new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 1

Texture, Shape, Order, and Relation Matter: A New Transformer Design for Sequential DeepFake Detection

Sequential DeepFake detection is an emerging task that predicts the manipulation sequence in order. Existing methods typically formulate it as an image-to-sequence problem, employing conventional Transformer architectures. However, these methods lack dedicated design and consequently result in limited performance. As such, this paper describes a new Transformer design, called {TSOM}, by exploring three perspectives: Texture, Shape, and Order of Manipulations. Our method features four major improvements: 182 we describe a new texture-aware branch that effectively captures subtle manipulation traces with a Diversiform Pixel Difference Attention module. 183 Then we introduce a Multi-source Cross-attention module to seek deep correlations among spatial and sequential features, enabling effective modeling of complex manipulation traces. 184 To further enhance the cross-attention, we describe a Shape-guided Gaussian mapping strategy, providing initial priors of the manipulation shape. 185 Finally, observing that the subsequent manipulation in a sequence may influence traces left in the preceding one, we intriguingly invert the prediction order from forward to backward, leading to notable gains as expected. Building upon TSOM, we introduce an extended method, {TSOM++}, which additionally explores Relation of manipulations: 186 we propose a new sequential contrastive learning scheme to capture relationships between various manipulation types in sequence, further enhancing the detection of manipulation traces. We conduct extensive experiments in comparison with several state-of-the-art methods, demonstrating the superiority of our method. The code has been released at https://github.com/OUC-VAS/TSOM.

  • 6 authors
·
Apr 22, 2024

A Multi-View Joint Learning Framework for Embedding Clinical Codes and Text Using Graph Neural Networks

Learning to represent free text is a core task in many clinical machine learning (ML) applications, as clinical text contains observations and plans not otherwise available for inference. State-of-the-art methods use large language models developed with immense computational resources and training data; however, applying these models is challenging because of the highly varying syntax and vocabulary in clinical free text. Structured information such as International Classification of Disease (ICD) codes often succinctly abstracts the most important facts of a clinical encounter and yields good performance, but is often not as available as clinical text in real-world scenarios. We propose a multi-view learning framework that jointly learns from codes and text to combine the availability and forward-looking nature of text and better performance of ICD codes. The learned text embeddings can be used as inputs to predictive algorithms independent of the ICD codes during inference. Our approach uses a Graph Neural Network (GNN) to process ICD codes, and Bi-LSTM to process text. We apply Deep Canonical Correlation Analysis (DCCA) to enforce the two views to learn a similar representation of each patient. In experiments using planned surgical procedure text, our model outperforms BERT models fine-tuned to clinical data, and in experiments using diverse text in MIMIC-III, our model is competitive to a fine-tuned BERT at a tiny fraction of its computational effort.

  • 4 authors
·
Jan 27, 2023

Accurate and scalable exchange-correlation with deep learning

Density Functional Theory (DFT) is the most widely used electronic structure method for predicting the properties of molecules and materials. Although DFT is, in principle, an exact reformulation of the Schr\"odinger equation, practical applications rely on approximations to the unknown exchange-correlation (XC) functional. Most existing XC functionals are constructed using a limited set of increasingly complex, hand-crafted features that improve accuracy at the expense of computational efficiency. Yet, no current approximation achieves the accuracy and generality for predictive modeling of laboratory experiments at chemical accuracy -- typically defined as errors below 1 kcal/mol. In this work, we present Skala, a modern deep learning-based XC functional that bypasses expensive hand-designed features by learning representations directly from data. Skala achieves chemical accuracy for atomization energies of small molecules while retaining the computational efficiency typical of semi-local DFT. This performance is enabled by training on an unprecedented volume of high-accuracy reference data generated using computationally intensive wavefunction-based methods. Notably, Skala systematically improves with additional training data covering diverse chemistry. By incorporating a modest amount of additional high-accuracy data tailored to chemistry beyond atomization energies, Skala achieves accuracy competitive with the best-performing hybrid functionals across general main group chemistry, at the cost of semi-local DFT. As the training dataset continues to expand, Skala is poised to further enhance the predictive power of first-principles simulations.

  • 25 authors
·
Jun 17, 2025

Reducing Spurious Correlations for Aspect-Based Sentiment Analysis with Variational Information Bottleneck and Contrastive Learning

Deep learning techniques have dominated the literature on aspect-based sentiment analysis (ABSA), yielding state-of-the-art results. However, these deep models generally suffer from spurious correlation problems between input features and output labels, which creates significant barriers to robustness and generalization capability. In this paper, we propose a novel Contrastive Variational Information Bottleneck framework (called CVIB) to reduce spurious correlations for ABSA. The proposed CVIB framework is composed of an original network and a self-pruned network, and these two networks are optimized simultaneously via contrastive learning. Concretely, we employ the Variational Information Bottleneck (VIB) principle to learn an informative and compressed network (self-pruned network) from the original network, which discards the superfluous patterns or spurious correlations between input features and prediction labels. Then, self-pruning contrastive learning is devised to pull together semantically similar positive pairs and push away dissimilar pairs, where the representations of the anchor learned by the original and self-pruned networks respectively are regarded as a positive pair while the representations of two different sentences within a mini-batch are treated as a negative pair. To verify the effectiveness of our CVIB method, we conduct extensive experiments on five benchmark ABSA datasets and the experimental results show that our approach achieves better performance than the strong competitors in terms of overall prediction performance, robustness, and generalization.

  • 4 authors
·
Mar 5, 2023

Deep learning automates Cobb angle measurement compared with multi-expert observers

Scoliosis, a prevalent condition characterized by abnormal spinal curvature leading to deformity, requires precise assessment methods for effective diagnosis and management. The Cobb angle is a widely used scoliosis quantification method that measures the degree of curvature between the tilted vertebrae. Yet, manual measuring of Cobb angles is time-consuming and labor-intensive, fraught with significant interobserver and intraobserver variability. To address these challenges and the lack of interpretability found in certain existing automated methods, we have created fully automated software that not only precisely measures the Cobb angle but also provides clear visualizations of these measurements. This software integrates deep neural network-based spine region detection and segmentation, spine centerline identification, pinpointing the most significantly tilted vertebrae, and direct visualization of Cobb angles on the original images. Upon comparison with the assessments of 7 expert readers, our algorithm exhibited a mean deviation in Cobb angle measurements of 4.17 degrees, notably surpassing the manual approach's average intra-reader discrepancy of 5.16 degrees. The algorithm also achieved intra-class correlation coefficients (ICC) exceeding 0.96 and Pearson correlation coefficients above 0.944, reflecting robust agreement with expert assessments and superior measurement reliability. Through the comprehensive reader study and statistical analysis, we believe this algorithm not only ensures a higher consensus with expert readers but also enhances interpretability and reproducibility during assessments. It holds significant promise for clinical application, potentially aiding physicians in more accurate scoliosis assessment and diagnosis, thereby improving patient care.

  • 14 authors
·
Mar 18, 2024

Deep Spectral Epipolar Representations for Dense Light Field Reconstruction

Accurate and efficient dense depth reconstruction from light field imagery remains a central challenge in computer vision, underpinning applications such as augmented reality, biomedical imaging, and 3D scene reconstruction. Existing deep convolutional approaches, while effective, often incur high computational overhead and are sensitive to noise and disparity inconsistencies in real-world scenarios. This paper introduces a novel Deep Spectral Epipolar Representation (DSER) framework for dense light field reconstruction, which unifies deep spectral feature learning with epipolar-domain regularization. The proposed approach exploits frequency-domain correlations across epipolar plane images to enforce global structural coherence, thereby mitigating artifacts and enhancing depth accuracy. Unlike conventional supervised models, DSER operates efficiently with limited training data while maintaining high reconstruction fidelity. Comprehensive experiments on the 4D Light Field Benchmark and a diverse set of real-world datasets demonstrate that DSER achieves superior performance in terms of precision, structural consistency, and computational efficiency compared to state-of-the-art methods. These results highlight the potential of integrating spectral priors with epipolar geometry for scalable and noise-resilient dense light field depth estimation, establishing DSER as a promising direction for next-generation high-dimensional vision systems.

  • 1 authors
·
Aug 12, 2025

Fast Window-Based Event Denoising with Spatiotemporal Correlation Enhancement

Previous deep learning-based event denoising methods mostly suffer from poor interpretability and difficulty in real-time processing due to their complex architecture designs. In this paper, we propose window-based event denoising, which simultaneously deals with a stack of events while existing element-based denoising focuses on one event each time. Besides, we give the theoretical analysis based on probability distributions in both temporal and spatial domains to improve interpretability. In temporal domain, we use timestamp deviations between processing events and central event to judge the temporal correlation and filter out temporal-irrelevant events. In spatial domain, we choose maximum a posteriori (MAP) to discriminate real-world event and noise, and use the learned convolutional sparse coding to optimize the objective function. Based on the theoretical analysis, we build Temporal Window (TW) module and Soft Spatial Feature Embedding (SSFE) module to process temporal and spatial information separately, and construct a novel multi-scale window-based event denoising network, named MSDNet. The high denoising accuracy and fast running speed of our MSDNet enables us to achieve real-time denoising in complex scenes. Extensive experimental results verify the effectiveness and robustness of our MSDNet. Our algorithm can remove event noise effectively and efficiently and improve the performance of downstream tasks.

  • 5 authors
·
Feb 14, 2024

Temporal-spatial Correlation Attention Network for Clinical Data Analysis in Intensive Care Unit

In recent years, medical information technology has made it possible for electronic health record (EHR) to store fairly complete clinical data. This has brought health care into the era of "big data". However, medical data are often sparse and strongly correlated, which means that medical problems cannot be solved effectively. With the rapid development of deep learning in recent years, it has provided opportunities for the use of big data in healthcare. In this paper, we propose a temporal-saptial correlation attention network (TSCAN) to handle some clinical characteristic prediction problems, such as predicting death, predicting length of stay, detecting physiologic decline, and classifying phenotypes. Based on the design of the attention mechanism model, our approach can effectively remove irrelevant items in clinical data and irrelevant nodes in time according to different tasks, so as to obtain more accurate prediction results. Our method can also find key clinical indicators of important outcomes that can be used to improve treatment options. Our experiments use information from the Medical Information Mart for Intensive Care (MIMIC-IV) database, which is open to the public. Finally, we have achieved significant performance benefits of 2.0\% (metric) compared to other SOTA prediction methods. We achieved a staggering 90.7\% on mortality rate, 45.1\% on length of stay. The source code can be find: https://github.com/yuyuheintju/TSCAN.

  • 6 authors
·
Jun 2, 2023

Learning Non-Local Spatial-Angular Correlation for Light Field Image Super-Resolution

Exploiting spatial-angular correlation is crucial to light field (LF) image super-resolution (SR), but is highly challenging due to its non-local property caused by the disparities among LF images. Although many deep neural networks (DNNs) have been developed for LF image SR and achieved continuously improved performance, existing methods cannot well leverage the long-range spatial-angular correlation and thus suffer a significant performance drop when handling scenes with large disparity variations. In this paper, we propose a simple yet effective method to learn the non-local spatial-angular correlation for LF image SR. In our method, we adopt the epipolar plane image (EPI) representation to project the 4D spatial-angular correlation onto multiple 2D EPI planes, and then develop a Transformer network with repetitive self-attention operations to learn the spatial-angular correlation by modeling the dependencies between each pair of EPI pixels. Our method can fully incorporate the information from all angular views while achieving a global receptive field along the epipolar line. We conduct extensive experiments with insightful visualizations to validate the effectiveness of our method. Comparative results on five public datasets show that our method not only achieves state-of-the-art SR performance, but also performs robust to disparity variations. Code is publicly available at https://github.com/ZhengyuLiang24/EPIT.

  • 6 authors
·
Feb 15, 2023

ConR: Contrastive Regularizer for Deep Imbalanced Regression

Imbalanced distributions are ubiquitous in real-world data. They create constraints on Deep Neural Networks to represent the minority labels and avoid bias towards majority labels. The extensive body of imbalanced approaches address categorical label spaces but fail to effectively extend to regression problems where the label space is continuous. Local and global correlations among continuous labels provide valuable insights towards effectively modelling relationships in feature space. In this work, we propose ConR, a contrastive regularizer that models global and local label similarities in feature space and prevents the features of minority samples from being collapsed into their majority neighbours. ConR discerns the disagreements between the label space and feature space and imposes a penalty on these disagreements. ConR addresses the continuous nature of label space with two main strategies in a contrastive manner: incorrect proximities are penalized proportionate to the label similarities and the correct ones are encouraged to model local similarities. ConR consolidates essential considerations into a generic, easy-to-integrate, and efficient method that effectively addresses deep imbalanced regression. Moreover, ConR is orthogonal to existing approaches and smoothly extends to uni- and multi-dimensional label spaces. Our comprehensive experiments show that ConR significantly boosts the performance of all the state-of-the-art methods on four large-scale deep imbalanced regression benchmarks. Our code is publicly available in https://github.com/BorealisAI/ConR.

  • 3 authors
·
Sep 12, 2023

Over-The-Air Double-Threshold Deep Learner for Jamming Detection in 5G RF domain

With the evolution of 5G wireless communications, the Synchronization Signal Block (SSB) plays a critical role in the synchronization of devices and accessibility of services. However, due to the predictable nature of SSB transmission, including the Primary and Secondary Synchronization Signals (PSS and SSS), jamming attacks are critical threats. By leveraging RF domain knowledge, this work presents a novel deep learning-based technique for detecting jammers in 5G networks. Unlike the existing jamming detection algorithms that mostly rely on network parameters, we introduce a double threshold deep learning jamming detector by focusing on the SSB. The detection method is focused on RF domain features and improves the robustness of the network without requiring integration with the pre-existing network infrastructure. By integrating a preprocessing block that extracts PSS correlation and energy per null resource elements (EPNRE) characteristics, our method distinguishes between normal and jammed received signals with high precision. Additionally, by incorporation of Discrete Wavelet Transform (DWT), the efficacy of training and detection are optimized. A double threshold double Deep Neural Network (DT-DDNN) is also introduced to the architecture complemented by a deep cascade learning model to increase the sensitivity of the model to variations of signal to jamming noise ratio (SJNR). Results show that the proposed method achieves 96.4% detection rate in extra low jamming power, i.e., SJNR between 15 to 30 dB which outperforms the single threshold DNN design with 86.0% detection rate and unprocessed IQ sample DNN design with 83.2% detection rate. Ultimately, performance of DT-DDNN is validated through the analysis of real 5G signals obtained from a practical testbed, demonstrating a strong alignment with the simulation results.

  • 4 authors
·
Mar 4, 2024

ARIES: Relation Assessment and Model Recommendation for Deep Time Series Forecasting

Recent advancements in deep learning models for time series forecasting have been significant. These models often leverage fundamental time series properties such as seasonality and non-stationarity, which may suggest an intrinsic link between model performance and data properties. However, existing benchmark datasets fail to offer diverse and well-defined temporal patterns, restricting the systematic evaluation of such connections. Additionally, there is no effective model recommendation approach, leading to high time and cost expenditures when testing different architectures across different downstream applications. For those reasons, we propose ARIES, a framework for assessing relation between time series properties and modeling strategies, and for recommending deep forcasting models for realistic time series. First, we construct a synthetic dataset with multiple distinct patterns, and design a comprehensive system to compute the properties of time series. Next, we conduct an extensive benchmarking of over 50 forecasting models, and establish the relationship between time series properties and modeling strategies. Our experimental results reveal a clear correlation. Based on these findings, we propose the first deep forecasting model recommender, capable of providing interpretable suggestions for real-world time series. In summary, ARIES is the first study to establish the relations between the properties of time series data and modeling strategies, while also implementing a model recommendation system. The code is available at: https://github.com/blisky-li/ARIES.

  • 8 authors
·
Sep 7, 2025

Conditional Latent Coding with Learnable Synthesized Reference for Deep Image Compression

In this paper, we study how to synthesize a dynamic reference from an external dictionary to perform conditional coding of the input image in the latent domain and how to learn the conditional latent synthesis and coding modules in an end-to-end manner. Our approach begins by constructing a universal image feature dictionary using a multi-stage approach involving modified spatial pyramid pooling, dimension reduction, and multi-scale feature clustering. For each input image, we learn to synthesize a conditioning latent by selecting and synthesizing relevant features from the dictionary, which significantly enhances the model's capability in capturing and exploring image source correlation. This conditional latent synthesis involves a correlation-based feature matching and alignment strategy, comprising a Conditional Latent Matching (CLM) module and a Conditional Latent Synthesis (CLS) module. The synthesized latent is then used to guide the encoding process, allowing for more efficient compression by exploiting the correlation between the input image and the reference dictionary. According to our theoretical analysis, the proposed conditional latent coding (CLC) method is robust to perturbations in the external dictionary samples and the selected conditioning latent, with an error bound that scales logarithmically with the dictionary size, ensuring stability even with large and diverse dictionaries. Experimental results on benchmark datasets show that our new method improves the coding performance by a large margin (up to 1.2 dB) with a very small overhead of approximately 0.5\% bits per pixel. Our code is publicly available at https://github.com/ydchen0806/CLC.

  • 4 authors
·
Feb 14, 2025

Graph Deep Learning for Time Series Forecasting

Graph-based deep learning methods have become popular tools to process collections of correlated time series. Differently from traditional multivariate forecasting methods, neural graph-based predictors take advantage of pairwise relationships by conditioning forecasts on a (possibly dynamic) graph spanning the time series collection. The conditioning can take the form of an architectural inductive bias on the neural forecasting architecture, resulting in a family of deep learning models called spatiotemporal graph neural networks. Such relational inductive biases enable the training of global forecasting models on large time-series collections, while at the same time localizing predictions w.r.t. each element in the set (i.e., graph nodes) by accounting for local correlations among them (i.e., graph edges). Indeed, recent theoretical and practical advances in graph neural networks and deep learning for time series forecasting make the adoption of such processing frameworks appealing and timely. However, most of the studies in the literature focus on proposing variations of existing neural architectures by taking advantage of modern deep learning practices, while foundational and methodological aspects have not been subject to systematic investigation. To fill the gap, this paper aims to introduce a comprehensive methodological framework that formalizes the forecasting problem and provides design principles for graph-based predictive models and methods to assess their performance. At the same time, together with an overview of the field, we provide design guidelines, recommendations, and best practices, as well as an in-depth discussion of open challenges and future research directions.

  • 4 authors
·
Oct 24, 2023

Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Extending the forecasting time is a critical demand for real applications, such as extreme weather early warning and long-term energy consumption planning. This paper studies the long-term forecasting problem of time series. Prior Transformer-based models adopt various self-attention mechanisms to discover the long-range dependencies. However, intricate temporal patterns of the long-term future prohibit the model from finding reliable dependencies. Also, Transformers have to adopt the sparse versions of point-wise self-attentions for long series efficiency, resulting in the information utilization bottleneck. Going beyond Transformers, we design Autoformer as a novel decomposition architecture with an Auto-Correlation mechanism. We break with the pre-processing convention of series decomposition and renovate it as a basic inner block of deep models. This design empowers Autoformer with progressive decomposition capacities for complex time series. Further, inspired by the stochastic process theory, we design the Auto-Correlation mechanism based on the series periodicity, which conducts the dependencies discovery and representation aggregation at the sub-series level. Auto-Correlation outperforms self-attention in both efficiency and accuracy. In long-term forecasting, Autoformer yields state-of-the-art accuracy, with a 38% relative improvement on six benchmarks, covering five practical applications: energy, traffic, economics, weather and disease. Code is available at this repository: https://github.com/thuml/Autoformer.

  • 4 authors
·
Jun 24, 2021

Efficient Feature Extraction Using Light-Weight CNN Attention-Based Deep Learning Architectures for Ultrasound Fetal Plane Classification

Ultrasound fetal imaging is beneficial to support prenatal development because it is affordable and non-intrusive. Nevertheless, fetal plane classification (FPC) remains challenging and time-consuming for obstetricians since it depends on nuanced clinical aspects, which increases the difficulty in identifying relevant features of the fetal anatomy. Thus, to assist with its accurate feature extraction, a lightweight artificial intelligence architecture leveraging convolutional neural networks and attention mechanisms is proposed to classify the largest benchmark ultrasound dataset. The approach fine-tunes from lightweight EfficientNet feature extraction backbones pre-trained on the ImageNet1k. to classify key fetal planes such as the brain, femur, thorax, cervix, and abdomen. Our methodology incorporates the attention mechanism to refine features and 3-layer perceptrons for classification, achieving superior performance with the highest Top-1 accuracy of 96.25%, Top-2 accuracy of 99.80% and F1-Score of 0.9576. Importantly, the model has 40x fewer trainable parameters than existing benchmark ensemble or transformer pipelines, facilitating easy deployment on edge devices to help clinical practitioners with real-time FPC. The findings are also interpreted using GradCAM to carry out clinical correlation to aid doctors with diagnostics and improve treatment plans for expectant mothers.

  • 4 authors
·
Oct 22, 2024

As if by magic: self-supervised training of deep despeckling networks with MERLIN

Speckle fluctuations seriously limit the interpretability of synthetic aperture radar (SAR) images. Speckle reduction has thus been the subject of numerous works spanning at least four decades. Techniques based on deep neural networks have recently achieved a new level of performance in terms of SAR image restoration quality. Beyond the design of suitable network architectures or the selection of adequate loss functions, the construction of training sets is of uttermost importance. So far, most approaches have considered a supervised training strategy: the networks are trained to produce outputs as close as possible to speckle-free reference images. Speckle-free images are generally not available, which requires resorting to natural or optical images or the selection of stable areas in long time series to circumvent the lack of ground truth. Self-supervision, on the other hand, avoids the use of speckle-free images. We introduce a self-supervised strategy based on the separation of the real and imaginary parts of single-look complex SAR images, called MERLIN (coMplex sElf-supeRvised despeckLINg), and show that it offers a straightforward way to train all kinds of deep despeckling networks. Networks trained with MERLIN take into account the spatial correlations due to the SAR transfer function specific to a given sensor and imaging mode. By requiring only a single image, and possibly exploiting large archives, MERLIN opens the door to hassle-free as well as large-scale training of despeckling networks. The code of the trained models is made freely available at https://gitlab.telecom-paris.fr/RING/MERLIN.

  • 3 authors
·
Oct 25, 2021

Hadamard product in deep learning: Introduction, Advances and Challenges

While convolution and self-attention mechanisms have dominated architectural design in deep learning, this survey examines a fundamental yet understudied primitive: the Hadamard product. Despite its widespread implementation across various applications, the Hadamard product has not been systematically analyzed as a core architectural primitive. We present the first comprehensive taxonomy of its applications in deep learning, identifying four principal domains: higher-order correlation, multimodal data fusion, dynamic representation modulation, and efficient pairwise operations. The Hadamard product's ability to model nonlinear interactions with linear computational complexity makes it particularly valuable for resource-constrained deployments and edge computing scenarios. We demonstrate its natural applicability in multimodal fusion tasks, such as visual question answering, and its effectiveness in representation masking for applications including image inpainting and pruning. This systematic review not only consolidates existing knowledge about the Hadamard product's role in deep learning architectures but also establishes a foundation for future architectural innovations. Our analysis reveals the Hadamard product as a versatile primitive that offers compelling trade-offs between computational efficiency and representational power, positioning it as a crucial component in the deep learning toolkit.

  • 5 authors
·
Apr 17, 2025

A Hybrid Deep Learning-based Approach for Optimal Genotype by Environment Selection

Precise crop yield prediction is essential for improving agricultural practices and ensuring crop resilience in varying climates. Integrating weather data across the growing season, especially for different crop varieties, is crucial for understanding their adaptability in the face of climate change. In the MLCAS2021 Crop Yield Prediction Challenge, we utilized a dataset comprising 93,028 training records to forecast yields for 10,337 test records, covering 159 locations across 28 U.S. states and Canadian provinces over 13 years (2003-2015). This dataset included details on 5,838 distinct genotypes and daily weather data for a 214-day growing season, enabling comprehensive analysis. As one of the winning teams, we developed two novel convolutional neural network (CNN) architectures: the CNN-DNN model, combining CNN and fully-connected networks, and the CNN-LSTM-DNN model, with an added LSTM layer for weather variables. Leveraging the Generalized Ensemble Method (GEM), we determined optimal model weights, resulting in superior performance compared to baseline models. The GEM model achieved lower RMSE (5.55% to 39.88%), reduced MAE (5.34% to 43.76%), and higher correlation coefficients (1.1% to 10.79%) when evaluated on test data. We applied the CNN-DNN model to identify top-performing genotypes for various locations and weather conditions, aiding genotype selection based on weather variables. Our data-driven approach is valuable for scenarios with limited testing years. Additionally, a feature importance analysis using RMSE change highlighted the significance of location, MG, year, and genotype, along with the importance of weather variables MDNI and AP.

  • 4 authors
·
Sep 22, 2023

Detecting Recolored Image by Spatial Correlation

Image forensics, aiming to ensure the authenticity of the image, has made great progress in dealing with common image manipulation such as copy-move, splicing, and inpainting in the past decades. However, only a few researchers pay attention to an emerging editing technique called image recoloring, which can manipulate the color values of an image to give it a new style. To prevent it from being used maliciously, the previous approaches address the conventional recoloring from the perspective of inter-channel correlation and illumination consistency. In this paper, we try to explore a solution from the perspective of the spatial correlation, which exhibits the generic detection capability for both conventional and deep learning-based recoloring. Through theoretical and numerical analysis, we find that the recoloring operation will inevitably destroy the spatial correlation between pixels, implying a new prior of statistical discriminability. Based on such fact, we generate a set of spatial correlation features and learn the informative representation from the set via a convolutional neural network. To train our network, we use three recoloring methods to generate a large-scale and high-quality data set. Extensive experimental results in two recoloring scenes demonstrate that the spatial correlation features are highly discriminative. Our method achieves the state-of-the-art detection accuracy on multiple benchmark datasets and exhibits well generalization for unknown types of recoloring methods.

  • 5 authors
·
Apr 22, 2022

GBT-SAM: Adapting a Foundational Deep Learning Model for Generalizable Brain Tumor Segmentation via Efficient Integration of Multi-Parametric MRI Data

Gliomas are aggressive brain tumors that require accurate imaging-based diagnosis, with segmentation playing a critical role in evaluating morphology and treatment decisions. Manual delineation of gliomas is time-consuming and prone to variability, motivating the use of deep learning to improve consistency and alleviate clinical workload. However, existing methods often fail to fully exploit the information available in multi-parametric MRI (mp-MRI), particularly inter-slice contextual features, and typically require considerable computational resources while lacking robustness across tumor type variations. We present GBT-SAM, a parameter-efficient deep learning framework that adapts the Segment Anything Model (SAM), a large-scale vision model, to volumetric mp-MRI data. GBT-SAM reduces input complexity by selecting fewer than 2.6\% of slices per scan while incorporating all four MRI modalities, preserving essential tumor-related information with minimal cost. Furthermore, our model is trained by a two-step fine-tuning strategy that incorporates a depth-aware module to capture inter-slice correlations and lightweight adaptation layers, resulting in just 6.5M trainable parameters, which is the lowest among SAM-based approaches. GBT-SAM achieves a Dice Score of 93.54 on the BraTS Adult Glioma dataset and demonstrates robust performance on Meningioma, Pediatric Glioma, and Sub-Saharan Glioma datasets. These results highlight GBT-SAM's potential as a computationally efficient and domain-robust framework for brain tumor segmentation using mp-MRI. Our code and models are available at https://github.com/vpulab/med-sam-brain .

  • 5 authors
·
Mar 6, 2025

CREST: Cross-modal Resonance through Evidential Deep Learning for Enhanced Zero-Shot Learning

Zero-shot learning (ZSL) enables the recognition of novel classes by leveraging semantic knowledge transfer from known to unknown categories. This knowledge, typically encapsulated in attribute descriptions, aids in identifying class-specific visual features, thus facilitating visual-semantic alignment and improving ZSL performance. However, real-world challenges such as distribution imbalances and attribute co-occurrence among instances often hinder the discernment of local variances in images, a problem exacerbated by the scarcity of fine-grained, region-specific attribute annotations. Moreover, the variability in visual presentation within categories can also skew attribute-category associations. In response, we propose a bidirectional cross-modal ZSL approach CREST. It begins by extracting representations for attribute and visual localization and employs Evidential Deep Learning (EDL) to measure underlying epistemic uncertainty, thereby enhancing the model's resilience against hard negatives. CREST incorporates dual learning pathways, focusing on both visual-category and attribute-category alignments, to ensure robust correlation between latent and observable spaces. Moreover, we introduce an uncertainty-informed cross-modal fusion technique to refine visual-attribute inference. Extensive experiments demonstrate our model's effectiveness and unique explainability across multiple datasets. Our code and data are available at: https://github.com/JethroJames/CREST

  • 8 authors
·
Apr 15, 2024

ATM Cash demand forecasting in an Indian Bank with chaos and deep learning

This paper proposes to model chaos in the ATM cash withdrawal time series of a big Indian bank and forecast the withdrawals using deep learning methods. It also considers the importance of day-of-the-week and includes it as a dummy exogenous variable. We first modelled the chaos present in the withdrawal time series by reconstructing the state space of each series using the lag, and embedding dimension found using an auto-correlation function and Cao's method. This process converts the uni-variate time series into multi variate time series. The "day-of-the-week" is converted into seven features with the help of one-hot encoding. Then these seven features are augmented to the multivariate time series. For forecasting the future cash withdrawals, using algorithms namely ARIMA, random forest (RF), support vector regressor (SVR), multi-layer perceptron (MLP), group method of data handling (GMDH), general regression neural network (GRNN), long short term memory neural network and 1-dimensional convolutional neural network. We considered a daily cash withdrawals data set from an Indian commercial bank. After modelling chaos and adding exogenous features to the data set, we observed improvements in the forecasting for all models. Even though the random forest (RF) yielded better Symmetric Mean Absolute Percentage Error (SMAPE) value, deep learning algorithms, namely LSTM and 1D CNN, showed similar performance compared to RF, based on t-test.

  • 2 authors
·
Aug 24, 2020

MetaCoCo: A New Few-Shot Classification Benchmark with Spurious Correlation

Out-of-distribution (OOD) problems in few-shot classification (FSC) occur when novel classes sampled from testing distributions differ from base classes drawn from training distributions, which considerably degrades the performance of deep learning models deployed in real-world applications. Recent studies suggest that the OOD problems in FSC mainly including: (a) cross-domain few-shot classification (CD-FSC) and (b) spurious-correlation few-shot classification (SC-FSC). Specifically, CD-FSC occurs when a classifier learns transferring knowledge from base classes drawn from seen training distributions but recognizes novel classes sampled from unseen testing distributions. In contrast, SC-FSC arises when a classifier relies on non-causal features (or contexts) that happen to be correlated with the labels (or concepts) in base classes but such relationships no longer hold during the model deployment. Despite CD-FSC has been extensively studied, SC-FSC remains understudied due to lack of the corresponding evaluation benchmarks. To this end, we present Meta Concept Context (MetaCoCo), a benchmark with spurious-correlation shifts collected from real-world scenarios. Moreover, to quantify the extent of spurious-correlation shifts of the presented MetaCoCo, we further propose a metric by using CLIP as a pre-trained vision-language model. Extensive experiments on the proposed benchmark are performed to evaluate the state-of-the-art methods in FSC, cross-domain shifts, and self-supervised learning. The experimental results show that the performance of the existing methods degrades significantly in the presence of spurious-correlation shifts. We open-source all codes of our benchmark and hope that the proposed MetaCoCo can facilitate future research on spurious-correlation shifts problems in FSC. The code is available at: https://github.com/remiMZ/MetaCoCo-ICLR24.

  • 4 authors
·
Apr 30, 2024

The Secret Revealer: Generative Model-Inversion Attacks Against Deep Neural Networks

This paper studies model-inversion attacks, in which the access to a model is abused to infer information about the training data. Since its first introduction, such attacks have raised serious concerns given that training data usually contain privacy-sensitive information. Thus far, successful model-inversion attacks have only been demonstrated on simple models, such as linear regression and logistic regression. Previous attempts to invert neural networks, even the ones with simple architectures, have failed to produce convincing results. We present a novel attack method, termed the generative model-inversion attack, which can invert deep neural networks with high success rates. Rather than reconstructing private training data from scratch, we leverage partial public information, which can be very generic, to learn a distributional prior via generative adversarial networks (GANs) and use it to guide the inversion process. Moreover, we theoretically prove that a model's predictive power and its vulnerability to inversion attacks are indeed two sides of the same coin---highly predictive models are able to establish a strong correlation between features and labels, which coincides exactly with what an adversary exploits to mount the attacks. Our extensive experiments demonstrate that the proposed attack improves identification accuracy over the existing work by about 75\% for reconstructing face images from a state-of-the-art face recognition classifier. We also show that differential privacy, in its canonical form, is of little avail to defend against our attacks.

  • 6 authors
·
Nov 16, 2019

Is Oracle Pruning the True Oracle?

Oracle pruning, which selects unimportant weights by minimizing the pruned train loss, has been taken as the foundation for most neural network pruning methods for over 35 years, while few (if not none) have thought about how much the foundation really holds. This paper, for the first time, attempts to examine its validity on modern deep models through empirical correlation analyses and provide reflections on the field of neural network pruning. Specifically, for a typical pruning algorithm with three stages (pertaining, pruning, and retraining), we analyze the model performance correlation before and after retraining. Extensive experiments (37K models are trained) across a wide spectrum of models (LeNet5, VGG, ResNets, ViT, MLLM) and datasets (MNIST and its variants, CIFAR10/CIFAR100, ImageNet-1K, MLLM data) are conducted. The results lead to a surprising conclusion: on modern deep learning models, the performance before retraining is barely correlated with the performance after retraining. Namely, the weights selected by oracle pruning can hardly guarantee a good performance after retraining. This further implies that existing works using oracle pruning to derive pruning criteria may be groundless from the beginning. Further studies suggest the rising task complexity is one factor that makes oracle pruning invalid nowadays. Finally, given the evidence, we argue that the retraining stage in a pruning algorithm should be accounted for when developing any pruning criterion.

Westlake-University Westlake University
·
Nov 28, 2024

Unveiling the Human-like Similarities of Automatic Facial Expression Recognition: An Empirical Exploration through Explainable AI

Facial expression recognition is vital for human behavior analysis, and deep learning has enabled models that can outperform humans. However, it is unclear how closely they mimic human processing. This study aims to explore the similarity between deep neural networks and human perception by comparing twelve different networks, including both general object classifiers and FER-specific models. We employ an innovative global explainable AI method to generate heatmaps, revealing crucial facial regions for the twelve networks trained on six facial expressions. We assess these results both quantitatively and qualitatively, comparing them to ground truth masks based on Friesen and Ekman's description and among them. We use Intersection over Union (IoU) and normalized correlation coefficients for comparisons. We generate 72 heatmaps to highlight critical regions for each expression and architecture. Qualitatively, models with pre-trained weights show more similarity in heatmaps compared to those without pre-training. Specifically, eye and nose areas influence certain facial expressions, while the mouth is consistently important across all models and expressions. Quantitatively, we find low average IoU values (avg. 0.2702) across all expressions and architectures. The best-performing architecture averages 0.3269, while the worst-performing one averages 0.2066. Dendrograms, built with the normalized correlation coefficient, reveal two main clusters for most expressions: models with pre-training and models without pre-training. Findings suggest limited alignment between human and AI facial expression recognition, with network architectures influencing the similarity, as similar architectures prioritize similar facial regions.

  • 4 authors
·
Jan 22, 2024

TotalSegmentator: robust segmentation of 104 anatomical structures in CT images

We present a deep learning segmentation model that can automatically and robustly segment all major anatomical structures in body CT images. In this retrospective study, 1204 CT examinations (from the years 2012, 2016, and 2020) were used to segment 104 anatomical structures (27 organs, 59 bones, 10 muscles, 8 vessels) relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning. The CT images were randomly sampled from routine clinical studies and thus represent a real-world dataset (different ages, pathologies, scanners, body parts, sequences, and sites). The authors trained an nnU-Net segmentation algorithm on this dataset and calculated Dice similarity coefficients (Dice) to evaluate the model's performance. The trained algorithm was applied to a second dataset of 4004 whole-body CT examinations to investigate age dependent volume and attenuation changes. The proposed model showed a high Dice score (0.943) on the test set, which included a wide range of clinical data with major pathologies. The model significantly outperformed another publicly available segmentation model on a separate dataset (Dice score, 0.932 versus 0.871, respectively). The aging study demonstrated significant correlations between age and volume and mean attenuation for a variety of organ groups (e.g., age and aortic volume; age and mean attenuation of the autochthonous dorsal musculature). The developed model enables robust and accurate segmentation of 104 anatomical structures. The annotated dataset (https://doi.org/10.5281/zenodo.6802613) and toolkit (https://www.github.com/wasserth/TotalSegmentator) are publicly available.

  • 12 authors
·
Aug 11, 2022

All You Need Is Hashing: Defending Against Data Reconstruction Attack in Vertical Federated Learning

Vertical federated learning is a trending solution for multi-party collaboration in training machine learning models. Industrial frameworks adopt secure multi-party computation methods such as homomorphic encryption to guarantee data security and privacy. However, a line of work has revealed that there are still leakage risks in VFL. The leakage is caused by the correlation between the intermediate representations and the raw data. Due to the powerful approximation ability of deep neural networks, an adversary can capture the correlation precisely and reconstruct the data. To deal with the threat of the data reconstruction attack, we propose a hashing-based VFL framework, called HashVFL, to cut off the reversibility directly. The one-way nature of hashing allows our framework to block all attempts to recover data from hash codes. However, integrating hashing also brings some challenges, e.g., the loss of information. This paper proposes and addresses three challenges to integrating hashing: learnability, bit balance, and consistency. Experimental results demonstrate HashVFL's efficiency in keeping the main task's performance and defending against data reconstruction attacks. Furthermore, we also analyze its potential value in detecting abnormal inputs. In addition, we conduct extensive experiments to prove HashVFL's generalization in various settings. In summary, HashVFL provides a new perspective on protecting multi-party's data security and privacy in VFL. We hope our study can attract more researchers to expand the application domains of HashVFL.

  • 5 authors
·
Dec 1, 2022

Diffusion Models in Low-Level Vision: A Survey

Deep generative models have garnered significant attention in low-level vision tasks due to their generative capabilities. Among them, diffusion model-based solutions, characterized by a forward diffusion process and a reverse denoising process, have emerged as widely acclaimed for their ability to produce samples of superior quality and diversity. This ensures the generation of visually compelling results with intricate texture information. Despite their remarkable success, a noticeable gap exists in a comprehensive survey that amalgamates these pioneering diffusion model-based works and organizes the corresponding threads. This paper proposes the comprehensive review of diffusion model-based techniques. We present three generic diffusion modeling frameworks and explore their correlations with other deep generative models, establishing the theoretical foundation. Following this, we introduce a multi-perspective categorization of diffusion models, considering both the underlying framework and the target task. Additionally, we summarize extended diffusion models applied in other tasks, including medical, remote sensing, and video scenarios. Moreover, we provide an overview of commonly used benchmarks and evaluation metrics. We conduct a thorough evaluation, encompassing both performance and efficiency, of diffusion model-based techniques in three prominent tasks. Finally, we elucidate the limitations of current diffusion models and propose seven intriguing directions for future research. This comprehensive examination aims to facilitate a profound understanding of the landscape surrounding denoising diffusion models in the context of low-level vision tasks. A curated list of diffusion model-based techniques in over 20 low-level vision tasks can be found at https://github.com/ChunmingHe/awesome-diffusion-models-in-low-level-vision.

  • 9 authors
·
Jun 16, 2024

Sparsing Law: Towards Large Language Models with Greater Activation Sparsity

Activation sparsity denotes the existence of substantial weakly-contributed elements within activation outputs that can be eliminated, benefiting many important applications concerned with large language models (LLMs). Although promoting greater activation sparsity within LLMs deserves deep studies, existing works lack comprehensive and quantitative research on the correlation between activation sparsity and potentially influential factors. In this paper, we present a comprehensive study on the quantitative scaling properties and influential factors of the activation sparsity within decoder-only Transformer-based LLMs. Specifically, we propose PPL-p% sparsity, a precise and performance-aware activation sparsity metric that is applicable to any activation function. Through extensive experiments, we find several important phenomena. Firstly, different activation functions exhibit comparable performance but opposite training-time sparsity trends. The activation ratio (i.e., 1-sparsity ratio) evolves as a convergent increasing power-law and decreasing logspace power-law with the amount of training data for SiLU-activated and ReLU-activated LLMs, respectively. These demonstrate that ReLU is more efficient as the activation function than SiLU and can leverage more training data to improve activation sparsity. Secondly, the activation ratio linearly increases with the width-depth ratio below a certain bottleneck point, indicating the potential advantage of a deeper architecture at a fixed parameter scale. Finally, at similar width-depth ratios, we surprisingly find that the limit value of activation sparsity varies weakly with the parameter scale, i.e., the activation patterns within LLMs are insensitive to the parameter scale. These empirical laws towards LLMs with greater activation sparsity have important implications for making LLMs more efficient and interpretable.

  • 7 authors
·
Nov 4, 2024 1

A Three-Phase Analysis of Synergistic Effects During Co-pyrolysis of Algae and Wood for Biochar Yield Using Machine Learning

Pyrolysis techniques have served to be a groundbreaking technique for effectively utilising natural and man-made biomass products like plastics, wood, crop residue, fruit peels etc. Recent advancements have shown a greater yield of essential products like biochar, bio-oil and other non-condensable gases by blending different biomasses in a certain ratio. This synergy effect of combining two pyrolytic raw materials i.e co-pyrolysis of algae and wood biomass has been systematically studied and grouped into 3 phases in this research paper-kinetic analysis of co-pyrolysis, correlation among proximate and ultimate analysis with bio-char yield and lastly grouping of different weight ratios based on biochar yield up to a certain percentage. Different ML and DL algorithms have been utilized for regression and classification techniques to give a comprehensive overview of the effect of the synergy of two different biomass materials on biochar yield. For the first phase, the best prediction of biochar yield was obtained by using a decision tree regressor with a perfect MSE score of 0.00, followed by a gradient-boosting regressor. The second phase was analyzed using both ML and DL techniques. Within ML, SVR proved to be the most convenient model with an accuracy score of 0.972 with DNN employed for deep learning technique. Finally, for the third phase, binary classification was applied to biochar yield with and without heating rate for biochar yield percentage above and below 40%. The best technique for ML was Support Vector followed by Random forest while ANN was the most suitable Deep Learning Technique.

  • 2 authors
·
May 20, 2024

Uncertainty Quantification for Multi-fidelity Simulations

The work focuses on gathering high-fidelity and low-fidelity numerical simulations data using Nektar++ (Solver based on Applied Mathematics) and XFOIL respectively. The utilization of the higher polynomial distribution in calculating the Coefficient of lift and drag has demonstrated superior accuracy and precision. Further, Co-kriging Data fusion and Adaptive sampling technique has been used to obtain the precise data predictions for the lift and drag within the confined domain without conducting the costly simulations on HPC clusters. This creates a methodology to quantifying uncertainty in computational fluid dynamics by minimizing the required number of samples. To minimize the reliability on high-fidelity numerical simulations in Uncertainty Quantification, a multi-fidelity strategy has been adopted. The effectiveness of the multi-fidelity deep neural network model has been validated through the approximation of benchmark functions across 1-, 32-, and 100-dimensional, encompassing both linear and nonlinear correlations. The surrogate modelling results showed that multi-fidelity deep neural network model has shown excellent approximation capabilities for the test functions and multi-fidelity deep neural network method has outperformed Co-kriging in effectiveness. In addition to that, multi-fidelity deep neural network model is utilized for the simulation of aleatory uncertainty propagation in 1-, 32-, and 100 dimensional function test, considering both uniform and Gaussian distributions for input uncertainties. The results have shown that multi-fidelity deep neural network model has efficiently predicted the probability density distributions of quantities of interest as well as the statistical moments with precision and accuracy. The Co-Kriging model has exhibited limitations when addressing 32-Dimension problems due to the limitation of memory capacity for storage and manipulation.

  • 1 authors
·
Mar 11, 2025

Joint multiband deconvolution for Euclid and Vera C. Rubin images

With the advent of surveys like Euclid and Vera C. Rubin, astrophysicists will have access to both deep, high-resolution images and multiband images. However, these two types are not simultaneously available in any single dataset. It is therefore vital to devise image deconvolution algorithms that exploit the best of both worlds and that can jointly analyze datasets spanning a range of resolutions and wavelengths. In this work we introduce a novel multiband deconvolution technique aimed at improving the resolution of ground-based astronomical images by leveraging higher-resolution space-based observations. The method capitalizes on the fortunate fact that the Rubin r, i, and z bands lie within the Euclid VIS band. The algorithm jointly de-convolves all the data to convert the r-, i-, and z-band Rubin images to the resolution of Euclid by leveraging the correlations between the different bands. We also investigate the performance of deep-learning-based denoising with DRUNet to further improve the results. We illustrate the effectiveness of our method in terms of resolution and morphology recovery, flux preservation, and generalization to different noise levels. This approach extends beyond the specific Euclid-Rubin combination, offering a versatile solution to improving the resolution of ground-based images in multiple photometric bands by jointly using any space-based images with overlapping filters.

  • 4 authors
·
Feb 24, 2025

Unconstrained Stochastic CCA: Unifying Multiview and Self-Supervised Learning

The Canonical Correlation Analysis (CCA) family of methods is foundational in multiview learning. Regularised linear CCA methods can be seen to generalise Partial Least Squares (PLS) and be unified with a Generalized Eigenvalue Problem (GEP) framework. However, classical algorithms for these linear methods are computationally infeasible for large-scale data. Extensions to Deep CCA show great promise, but current training procedures are slow and complicated. First we propose a novel unconstrained objective that characterizes the top subspace of GEPs. Our core contribution is a family of fast algorithms for stochastic PLS, stochastic CCA, and Deep CCA, simply obtained by applying stochastic gradient descent (SGD) to the corresponding CCA objectives. Our algorithms show far faster convergence and recover higher correlations than the previous state-of-the-art on all standard CCA and Deep CCA benchmarks. These improvements allow us to perform a first-of-its-kind PLS analysis of an extremely large biomedical dataset from the UK Biobank, with over 33,000 individuals and 500,000 features. Finally, we apply our algorithms to match the performance of `CCA-family' Self-Supervised Learning (SSL) methods on CIFAR-10 and CIFAR-100 with minimal hyper-parameter tuning, and also present theory to clarify the links between these methods and classical CCA, laying the groundwork for future insights.

  • 3 authors
·
Oct 2, 2023

Hallucination Score: Towards Mitigating Hallucinations in Generative Image Super-Resolution

Generative super-resolution (GSR) currently sets the state-of-the-art in terms of perceptual image quality, overcoming the "regression-to-the-mean" blur of prior non-generative models. However, from a human perspective, such models do not fully conform to the optimal balance between quality and fidelity. Instead, a different class of artifacts, in which generated details fail to perceptually match the low resolution image (LRI) or ground-truth image (GTI), is a critical but under studied issue in GSR, limiting its practical deployments. In this work, we focus on measuring, analyzing, and mitigating these artifacts (i.e., "hallucinations"). We observe that hallucinations are not well-characterized with existing image metrics or quality models, as they are orthogonal to both exact fidelity and no-reference quality. Instead, we take advantage of a multimodal large language model (MLLM) by constructing a prompt that assesses hallucinatory visual elements and generates a "Hallucination Score" (HS). We find that our HS is closely aligned with human evaluations, and also provides complementary insights to prior image metrics used for super-resolution (SR) models. In addition, we find certain deep feature distances have strong correlations with HS. We therefore propose to align the GSR models by using such features as differentiable reward functions to mitigate hallucinations.

  • 6 authors
·
Jul 18, 2025

Evaluating Uncertainty Quantification approaches for Neural PDEs in scientific applications

The accessibility of spatially distributed data, enabled by affordable sensors, field, and numerical experiments, has facilitated the development of data-driven solutions for scientific problems, including climate change, weather prediction, and urban planning. Neural Partial Differential Equations (Neural PDEs), which combine deep learning (DL) techniques with domain expertise (e.g., governing equations) for parameterization, have proven to be effective in capturing valuable correlations within spatiotemporal datasets. However, sparse and noisy measurements coupled with modeling approximation introduce aleatoric and epistemic uncertainties. Therefore, quantifying uncertainties propagated from model inputs to outputs remains a challenge and an essential goal for establishing the trustworthiness of Neural PDEs. This work evaluates various Uncertainty Quantification (UQ) approaches for both Forward and Inverse Problems in scientific applications. Specifically, we investigate the effectiveness of Bayesian methods, such as Hamiltonian Monte Carlo (HMC) and Monte-Carlo Dropout (MCD), and a more conventional approach, Deep Ensembles (DE). To illustrate their performance, we take two canonical PDEs: Burger's equation and the Navier-Stokes equation. Our results indicate that Neural PDEs can effectively reconstruct flow systems and predict the associated unknown parameters. However, it is noteworthy that the results derived from Bayesian methods, based on our observations, tend to display a higher degree of certainty in their predictions as compared to those obtained using the DE. This elevated certainty in predictions suggests that Bayesian techniques might underestimate the true underlying uncertainty, thereby appearing more confident in their predictions than the DE approach.

Transform Once: Efficient Operator Learning in Frequency Domain

Spectral analysis provides one of the most effective paradigms for information-preserving dimensionality reduction, as simple descriptions of naturally occurring signals are often obtained via few terms of periodic basis functions. In this work, we study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time: frequency-domain models (FDMs). Existing FDMs are based on complex-valued transforms i.e. Fourier Transforms (FT), and layers that perform computation on the spectrum and input data separately. This design introduces considerable computational overhead: for each layer, a forward and inverse FT. Instead, this work introduces a blueprint for frequency domain learning through a single transform: transform once (T1). To enable efficient, direct learning in the frequency domain we derive a variance-preserving weight initialization scheme and investigate methods for frequency selection in reduced-order FDMs. Our results noticeably streamline the design process of FDMs, pruning redundant transforms, and leading to speedups of 3x to 10x that increase with data resolution and model size. We perform extensive experiments on learning the solution operator of spatio-temporal dynamics, including incompressible Navier-Stokes, turbulent flows around airfoils and high-resolution video of smoke. T1 models improve on the test performance of FDMs while requiring significantly less computation (5 hours instead of 32 for our large-scale experiment), with over 20% reduction in average predictive error across tasks.

  • 7 authors
·
Nov 25, 2022

Turing Machine Evaluation for Large Language Model

With the rapid development and widespread application of Large Language Models (LLMs), rigorous evaluation has become particularly crucial. This research adopts a novel perspective, focusing on evaluating the core computational reasoning ability of LLMs, defined as the capacity of model to accurately understand rules, and execute logically computing operations. This capability assesses the reliability of LLMs as precise executors, and is critical to advanced tasks such as complex code generation and multi-step problem-solving. We propose an evaluation framework based on Universal Turing Machine (UTM) simulation. This framework requires LLMs to strictly follow instructions and track dynamic states, such as tape content and read/write head position, during multi-step computations. To enable standardized evaluation, we developed TMBench, a benchmark for systematically studying the computational reasoning capabilities of LLMs. TMBench provides several key advantages, including knowledge-agnostic evaluation, adjustable difficulty, foundational coverage through Turing machine encoding, and unlimited capacity for instance generation, ensuring scalability as models continue to evolve. We find that model performance on TMBench correlates strongly with performance on other recognized reasoning benchmarks (Pearson correlation coefficient is 0.73), clearly demonstrating that computational reasoning is a significant dimension for measuring the deep capabilities of LLMs. Code and data are available at https://github.com/HaitaoWuTJU/Turing-Machine-Bench.

  • 4 authors
·
Apr 29, 2025

Learning to Generate Explainable Stock Predictions using Self-Reflective Large Language Models

Explaining stock predictions is generally a difficult task for traditional non-generative deep learning models, where explanations are limited to visualizing the attention weights on important texts. Today, Large Language Models (LLMs) present a solution to this problem, given their known capabilities to generate human-readable explanations for their decision-making process. However, the task of stock prediction remains challenging for LLMs, as it requires the ability to weigh the varying impacts of chaotic social texts on stock prices. The problem gets progressively harder with the introduction of the explanation component, which requires LLMs to explain verbally why certain factors are more important than the others. On the other hand, to fine-tune LLMs for such a task, one would need expert-annotated samples of explanation for every stock movement in the training set, which is expensive and impractical to scale. To tackle these issues, we propose our Summarize-Explain-Predict (SEP) framework, which utilizes a self-reflective agent and Proximal Policy Optimization (PPO) to let a LLM teach itself how to generate explainable stock predictions in a fully autonomous manner. The reflective agent learns how to explain past stock movements through self-reasoning, while the PPO trainer trains the model to generate the most likely explanations from input texts. The training samples for the PPO trainer are also the responses generated during the reflective process, which eliminates the need for human annotators. Using our SEP framework, we fine-tune a LLM that can outperform both traditional deep-learning and LLM methods in prediction accuracy and Matthews correlation coefficient for the stock classification task. To justify the generalization capability of our framework, we further test it on the portfolio construction task, and demonstrate its effectiveness through various portfolio metrics.

  • 4 authors
·
Feb 5, 2024

Multi-modal Gaussian Process Variational Autoencoders for Neural and Behavioral Data

Characterizing the relationship between neural population activity and behavioral data is a central goal of neuroscience. While latent variable models (LVMs) are successful in describing high-dimensional time-series data, they are typically only designed for a single type of data, making it difficult to identify structure shared across different experimental data modalities. Here, we address this shortcoming by proposing an unsupervised LVM which extracts temporally evolving shared and independent latents for distinct, simultaneously recorded experimental modalities. We do this by combining Gaussian Process Factor Analysis (GPFA), an interpretable LVM for neural spiking data with temporally smooth latent space, with Gaussian Process Variational Autoencoders (GP-VAEs), which similarly use a GP prior to characterize correlations in a latent space, but admit rich expressivity due to a deep neural network mapping to observations. We achieve interpretability in our model by partitioning latent variability into components that are either shared between or independent to each modality. We parameterize the latents of our model in the Fourier domain, and show improved latent identification using this approach over standard GP-VAE methods. We validate our model on simulated multi-modal data consisting of Poisson spike counts and MNIST images that scale and rotate smoothly over time. We show that the multi-modal GP-VAE (MM-GPVAE) is able to not only identify the shared and independent latent structure across modalities accurately, but provides good reconstructions of both images and neural rates on held-out trials. Finally, we demonstrate our framework on two real world multi-modal experimental settings: Drosophila whole-brain calcium imaging alongside tracked limb positions, and Manduca sexta spike train measurements from ten wing muscles as the animal tracks a visual stimulus.

  • 5 authors
·
Oct 4, 2023