them to new interests, has been shown to improve users' long-term experience on recommendation platforms chen2021values. Users however are not constantly looking to explore novel content. It is therefore crucial to understand their novelty-seeking intent and adjust the recommendation policy accordingly. Most existing literature models a user's propensity to choose novel content or to prefer a more diverse set of recommendations at individual interactions. Hierarchical structure, on the other hand, exists in a user's novelty-seeking intent, which is manifested as a static and intrinsic user preference for seeking novelty along with a dynamic session-based propensity. To this end, we propose a novel hierarchical reinforcement learning-based method to model the hierarchical user novelty-seeking intent, and to adapt the recommendation policy accordingly based on the extracted user novelty-seeking propensity. We further incorporate diversity and novelty-related measurement in the reward function of the hierarchical RL (HRL) agent to encourage user exploration chen2021values. We demonstrate the benefits of explicitly modeling hierarchical user novelty-seeking intent in recommendations through extensive experiments on simulated and real-world datasets. In particular, we demonstrate that the effectiveness of our proposed hierarchical RL-based method lies in its ability to capture such hierarchically-structured intent. As a result, the proposed HRL model achieves superior performance on several public datasets, compared with state-of-art baselines.

  • 4 authors
·
Jun 2, 2023

Short-Form Video Recommendations with Multimodal Embeddings: Addressing Cold-Start and Bias Challenges

In recent years, social media users have spent significant amounts of time on short-form video platforms. As a result, established platforms in other domains, such as e-commerce, have begun introducing short-form video content to engage users and increase their time spent on the platform. The success of these experiences is due not only to the content itself but also to a unique UI innovation: instead of offering users a list of choices to click, platforms actively recommend content for users to watch one at a time. This creates new challenges for recommender systems, especially when launching a new video experience. Beyond the limited interaction data, immersive feed experiences introduce stronger position bias due to the UI and duration bias when optimizing for watch-time, as models tend to favor shorter videos. These issues, together with the feedback loop inherent in recommender systems, make it difficult to build effective solutions. In this paper, we highlight the challenges faced when introducing a new short-form video experience and present our experience showing that, even with sufficient video interaction data, it can be more beneficial to leverage a video retrieval system using a fine-tuned multimodal vision-language model to overcome these challenges. This approach demonstrated greater effectiveness compared to conventional supervised learning methods in online experiments conducted on our e-commerce platform.

  • 5 authors
·
Jul 25, 2025

CoT-Driven Framework for Short Text Classification: Enhancing and Transferring Capabilities from Large to Smaller Model

Short Text Classification (STC) is crucial for processing and understanding the brief but substantial content prevalent on contemporary digital platforms. The STC encounters difficulties in grasping the semantic and syntactic intricacies, an issue that is apparent in traditional pre-trained language models. Although Graph Convolutional Networks enhance performance by integrating external knowledge bases, these methods are limited by the quality and extent of the knowledge applied. Recently, the emergence of Large Language Models (LLMs) and Chain-of-Thought (CoT) has significantly improved the performance of complex reasoning tasks. However, some studies have highlighted the limitations of their application in fundamental NLP tasks. Consequently, this study first employs CoT to investigate and enhance the capabilities of LLMs in STC tasks. We propose the Syntactic and Semantic Enrichment CoT (SSE-CoT) method, effectively decomposing the STC tasks into four distinct steps: (i) essential concept identification, (ii) common-sense knowledge retrieval, (iii) text rewriting, and (iv) classification. Furthermore, recognizing resource constraints in sectors like finance and healthcare, we then introduce the CoT-Driven Multi-Task Learning (CDMT) framework to extend these capabilities to smaller models. This framework begins by extracting rationales from LLMs and subsequently fine-tunes smaller models to optimize their performance. Extensive experimentation across six short-text benchmarks validated the efficacy of the proposed methods. In particular, SSE-CoT achieved state-of-the-art performance with substantial improvements on all datasets, particularly on the Ohsumed and TagMyNews datasets.

  • 8 authors
·
Jan 6, 2024

Emo, Love, and God: Making Sense of Urban Dictionary, a Crowd-Sourced Online Dictionary

The Internet facilitates large-scale collaborative projects and the emergence of Web 2.0 platforms, where producers and consumers of content unify, has drastically changed the information market. On the one hand, the promise of the "wisdom of the crowd" has inspired successful projects such as Wikipedia, which has become the primary source of crowd-based information in many languages. On the other hand, the decentralized and often un-monitored environment of such projects may make them susceptible to low quality content. In this work, we focus on Urban Dictionary, a crowd-sourced online dictionary. We combine computational methods with qualitative annotation and shed light on the overall features of Urban Dictionary in terms of growth, coverage and types of content. We measure a high presence of opinion-focused entries, as opposed to the meaning-focused entries that we expect from traditional dictionaries. Furthermore, Urban Dictionary covers many informal, unfamiliar words as well as proper nouns. Urban Dictionary also contains offensive content, but highly offensive content tends to receive lower scores through the dictionary's voting system. The low threshold to include new material in Urban Dictionary enables quick recording of new words and new meanings, but the resulting heterogeneous content can pose challenges in using Urban Dictionary as a source to study language innovation.

  • 3 authors
·
Dec 22, 2017

Soccer on Social Media

In the era of digitalization, social media has become an integral part of our lives, serving as a significant hub for individuals and businesses to share information, communicate, and engage. This is also the case for professional sports, where leagues, clubs and players are using social media to reach out to their fans. In this respect, a huge amount of time is spent curating multimedia content for various social media platforms and their target users. With the emergence of Artificial Intelligence (AI), AI-based tools for automating content generation and enhancing user experiences on social media have become widely popular. However, to effectively utilize such tools, it is imperative to comprehend the demographics and preferences of users on different platforms, understand how content providers post information in these channels, and how different types of multimedia are consumed by audiences. This report presents an analysis of social media platforms, in terms of demographics, supported multimedia modalities, and distinct features and specifications for different modalities, followed by a comparative case study of select European soccer leagues and teams, in terms of their social media practices. Through this analysis, we demonstrate that social media, while being very important for and widely used by supporters from all ages, also requires a fine-tuned effort on the part of soccer professionals, in order to elevate fan experiences and foster engagement.

  • 6 authors
·
Oct 18, 2023

Composed Multi-modal Retrieval: A Survey of Approaches and Applications

With the rapid growth of multi-modal data from social media, short video platforms, and e-commerce, content-based retrieval has become essential for efficiently searching and utilizing heterogeneous information. Over time, retrieval techniques have evolved from Unimodal Retrieval (UR) to Cross-modal Retrieval (CR) and, more recently, to Composed Multi-modal Retrieval (CMR). CMR enables users to retrieve images or videos by integrating a reference visual input with textual modifications, enhancing search flexibility and precision. This paper provides a comprehensive review of CMR, covering its fundamental challenges, technical advancements, and categorization into supervised, zero-shot, and semi-supervised learning paradigms. We discuss key research directions, including data augmentation, model architecture, and loss optimization in supervised CMR, as well as transformation frameworks and external knowledge integration in zero-shot CMR. Additionally, we highlight the application potential of CMR in composed image retrieval, video retrieval, and person retrieval, which have significant implications for e-commerce, online search, and public security. Given its ability to refine and personalize search experiences, CMR is poised to become a pivotal technology in next-generation retrieval systems. A curated list of related works and resources is available at: https://github.com/kkzhang95/Awesome-Composed-Multi-modal-Retrieval

  • 4 authors
·
Mar 3, 2025

Orca: Enhancing Role-Playing Abilities of Large Language Models by Integrating Personality Traits

Large language models has catalyzed the development of personalized dialogue systems, numerous role-playing conversational agents have emerged. While previous research predominantly focused on enhancing the model's capability to follow instructions by designing character profiles, neglecting the psychological factors that drive human conversations. In this paper, we propose Orca, a framework for data processing and training LLMs of custom characters by integrating personality traits. Orca comprises four stages: (1) Personality traits inferring, leverage LLMs to infer user's BigFive personality trait reports and scores. (2) Data Augment, simulate user's profile, background story, and psychological activities. (3) Dataset construction, personality-conditioned instruction prompting (PCIP) to stimulate LLMs. (4) Modeling and Training, personality-conditioned instruction tuning (PTIT and PSIT), using the generated data to enhance existing open-source LLMs. We introduce OrcaBench, the first benchmark for evaluating the quality of content generated by LLMs on social platforms across multiple scales. Our experiments demonstrate that our proposed model achieves superior performance on this benchmark, demonstrating its excellence and effectiveness in perceiving personality traits that significantly improve role-playing abilities. Our Code is available at https://github.com/Aipura/Orca.

  • 1 authors
·
Nov 15, 2024

Follow-Your-Pose v2: Multiple-Condition Guided Character Image Animation for Stable Pose Control

Pose-controllable character video generation is in high demand with extensive applications for fields such as automatic advertising and content creation on social media platforms. While existing character image animation methods using pose sequences and reference images have shown promising performance, they tend to struggle with incoherent animation in complex scenarios, such as multiple character animation and body occlusion. Additionally, current methods request large-scale high-quality videos with stable backgrounds and temporal consistency as training datasets, otherwise, their performance will greatly deteriorate. These two issues hinder the practical utilization of character image animation tools. In this paper, we propose a practical and robust framework Follow-Your-Pose v2, which can be trained on noisy open-sourced videos readily available on the internet. Multi-condition guiders are designed to address the challenges of background stability, body occlusion in multi-character generation, and consistency of character appearance. Moreover, to fill the gap of fair evaluation of multi-character pose animation, we propose a new benchmark comprising approximately 4,000 frames. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods by a margin of over 35\% across 2 datasets and on 7 metrics. Meanwhile, qualitative assessments reveal a significant improvement in the quality of generated video, particularly in scenarios involving complex backgrounds and body occlusion of multi-character, suggesting the superiority of our approach.

  • 13 authors
·
Jun 5, 2024

Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement

The rapid development of large language models (LLMs), like ChatGPT, has resulted in the widespread presence of LLM-generated content on social media platforms, raising concerns about misinformation, data biases, and privacy violations, which can undermine trust in online discourse. While detecting LLM-generated content is crucial for mitigating these risks, current methods often focus on binary classification, failing to address the complexities of real-world scenarios like human-LLM collaboration. To move beyond binary classification and address these challenges, we propose a new paradigm for detecting LLM-generated content. This approach introduces two novel tasks: LLM Role Recognition (LLM-RR), a multi-class classification task that identifies specific roles of LLM in content generation, and LLM Influence Measurement (LLM-IM), a regression task that quantifies the extent of LLM involvement in content creation. To support these tasks, we propose LLMDetect, a benchmark designed to evaluate detectors' performance on these new tasks. LLMDetect includes the Hybrid News Detection Corpus (HNDC) for training detectors, as well as DetectEval, a comprehensive evaluation suite that considers five distinct cross-context variations and two multi-intensity variations within the same LLM role. This allows for a thorough assessment of detectors' generalization and robustness across diverse contexts. Our empirical validation of 10 baseline detection methods demonstrates that fine-tuned PLM-based models consistently outperform others on both tasks, while advanced LLMs face challenges in accurately detecting their own generated content. Our experimental results and analysis offer insights for developing more effective detection models for LLM-generated content. This research enhances the understanding of LLM-generated content and establishes a foundation for more nuanced detection methodologies.

  • 5 authors
·
Oct 18, 2024

RedOne: Revealing Domain-specific LLM Post-Training in Social Networking Services

As a primary medium for modern information dissemination, social networking services (SNS) have experienced rapid growth, which has proposed significant challenges for platform content management and interaction quality improvement. Recently, the development of large language models (LLMs) has offered potential solutions but existing studies focus on isolated tasks, which not only encounter diminishing benefit from the data scaling within individual scenarios but also fail to flexibly adapt to diverse real-world context. To address these challenges, we introduce RedOne, a domain-specific LLM designed to break the performance bottleneck of single-task baselines and establish a comprehensive foundation for the SNS. RedOne was developed through a three-stage training strategy consisting of continue pretraining, supervised fine-tuning, and preference optimization, using a large-scale real-world dataset. Through extensive experiments, RedOne maintains strong general capabilities, and achieves an average improvement up to 14.02% across 8 major SNS tasks and 7.56% in SNS bilingual evaluation benchmark, compared with base models. Furthermore, through online testing, RedOne reduced the exposure rate in harmful content detection by 11.23% and improved the click page rate in post-view search by 14.95% compared with single-tasks finetuned baseline models. These results establish RedOne as a robust domain-specific LLM for SNS, demonstrating excellent generalization across various tasks and promising applicability in real-world scenarios.

  • 25 authors
·
Jul 12, 2025 2