new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

Towards Category Unification of 3D Single Object Tracking on Point Clouds

Category-specific models are provenly valuable methods in 3D single object tracking (SOT) regardless of Siamese or motion-centric paradigms. However, such over-specialized model designs incur redundant parameters, thus limiting the broader applicability of 3D SOT task. This paper first introduces unified models that can simultaneously track objects across all categories using a single network with shared model parameters. Specifically, we propose to explicitly encode distinct attributes associated to different object categories, enabling the model to adapt to cross-category data. We find that the attribute variances of point cloud objects primarily occur from the varying size and shape (e.g., large and square vehicles v.s. small and slender humans). Based on this observation, we design a novel point set representation learning network inheriting transformer architecture, termed AdaFormer, which adaptively encodes the dynamically varying shape and size information from cross-category data in a unified manner. We further incorporate the size and shape prior derived from the known template targets into the model's inputs and learning objective, facilitating the learning of unified representation. Equipped with such designs, we construct two category-unified models SiamCUT and MoCUT.Extensive experiments demonstrate that SiamCUT and MoCUT exhibit strong generalization and training stability. Furthermore, our category-unified models outperform the category-specific counterparts by a significant margin (e.g., on KITTI dataset, 12% and 3% performance gains on the Siamese and motion paradigms). Our code will be available.

  • 6 authors
·
Jan 20, 2024

OpenSubject: Leveraging Video-Derived Identity and Diversity Priors for Subject-driven Image Generation and Manipulation

Despite the promising progress in subject-driven image generation, current models often deviate from the reference identities and struggle in complex scenes with multiple subjects. To address this challenge, we introduce OpenSubject, a video-derived large-scale corpus with 2.5M samples and 4.35M images for subject-driven generation and manipulation. The dataset is built with a four-stage pipeline that exploits cross-frame identity priors. (i) Video Curation. We apply resolution and aesthetic filtering to obtain high-quality clips. (ii) Cross-Frame Subject Mining and Pairing. We utilize vision-language model (VLM)-based category consensus, local grounding, and diversity-aware pairing to select image pairs. (iii) Identity-Preserving Reference Image Synthesis. We introduce segmentation map-guided outpainting to synthesize the input images for subject-driven generation and box-guided inpainting to generate input images for subject-driven manipulation, together with geometry-aware augmentations and irregular boundary erosion. (iv) Verification and Captioning. We utilize a VLM to validate synthesized samples, re-synthesize failed samples based on stage (iii), and then construct short and long captions. In addition, we introduce a benchmark covering subject-driven generation and manipulation, and then evaluate identity fidelity, prompt adherence, manipulation consistency, and background consistency with a VLM judge. Extensive experiments show that training with OpenSubject improves generation and manipulation performance, particularly in complex scenes.

  • 11 authors
·
Dec 9, 2025 2

Generalized Category Discovery in Semantic Segmentation

This paper explores a novel setting called Generalized Category Discovery in Semantic Segmentation (GCDSS), aiming to segment unlabeled images given prior knowledge from a labeled set of base classes. The unlabeled images contain pixels of the base class or novel class. In contrast to Novel Category Discovery in Semantic Segmentation (NCDSS), there is no prerequisite for prior knowledge mandating the existence of at least one novel class in each unlabeled image. Besides, we broaden the segmentation scope beyond foreground objects to include the entire image. Existing NCDSS methods rely on the aforementioned priors, making them challenging to truly apply in real-world situations. We propose a straightforward yet effective framework that reinterprets the GCDSS challenge as a task of mask classification. Additionally, we construct a baseline method and introduce the Neighborhood Relations-Guided Mask Clustering Algorithm (NeRG-MaskCA) for mask categorization to address the fragmentation in semantic representation. A benchmark dataset, Cityscapes-GCD, derived from the Cityscapes dataset, is established to evaluate the GCDSS framework. Our method demonstrates the feasibility of the GCDSS problem and the potential for discovering and segmenting novel object classes in unlabeled images. We employ the generated pseudo-labels from our approach as ground truth to supervise the training of other models, thereby enabling them with the ability to segment novel classes. It paves the way for further research in generalized category discovery, broadening the horizons of semantic segmentation and its applications. For details, please visit https://github.com/JethroPeng/GCDSS

  • 8 authors
·
Nov 19, 2023

Webly-Supervised Image Manipulation Localization via Category-Aware Auto-Annotation

Images manipulated using image editing tools can mislead viewers and pose significant risks to social security. However, accurately localizing the manipulated regions within an image remains a challenging problem. One of the main barriers in this area is the high cost of data acquisition and the severe lack of high-quality annotated datasets. To address this challenge, we introduce novel methods that mitigate data scarcity by leveraging readily available web data. We utilize a large collection of manually forged images from the web, as well as automatically generated annotations derived from a simpler auxiliary task, constrained image manipulation localization. Specifically, we introduce a new paradigm CAAAv2, which automatically and accurately annotates manipulated regions at the pixel level. To further improve annotation quality, we propose a novel metric, QES, which filters out unreliable annotations. Through CAAA v2 and QES, we construct MIMLv2, a large-scale, diverse, and high-quality dataset containing 246,212 manually forged images with pixel-level mask annotations. This is over 120x larger than existing handcrafted datasets like IMD20. Additionally, we introduce Object Jitter, a technique that further enhances model training by generating high-quality manipulation artifacts. Building on these advances, we develop a new model, Web-IML, designed to effectively leverage web-scale supervision for the image manipulation localization task. Extensive experiments demonstrate that our approach substantially alleviates the data scarcity problem and significantly improves the performance of various models on multiple real-world forgery benchmarks. With the proposed web supervision, Web-IML achieves a striking performance gain of 31% and surpasses previous SOTA TruFor by 24.1 average IoU points. The dataset and code will be made publicly available at https://github.com/qcf-568/MIML.

  • 4 authors
·
Aug 28, 2025

Seeing Culture: A Benchmark for Visual Reasoning and Grounding

Multimodal vision-language models (VLMs) have made substantial progress in various tasks that require a combined understanding of visual and textual content, particularly in cultural understanding tasks, with the emergence of new cultural datasets. However, these datasets frequently fall short of providing cultural reasoning while underrepresenting many cultures. In this paper, we introduce the Seeing Culture Benchmark (SCB), focusing on cultural reasoning with a novel approach that requires VLMs to reason on culturally rich images in two stages: i) selecting the correct visual option with multiple-choice visual question answering (VQA), and ii) segmenting the relevant cultural artifact as evidence of reasoning. Visual options in the first stage are systematically organized into three types: those originating from the same country, those from different countries, or a mixed group. Notably, all options are derived from a singular category for each type. Progression to the second stage occurs only after a correct visual option is chosen. The SCB benchmark comprises 1,065 images that capture 138 cultural artifacts across five categories from seven Southeast Asia countries, whose diverse cultures are often overlooked, accompanied by 3,178 questions, of which 1,093 are unique and meticulously curated by human annotators. Our evaluation of various VLMs reveals the complexities involved in cross-modal cultural reasoning and highlights the disparity between visual reasoning and spatial grounding in culturally nuanced scenarios. The SCB serves as a crucial benchmark for identifying these shortcomings, thereby guiding future developments in the field of cultural reasoning. https://github.com/buraksatar/SeeingCulture

  • 7 authors
·
Sep 19, 2025