new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 8

First Light And Reionisation Epoch Simulations (FLARES) II: The Photometric Properties of High-Redshift Galaxies

We present the photometric properties of galaxies in the First Light and Reionisation Epoch Simulations (FLARES). The simulations trace the evolution of galaxies in a range of overdensities through the Epoch of Reionistion (EoR). With a novel weighting scheme we combine these overdensities, extending significantly the dynamic range of observed composite distribution functions compared to periodic simulation boxes. FLARES predicts a significantly larger number of intrinsically bright galaxies, which can be explained through a simple model linking dust-attenuation to the metal content of the interstellar medium, using a line-of-sight (LOS) extinction model. With this model we present the photometric properties of the FLARES galaxies for z in [5,10]. We show that the ultraviolet (UV) luminosity function (LF) matches the observations at all redshifts. The function is fit by Schechter and double power-law forms, with the latter being favoured at these redshifts by the FLARES composite UV LF. We also present predictions for the UV continuum slope as well as the attenuation in the UV. The impact of environment on the UV LF is also explored, with the brightest galaxies forming in the densest environments. We then present the line luminosity and equivalent widths of some prominent nebular emission lines arising from the galaxies, finding rough agreement with available observations. We also look at the relative contribution of obscured and unobscured star formation, finding comparable contributions at these redshifts.

  • 8 authors
·
Aug 13, 2020

First Light And Reionisation Epoch Simulations (FLARES) XIII: The Lyman-continuum emission of high-redshift galaxies

The history of reionisation is highly dependent on the ionising properties of high-redshift galaxies. It is therefore important to have a solid understanding of how the ionising properties of galaxies are linked to physical and observable quantities. In this paper, we use the First Light and Reionisation Epoch Simulations (FLARES) to study the Lyman-continuum (LyC, i.e. hydrogen-ionising) emission of massive (M_*>10^8,M_odot) galaxies at redshifts z=5-10. We find that the specific ionising emissivity (i.e. intrinsic ionising emissivity per unit stellar mass) decreases as stellar mass increases, due to the combined effects of increasing age and metallicity. FLARES predicts a median ionising photon production efficiency (i.e. intrinsic ionising emissivity per unit intrinsic far-UV luminosity) of log_{10}(xi_{rm ion}/erg^{-1Hz})=25.40^{+0.16}_{-0.17}, with values spanning the range log_{10}(xi_{rm ion}/erg^{-1Hz})=25-25.75. This is within the range of many observational estimates, but below some of the extremes observed. We compare the production efficiency with observable properties, and find a weak negative correlation with the UV-continuum slope, and a positive correlation with the OIII equivalent width. We also consider the dust-attenuated production efficiency (i.e. intrinsic ionising emissivity per unit dust-attenuated far-UV luminosity), and find a median of log_{10}(xi_{rm ion}/erg^{-1Hz})sim25.5. Within our sample of M_*>10^8,M_odot galaxies, it is the stellar populations in low mass galaxies that contribute the most to the total ionising emissivity. Active galactic nuclei (AGN) emission accounts for 10-20 % of the total emissivity at a given redshift, and extends the LyC luminosity function by sim0.5 dex.

  • 13 authors
·
May 29, 2023

First Light And Reionisation Epoch Simulations (FLARES) XII: The consequences of star-dust geometry on galaxies in the EoR

Using the First Light And Reionisation Epoch Simulations ({rm F{small LARES}}), a suite of hydrodynamical simulations we explore the consequences of a realistic model for star--dust geometry on the observed properties of galaxies. We find that the UV attenuation declines rapidly from the central regions of galaxies, and bright galaxies have spatially extended star formation that suffers less obscuration than their fainter counterparts, demonstrating a non-linear relationship between the UV luminosity and the UV attenuation, giving a double power-law shape to the UVLF. Spatially distinct stellar populations within galaxies experience a wide range of dust attenuation due to variations in the dust optical depth along their line-of-sight; which can range from completely dust obscured to being fully unobscured. The overall attenuation curve of a galaxy is then a complex combination of various lines-of-sight within the galaxy. We explore the manifestation of this effect to study the reliability of line ratios to infer galaxy properties, in particular the Balmer decrement and the BPT diagram. We find the Balmer decrement predicted Balmer line attenuation to be higher (factor of 1 to gtrsim10) than expected from commonly used attenuation curves. The observed BPT line ratios deviate from their intrinsic values (median difference of 0.08 (0.02) and standard deviation of 0.2 (0.05) for log_{10}([N{small II}]lambda 6585/H_{alpha}) (log_{10}([O{small III}]lambda 5008/H_{beta})). Finally, we explore the variation in observed properties (UV attenuation, UV slope and Balmer decrement) with viewing angle, finding average differences of sim0.3 magnitudes in the UV attenuation.

  • 8 authors
·
Mar 7, 2023

Elevated UV luminosity density at Cosmic Dawn explained by non-evolving, weakly-mass dependent star formation efficiency

Recent observations with the James Webb Space Telescope (JWST) have uncovered unexpectedly high cosmic star formation activity in the early Universe, mere hundreds of millions of years after the Big Bang. These observations are often understood to reflect an evolutionary shift in star formation efficiency (SFE) caused by changing galactic conditions during these early epochs. We present FIREbox-HR, a high-resolution, cosmological hydrodynamical simulation from the Feedback in Realistic Environments project, which offers insights into the SFE of galaxies during the first billion years of cosmic time. FIREbox-HR re-simulates the cosmic volume (L = 22.1 cMpc) of the original FIREbox run with eight times higher mass resolution (m_b ~ 7800 M_sun), but with identical physics, down to z ~ 6. FIREbox-HR predicts ultraviolet (UV) luminosity functions in good agreement with available observational data. The simulation also successfully reproduces the observed cosmic UV luminosity density at z ~ 6 - 14, demonstrating that relatively high star formation activity in the early Universe is a natural outcome of the baryonic processes encoded in the FIRE-2 model. According to FIREbox-HR, the SFE - halo mass relation for intermediate mass halos (M_halo ~ 10^9 - 10^11 M_sun) does not significantly evolve with redshift and is only weakly mass-dependent. These properties of the SFE - halo mass relation lead to a larger contribution from lower mass halos at higher z, driving the gradual evolution of the observed cosmic UV luminosity density. A theoretical model based on the SFE - halo mass relation inferred from FIREbox-HR allows us to explore implications for galaxy evolution. Future observations of UV faint galaxies at z > 12 will provide an opportunity to further test these predictions and deepen our understanding of star formation during Cosmic Dawn.

  • 14 authors
·
Jul 2, 2024

First Light And Reionisation Epoch Simulations (FLARES) XVI: Size Evolution of Massive Dusty Galaxies at Cosmic Dawn from UV to IR

We use the First Light And Reionisation Epoch Simulations (FLARES) to study the evolution of the rest-frame ultraviolet (UV) and far-infrared (FIR) sizes for a statistical sample of massive (gtrsim10^{9}M_{odot}) high redshift galaxies (z in [5,10]). Galaxies are post-processed using the SKIRT radiative transfer code, to self-consistently obtain the full spectral energy distribution and surface brightness distribution. We create mock observations of the galaxies for the Near Infrared Camera (NIRCam) to study the rest-frame UV 1500 xC5 morphology. We also generate mock rest-frame FIR (50 mum) photometry and mock ALMA (158 mum) (0.01"-0.03" and approx0.3" angular resolution) observations to study the dust-continuum. We find the effect of dust on observed sizes reduces with increasing wavelength from the UV to optical (sim0.6 times the UV at 0.4mum), with no evolution in FIR sizes. Observed sizes vary within 0.4-1.2 times the intrinsic sizes at different signal to noise ratios (SNR = 5-20) across redshifts. The effect of PSF and noise makes bright structures prominent, whereas fainter regions blend with noise, leading to an underestimation (factor of 0.4-0.8) of sizes at SNR=5. At SNR=15-20, the underestimation reduces (factor of 0.6-0.9) at z=5-8 but due to PSF, at z=9-10, bright cores are dominant, resulting in an overestimation (factor of 1.0-1.2). For ALMA, low resolution sizes are effected by noise which acts as extended emission. The size evolution in UV broadly agrees with current observational samples and other simulations. This work is one of the first to analyse the panchromatic sizes of a statistically significant sample of simulated high-redshift galaxies, complementing a growing body of research highlighting the importance of conducting an equivalent comparison between observed galaxies and their simulated counterparts in the early Universe.

  • 12 authors
·
Aug 20, 2024

Flat-sky Angular Power Spectra Revisited

We revisit the flat-sky approximation for evaluating the angular power spectra of projected random fields by retaining information about the correlations along the line of sight. With broad, overlapping radial window functions, these line-of-sight correlations are suppressed and are ignored in the Limber approximation. However, retaining the correlations is important for narrow window functions or unequal-time spectra but introduces significant computational difficulties due to the highly oscillatory nature of the integrands involved. We deal with the integral over line-of-sight wave-modes in the flat-sky approximation analytically, using the FFTlog expansion of the 3D power spectrum. This results in an efficient computational method, which is a substantial improvement compared to any full-sky approaches. We apply our results to galaxy clustering (with and without redshift-space distortions), CMB lensing and galaxy lensing observables. For clustering, we find excellent agreement with the full-sky results on large (percent-level agreement) and intermediate or small (subpercent agreement) scales, dramatically out-performing the Limber approximation for both wide and narrow window functions, and in equal- and unequal-time cases. In the case of lensing, we show on the full sky that the angular power spectrum of the convergence can be very well approximated by projecting the 3D Laplacian (rather than the correct angular Laplacian) of the gravitational potential, even on large scales. Combining this approximation with our flat-sky techniques provides an efficient and accurate evaluation of the CMB lensing angular power spectrum on all scales.

  • 3 authors
·
Jul 25, 2023

Quasi-periodic pulsations in extreme-ultraviolet brightenings

Context. Extreme-ultraviolet (EUV) observations have revealed small-scale transient brightenings that may share common physical mechanisms with larger-scale solar flares. A notable feature of solar and stellar flares is the presence of quasi-periodic pulsations (QPPs), which are considered a common and potentially intrinsic characteristic. Aims. We investigate the properties of QPPs detected in EUV brightenings, which are considered small-scale flares, and compare their statistical properties with those observed in solar and stellar flares. Methods. We extracted integrated light curves of 22,623 EUV brightenings in two quiet Sun regions observed by the Solar Orbiter/Extreme Ultraviolet Imager and identified QPPs in their light curves using Fourier analysis. Results. Approximately 2.7 % of the EUV brightenings exhibited stationary QPPs. The QPP occurrence rate increased with the surface area, lifetime, and peak brightness of the EUV brightenings. The detected QPP periods ranged from approximately 15 to 260 seconds, which is comparable to the periods observed in solar and stellar flares. Consistent with observations of QPPs in solar and stellar flares, no correlation was found between the QPP period and peak brightness. However, unlike the trend observed in solar flares, no correlation was found between the QPP period and lifetime/length scale. Conclusions. The presence of QPPs in EUV brightenings supports the interpretation that these events may be small-scale manifestations of flares, and the absence of period scaling with loop length further suggests that standing waves may not be the primary driver of QPPs in these events.

  • 8 authors
·
Apr 21, 2025

Simulating Brown Dwarf Observations for Various Mass Functions, Birthrates, and Low-mass Cutoffs

After decades of brown dwarf discovery and follow-up, we can now infer the functional form of the mass distribution within 20 parsecs, which serves as a constraint on star formation theory at the lowest masses. Unlike objects on the main sequence that have a clear luminosity-to-mass correlation, brown dwarfs lack a correlation between an observable parameter (luminosity, spectral type, or color) and mass. A measurement of the brown dwarf mass function must therefore be procured through proxy measurements and theoretical models. We utilize various assumed forms of the mass function, together with a variety of birthrate functions, low-mass cutoffs, and theoretical evolutionary models, to build predicted forms of the effective temperature distribution. We then determine the best fit of the observed effective temperature distribution to these predictions, which in turn reveals the most likely mass function. We find that a simple power law (dN/dM propto M^{-α}) with αapprox 0.5 is optimal. Additionally, we conclude that the low-mass cutoff for star formation is lesssim0.005M_{odot}. We corroborate the findings of Burgasser (2004) which state that the birthrate has a far lesser impact than the mass function on the form of the temperature distribution, but we note that our alternate birthrates tend to favor slightly smaller values of α than the constant birthrate. Our code for simulating these distributions is publicly available. As another use case for this code, we present findings on the width and location of the subdwarf temperature gap by simulating distributions of very old (8-10 Gyr) brown dwarfs.

  • 14 authors
·
Jun 13, 2024

Can an Anti-de Sitter Vacuum in the Dark Energy Sector Explain JWST High-Redshift Galaxy and Reionization Observations?

The James Webb Space Telescope's (JWST) discovery of an unexpectedly high abundance of UV-bright galaxies at redshifts z > 10 poses a significant challenge to the standard LambdaCDM cosmology. This work tests whether this tension can be resolved solely by modifying the cosmological background, without invoking significant evolution in the astrophysical properties of early galaxies. We investigate an alternative framework featuring the presence of an anti-de Sitter vacuum in the dark energy sector, a model that naturally arises in quantum gravity models like string theory and can enhance early structure formation. Using a self-consistent semi-analytical model that couples galaxy evolution with reionization, we confront this scenario with a wide range of observations. We first show that while a model tailored to fit the high-z UV luminosity functions (UVLFs) shows promise, it is in strong tension with well-established cosmological constraints from the CMB and other low-redshift probes. Conversely, models within this framework that are consistent with these constraints provide only a modest boost to structure formation and fail to reproduce the observed JWST galaxy abundances at z > 10. While these models remain consistent with the cosmic reionization history, our primary result is that this class of cosmological modifications is insufficient on its own to explain the galaxy excess. Our study underscores the critical importance of holistic testing for any beyond-LambdaCDM proposal; apparent success in one observational regime does not guarantee overall viability. By demonstrating the limitations of a purely cosmological solution, our results strengthen the case that evolving astrophysical properties are a necessary ingredient for solving the challenge of early galaxy formation.

  • 4 authors
·
Sep 2, 2025

Testing the extended corona model with the optical/UV reverberation mapping of the accretion disk

The illumination of the accretion disks is frequently studied assuming that the incident X-ray flux is a point-like source. The approach is referred as lamppost model.The most recent computations of the X-ray reprocessing by the disk take into account the departure from the simple lamppost models. However, in computations of the incident flux thermalization and subsequent re-emission in the optical-UV band the lamppost approximation is most frequently assumed. We test if the UV-optical reverberation mapping and time delay measurements are sensitive to this assumption. We assume that the incident radiation originates from a region extended along the symmetry axis. To model this, we adopt a simple setup by representing the emission as two lamps irradiating the disk simultaneously from two different heights. We then compare the resulting predictions with those obtained for a single lamppost located at an intermediate height. We show at the basis of the transfer function that the deviation of the wavelength-dependent delay curve shows at most a difference of 20% in comparison to a single lamppost, assuming the black hole mass of 10^8 M_{odot}, Eddington ratio 1, and the location of the lamps at 5 and 100 rg. The maximum deviation happens for the lamp luminosity ratio sim3. When simulating light curves for a two-lamp setup and a standard lamppost with the same black hole mass and a sampling rate of 0.1 days, we find no measurable differences in the ICCF profiles between the two setups. Larger black hole mass and considerably lower Eddington ratio would allow to see larger differences between a single lamppost and a two-lampost model. UV/optical reverberation mapping is not very sensitive to the vertical extension of the corona.

  • 2 authors
·
Jan 1, 2025

Environmental dependence of galaxy properties in the southern GAMA regions

Using data from the Galaxy and Mass Assembly (GAMA) survey, we investigate how galaxy properties correlate with the local environment, focusing on the two southern regions of the survey (G02 and G23) that have not previously been examined in this context. We employ two-point and marked correlation functions to quantify the environmental dependence of galaxy color, stellar mass, luminosity across the u, g, r, J, and K bands, as well as star formation rate (SFR) and specific star formation rate (sSFR). We also assess the impact of redshift incompleteness and cosmic variance on these clustering measurements. Our results show that u-r and g-r colors are most strongly correlated with local overdensity, followed by stellar mass. The sSFR exhibits a clear inverse relationship with density of the environment, consistent with the trend observed for u-band luminosity, which traces young stellar populations. In contrast, galaxies brighter in the g, J, and K bands preferentially inhabit denser regions. By comparing our measurements from the southern regions with those from the equatorial regions of GAMA, we find that cosmic variance does not significantly influence our conclusions. However, redshift incompleteness affects the clustering measurements, as revealed through comparisons of subsets within the G02 region. The measured correlations provide key constraints for models of galaxy assembly across mass and environment, while the environmental trends in color and near-infrared luminosity offer a means to trace stellar mass growth and quenching with redshift.

  • 7 authors
·
May 15, 2025

RUBIES: a complete census of the bright and red distant Universe with JWST/NIRSpec

We present the Red Unknowns: Bright Infrared Extragalactic Survey (RUBIES), providing JWST/NIRSpec spectroscopy of red sources selected across ~150 arcmin^2 from public JWST/NIRCam imaging in the UDS and EGS fields. RUBIES novel observing strategy offers a well-quantified selection function: the survey is optimised to reach high (>70%) completeness for bright and red (F150W-F444W>2) sources that are very rare. To place these rare sources in context, we simultaneously observe a reference sample of the 2<z<7 galaxy population, sampling sources at a rate that is inversely proportional to their number density in the 3D space of F444W magnitude, F150W-F444W colour, and photometric redshift. In total, RUBIES observes ~3000 targets across 1<z_{phot}<10 with both the PRISM and G395M dispersers, and ~1500 targets at z_{phot}>3 using only the G395M disperser. The RUBIES data reveal a highly diverse population of red sources that span a broad redshift range (z_{spec}sim1-9), with photometric redshift scatter and outlier fraction that are 3 times higher than for similarly bright sources that are less red. This diversity is not apparent from the photometric SEDs. Only spectroscopy reveals that the SEDs encompass a mixture of galaxies with dust-obscured star formation, extreme line emission, a lack of star formation indicating early quenching, and luminous active galactic nuclei. As a first demonstration of our broader selection function we compare the stellar masses and rest-frame U-V colours of the red sources and our reference sample: red sources are typically more massive (M_*sim10^{10-11.5} M_odot) across all redshifts. However, we find that the most massive systems span a wide range in U-V colour. We describe our data reduction procedure and data quality, and publicly release the reduced RUBIES data and vetted spectroscopic redshifts of the first half of the survey through the DJA.

  • 28 authors
·
Sep 9, 2024

First Light And Reionisation Epoch Simulations (FLARES) VI: The colour evolution of galaxies z=5-15

With its exquisite sensitivity, wavelength coverage, and spatial and spectral resolution, the James Webb Space Telescope is poised to revolutionise our view of the distant, high-redshift (z>5) Universe. While Webb's spectroscopic observations will be transformative for the field, photometric observations play a key role in identifying distant objects and providing more comprehensive samples than accessible to spectroscopy alone. In addition to identifying objects, photometric observations can also be used to infer physical properties and thus be used to constrain galaxy formation models. However, inferred physical properties from broadband photometric observations, particularly in the absence of spectroscopic redshifts, often have large uncertainties. With the development of new tools for forward modelling simulations it is now routinely possible to predict observational quantities, enabling a direct comparison with observations. With this in mind, in this work, we make predictions for the colour evolution of galaxies at z=5-15 using the FLARES: First Light And Reionisation Epoch Simulations cosmological hydrodynamical simulation suite. We predict a complex evolution, driven predominantly by strong nebular line emission passing through individual bands. These predictions are in good agreement with existing constraints from Hubble and Spitzer as well as some of the first results from Webb. We also contrast our predictions with other models in the literature: while the general trends are similar we find key differences, particularly in the strength of features associated with strong nebular line emission. This suggests photometric observations alone should provide useful discriminating power between different models.

  • 9 authors
·
Jul 22, 2022

Understanding of the properties of neural network approaches for transient light curve approximations

Modern-day time-domain photometric surveys collect a lot of observations of various astronomical objects and the coming era of large-scale surveys will provide even more information on their properties. Spectroscopic follow-ups are especially crucial for transients such as supernovae and most of these objects have not been subject to such studies. }{Flux time series are actively used as an affordable alternative for photometric classification and characterization, for instance, peak identifications and luminosity decline estimations. However, the collected time series are multidimensional and irregularly sampled, while also containing outliers and without any well-defined systematic uncertainties. This paper presents a search for the best-performing methods to approximate the observed light curves over time and wavelength for the purpose of generating time series with regular time steps in each passband.}{We examined several light curve approximation methods based on neural networks such as multilayer perceptrons, Bayesian neural networks, and normalizing flows to approximate observations of a single light curve. Test datasets include simulated PLAsTiCC and real Zwicky Transient Facility Bright Transient Survey light curves of transients.}{The tests demonstrate that even just a few observations are enough to fit the networks and improve the quality of approximation, compared to state-of-the-art models. The methods described in this work have a low computational complexity and are significantly faster than Gaussian processes. Additionally, we analyzed the performance of the approximation techniques from the perspective of further peak identification and transients classification. The study results have been released in an open and user-friendly Fulu Python library available on GitHub for the scientific community.

  • 7 authors
·
Sep 15, 2022

Revisiting the Classics: On the Optical Colours of Novae as Standard Crayons

We present a systematic study of the BVRI colours of novae over the course of their eruptions. Where possible, interstellar reddening was measured using the equivalent widths of Diffuse Interstellar Bands (DIBs). Some novae lack spectra with sufficient resolution and signal-to-noise ratios; therefore, we supplement as necessary with 3D and 2D dust maps. Utilising only novae with DIB- or 3D-map-based E(B-V), we find an average intrinsic (B-V)_0 colour of novae at V-band light curve peak of 0.18 with a standard deviation of 0.31, based on a sample of 23 novae. When the light curve has declined by 2 magnitudes (t_2), we find an average (B-V)_0 = -0.02 with a standard deviation of 0.19. These average colours are consistent with previous findings, although the spreads are larger than previously found due to more accurate reddening estimates. We also examined the intrinsic (R-I)_0 and (V-R)_0 colours across our sample. These colours behave similarly to (B-V)_0, except that the (V-R)_0 colour gets redder after peak, likely due to the contributions of emission line flux. We searched for correlations between nova colours and t_2, peak V-band absolute magnitude, and GeV gamma-ray luminosity, but find no statistically significant correlations. Nova colours can therefore be used as standard "crayons" to estimate interstellar reddening from photometry alone, with 0.2--0.3 mag uncertainty. We present a novel Bayesian strategy for estimating distances to Galactic novae based on these E(B-V) measurements, independent of assumptions about luminosity, built using 3D dust maps and a stellar mass model of the Milky Way.

  • 12 authors
·
Dec 19, 2024

First Light And Reionisation Epoch Simulations (FLARES) I: Environmental Dependence of High-Redshift Galaxy Evolution

We introduce the First Light And Reionisation Epoch Simulations (FLARES), a suite of zoom simulations using the EAGLE model. We resimulate a range of overdensities during the Epoch of Reionisation (EoR) in order to build composite distribution functions, as well as explore the environmental dependence of galaxy formation and evolution during this critical period of galaxy assembly. The regions are selected from a large (3.2 ;cGpc)^{3} parent volume, based on their overdensity within a sphere of radius 14,h^{-1};cMpc. We then resimulate with full hydrodynamics, and employ a novel weighting scheme that allows the construction of composite distribution functions that are representative of the full parent volume. This significantly extends the dynamic range compared to smaller volume periodic simulations. We present an analysis of the galaxy stellar mass function (GSMF), the star formation rate distribution function (SFRF) and the star forming sequence (SFS) predicted by \flares, and compare to a number of observational and model constraints. We also analyse the environmental dependence over an unprecedented range of overdensity. Both the GSMF and the SFRF exhibit a clear double-Schechter form, up to the highest redshifts (z = 10). We also find no environmental dependence of the SFS normalisation. The increased dynamic range probed by FLARES will allow us to make predictions for a number of large area surveys that will probe the EoR in coming years, such as WFIRST and Euclid.

  • 7 authors
·
Apr 15, 2020

Optical night sky brightness measurements from the stratosphere

This paper presents optical night sky brightness measurements from the stratosphere using CCD images taken with the Super-pressure Balloon-borne Imaging Telescope (SuperBIT). The data used for estimating the backgrounds were obtained during three commissioning flights in 2016, 2018, and 2019 at altitudes ranging from 28 km to 34 km above sea level. For a valid comparison of the brightness measurements from the stratosphere with measurements from mountain-top ground-based observatories (taken at zenith on the darkest moonless night at high Galactic and high ecliptic latitudes), the stratospheric brightness levels were zodiacal light and diffuse Galactic light subtracted, and the airglow brightness was projected to zenith. The stratospheric brightness was measured around 5.5 hours, 3 hours, and 2 hours before the local sunrise time in 2016, 2018, and 2019 respectively. The B, V, R, and I brightness levels in 2016 were 2.7, 1.0, 1.1, and 0.6 mag arcsec^{-2} darker than the darkest ground-based measurements. The B, V, and R brightness levels in 2018 were 1.3, 1.0, and 1.3 mag arcsec^{-2} darker than the darkest ground-based measurements. The U and I brightness levels in 2019 were 0.1 mag arcsec^{-2} brighter than the darkest ground-based measurements, whereas the B and V brightness levels were 0.8 and 0.6 mag arcsec^{-2} darker than the darkest ground-based measurements. The lower sky brightness levels, stable photometry, and lower atmospheric absorption make stratospheric observations from a balloon-borne platform a unique tool for astronomy. We plan to continue this work in a future mid-latitude long duration balloon flight with SuperBIT.

  • 30 authors
·
Oct 10, 2020

Selection Function of Clusters in Dark Energy Survey Year 3 Data from Cross-Matching with South Pole Telescope Detections

Galaxy clusters selected based on overdensities of galaxies in photometric surveys provide the largest cluster samples. Yet modeling the selection function of such samples is complicated by non-cluster members projected along the line of sight (projection effects) and the potential detection of unvirialized objects (contamination). We empirically constrain the magnitude of these effects by cross-matching galaxy clusters selected in the Dark Energy survey data with the \rdmpr, algorithm with significant detections in three South Pole Telescope surveys (SZ, pol-ECS, pol-500d). For matched clusters, we augment the \rdmpr,catalog by the SPT detection significance. For unmatched objects we use the SPT detection threshold as an upper limit on the SZe signature. Using a Bayesian population model applied to the collected multi-wavelength data, we explore various physically motivated models to describe the relationship between observed richness and halo mass. Our analysis reveals the limitations of a simple lognormal scatter model in describing the data. We rule out significant contamination by unvirialized objects at the high-richness end of the sample. While dedicated simulations offer a well-fitting calibration of projection effects, our findings suggest the presence of redshift-dependent trends that these simulations may not have captured. Our findings highlight that modeling the selection function of optically detected clusters remains a complicated challenge, requiring a combination of simulation and data-driven approaches.

  • 55 authors
·
Feb 18, 2025

The Tale of Two Telescopes: How Hubble Uniquely Complements the James Webb Space Telescope: Galaxies

In this paper, we present a simple but compelling argument, focusing on galaxy science, for preserving the main imagers and operational modes of the Hubble Space Telescope (HST) for as long as is technically feasible. While star-formation started at redshifts zgtrsim10-13, when the universe was less than 300-500 Myr old, the CSFH did not peak until zsimeq1.9, and has steadily declined since that time. Hence, at least half of all stars in the universe formed in the era where HST provides its unique rest-frame UV view of unobscured young, massive stars tracing cosmic star-formation. By rendering a subset of the 556.3 hours of available HST images in 12 filters of the Hubble Ultra Deep Field (HUDF) in an appropriate mix of colors, we illustrate the unique capabilities of HST for galaxy science emphasizing that rest-frame UV-optical wavelength range. We then contrast this with the 52.7 publicly available hours of JWST/NIRCam images in 8 filters of the same HUDF area from the JADES project, rendering these at the redder near-IR wavelengths to illustrate the unique capabilities of JWST to detect older stellar populations at higher redshifts, as well as very dusty stellar populations and Active Galactic Nuclei (AGN). HST uniquely probes (unobscured) young, hot, massive stars in galaxies, while JWST reveals more advanced stages of older stellar populations, as well as relatively short-lived phases where galaxies produce and shed a lot of dust from intense star-formation, and the very high redshift universe (zgtrsim10-11) not accessible by HST. We conclude that HST and JWST are highly complementary facilities that took decades to build to ensure decades of operation. To maximize return on investment on both HST and JWST, ways will need to be found to operate HST imaging instruments in all relevant modes for as long as possible into the JWST mission.

  • 13 authors
·
Oct 1, 2024

Solar System Experiments in the Search for Dark Energy and Dark Matter

We reassess the realistic discovery reach of Solar-System experiments for dark energy (DE) and dark matter (DM), making explicit the bridge from cosmology-level linear responses to local, screened residuals. In scalar-tensor frameworks with a universal conformal coupling A(phi) and chameleon/Vainshtein screening, we map cosmological responses {mu(z,k),Sigma(z,k)} inferred by DESI and Euclid to thin-shell or Vainshtein residuals in deep Solar potentials Phi_N. We emphasize a two-branch strategy. In a detection-first branch, a verified local anomaly -- an Einstein equivalence principle (EEP) violation, a Shapiro-delay signal with |gamma-1|simfewtimes 10^{-6}, an AU-scale Yukawa tail, or a ultralight DM (ULDM) line in clocks/atom interferometers in space (AIS) -- triggers a joint refit of cosmology and Solar-System data under a common microphysical parameterization {V(phi),A(phi)}. In a guardrail branch, Solar-System tests enforce constraints (EEP; PPN parameters gamma,beta; and dot G/G) and close unscreened or weakly screened corners indicated by cosmology. We forecast, per conjunction, |gamma-1|lesssim (2-5)times 10^{-6} (Ka-/X-band or optical Shapiro), eta_{EEP}sim (1--10)times 10^{-17} (drag-free AIS), |dot G/G|sim(3-5)times10^{-15},yr^{-1} (sub-mm-class LLR), a uniform ~2x tightening of AU-scale Yukawa/DM-density bounds, and (3-10)times improved ULDM-coupling reach from clocks. For a conformal benchmark, mu_{ lin,0}=0.10 implies chisimeq mu_{lin,0/2} and a Sun thin shell Delta R/Rlesssim (1/3chi)|gamma-1|/2=2.4times 10^{-3} at |gamma-1|=5times 10^{-6}; Vainshtein screening at 1 AU yields |gamma-1|lesssim 10^{-11}, naturally below near-term reach. We recommend a cost-effective guardrail+discovery portfolio with explicit triggers for escalation to dedicated missions.

  • 1 authors
·
Sep 6, 2025

Cosmic Evolution Early Release Science (CEERS) survey: The colour evolution of galaxies in the distant Universe

The wavelength-coverage and sensitivity of JWST now enables us to probe the rest-frame UV - optical spectral energy distributions (SEDs) of galaxies at high-redshift (z>4). From these SEDs it is, in principle, through SED fitting possible to infer key physical properties, including stellar masses, star formation rates, and dust attenuation. These in turn can be compared with the predictions of galaxy formation simulations allowing us to validate and refine the incorporated physics. However, the inference of physical properties, particularly from photometry alone, can lead to large uncertainties and potential biases. Instead, it is now possible, and common, for simulations to be forward-modelled to yield synthetic observations that can be compared directly to real observations. In this work, we measure the JWST broadband fluxes and colours of a robust sample of 5<z<10 galaxies using the Cosmic Evolution Early Release Science (CEERS) Survey. We then analyse predictions from a variety of models using the same methodology and compare the NIRCam/F277W magnitude distribution and NIRCam colours with observations. We find that the predicted and observed magnitude distributions are similar, at least at 5<z<8. At z>8 the distributions differ somewhat, though our observed sample size is small and thus susceptible to statistical fluctuations. Likewise, the predicted and observed colour evolution show broad agreement, at least at 5<z<8. There is however some disagreement between the observed and modelled strength of the strong line contribution. In particular all the models fails to reproduce the F410M-F444W colour at z>8, though, again, the sample size is small here.

  • 23 authors
·
Nov 14, 2023

Estimation of Classical Cepheid's Physical Parameters from NIR Light Curves

Recent space-borne and ground-based observations provide photometric measurements as time series. The effect of interstellar dust extinction in the near-infrared range is only 10% of that measured in the V band. However, the sensitivity of the light curve shape to the physical parameters in the near-infrared is much lower. So, interpreting these types of data sets requires new approaches like the different large-scale surveys, which create similar problems with big data. Using a selected data set, we provide a method for applying routines implemented in R to extract most information of measurements to determine physical parameters, which can also be used in automatic classification schemes and pipeline processing. We made a multivariate classification of 131 Cepheid light curves (LC) in J, H, and K colors, where all the LCs were represented in 20D parameter space in these colors separately. Performing a Principal Component Analysis (PCA), we got an orthogonal coordinate system and squared Euclidean distances between LCs, with 6 significant eigenvalues, reducing the 20-dimension to 6. We also estimated the optimal number of partitions of similar objects and found it to be equal to 7 in each color; their dependence on the period, absolute magnitude, amplitude, and metallicity are also discussed. We computed the Spearman rank correlations, showing that periods and absolute magnitudes correlate with the first three PCs significantly. The first two PC are also found to have a relationship with the amplitude, but the metallicity effects are only marginal. The method shown can be generalized and implemented in unsupervised classification schemes and analysis of mixed and biased samples. The analysis of our Classical Cepheid near-infrared LC sample showed that the J, H, K curves are insufficient for determination of stellar metallicity, with mass being the key factor shaping them.

  • 2 authors
·
Dec 9, 2024

Exploring the Current Star Formation Rate and Nebula Ratio of Star-Formation Galaxies at z < 0.4 with FADO

The star formation rate is a crucial astrophysical tracer for understanding the formation and evolution of galaxies, determining the interaction between interstellar medium properties and star formation, thereby inferring the evolutionary laws of cosmic star formation history and cosmic energy density. The mainstream approach to studying the stellar property in galaxies relies on pure stellar population synthesis models. However, these methods fail to account for the contamination of SFR caused by nebular gas radiation. Recent studies have indicated that neglecting nebular radiation contamination appears non-negligible in galaxies with intense star-forming activities and at relatively high redshifts, potentially leading to overestimating stellar masses. However, there is currently limited targeted research, particularly regarding galaxies at redshifts (z < 0.4). In this work, 6,511 star-formation galaxies are selected from the SDSS-DR18, and FADO fits their spectra. This tool can exclude nebular radiation contributions in the spectral fitting. A tentative work is carried out to explore the SFR of these galaxies. The results indicate that the median \( H_{\alpha} \) flux obtained from FADO fitting differs from that obtained using the pure stellar population synthesis model {\it qsofitmore} by approximately 0.034 dex. Preliminary evidence suggests that the average nebula ratio increases with redshift. Additionally, we investigated the impact of stellar mass on the nebula ratio at low to moderate redshifts. By comparing two spectral fitting software packages, we found that although the contribution of nebular emission is minimal, it generally shows an increasing trend with redshift. We anticipate that by combining optical and near-infrared spectral data, the influence of nebulae may become more prominent in star-forming galaxies at higher redshifts (e.g., up to z sim 2).

  • 5 authors
·
Apr 11, 2024

Mantis Shrimp: Exploring Photometric Band Utilization in Computer Vision Networks for Photometric Redshift Estimation

We present Mantis Shrimp, a multi-survey deep learning model for photometric redshift estimation that fuses ultra-violet (GALEX), optical (PanSTARRS), and infrared (UnWISE) imagery. Machine learning is now an established approach for photometric redshift estimation, with generally acknowledged higher performance in areas with a high density of spectroscopically identified galaxies over template-based methods. Multiple works have shown that image-based convolutional neural networks can outperform tabular-based color/magnitude models. In comparison to tabular models, image models have additional design complexities: it is largely unknown how to fuse inputs from different instruments which have different resolutions or noise properties. The Mantis Shrimp model estimates the conditional density estimate of redshift using cutout images. The density estimates are well calibrated and the point estimates perform well in the distribution of available spectroscopically confirmed galaxies with (bias = 1e-2), scatter (NMAD = 2.44e-2) and catastrophic outlier rate (eta=17.53%). We find that early fusion approaches (e.g., resampling and stacking images from different instruments) match the performance of late fusion approaches (e.g., concatenating latent space representations), so that the design choice ultimately is left to the user. Finally, we study how the models learn to use information across bands, finding evidence that our models successfully incorporates information from all surveys. The applicability of our model to the analysis of large populations of galaxies is limited by the speed of downloading cutouts from external servers; however, our model could be useful in smaller studies such as generating priors over redshift for stellar population synthesis.

  • 6 authors
·
Jan 15, 2025

Formation of supermassive stars and dense star clusters in metal-poor clouds exposed to strong FUV radiation

The direct collapse scenario, which predicts the formation of supermassive stars (SMSs) as precursors to supermassive black holes (SMBHs), has been explored primarily under the assumption of metal-free conditions. However, environments exposed to strong far-ultraviolet (FUV) radiation, which is another requirement for the direct collapse, are often chemically enriched to varying degrees. In this study, we perform radiation hydrodynamic simulations of star-cluster formation in clouds with finite metallicities, Z=10^{-6} to 10^{-2} Z_{odot}, incorporating detailed thermal and chemical processes and radiative feedback from forming stars. Extending the simulations to approximately two million years, we demonstrate that SMSs with masses exceeding 10^4~M_odot can form even in metal-enriched clouds with Z lesssim 10^{-3} Z_{odot}. The accretion process in these cases, driven by "super-competitive accretion," preferentially channels gas into central massive stars in spite of small (sub-pc) scale fragmentation. At Z simeq 10^{-2} Z_{odot}, however, enhanced cooling leads to intense fragmentation on larger scales, resulting in the formation of dense star clusters dominated by very massive stars with 10^3 M_{odot} rather than SMSs. These clusters resemble young massive or globular clusters observed in the distant and local universe, exhibiting compact morphologies and high stellar surface densities. Our findings suggest that SMS formation is viable below a metallicity threshold of approximately 10^{-3} Z_{odot}, significantly increasing the number density of massive seed black holes to levels sufficient to account for the ubiquitous SMBHs observed in the local universe. Moreover, above this metallicity, this scenario naturally explains the transition from SMS formation to dense stellar cluster formation.

  • 2 authors
·
Dec 19, 2024

Zapped then Napped? A rapidly quenched remnant leaker candidate with a steep spectroscopic β_{UV} slope at z=8.5

We use NIRSpec MSA spectroscopy and NIRCam Photometry to explore the properties of JADES-GS8-RL-1, a rapidly quenched, z=8.5 galaxy with a stellar mass of 10^{8.9}M_odot, a steep blue UV slope, a Balmer break, and no sign of strong emission lines. With a beta_{UV}=-2.8pm 0.2, as measured from the NIRSpec spectrum, JADES-GS8-RL-1 is consistent with negligible dust attenuation and little to no contribution from the nebular continuum alongside a probable high escape fraction. The beta_{UV} slope measured from photometry varies from -3.0 in the central regions to -2.2 at the outskirts suggesting possible regional differences in the escape fraction. There are no high-ionisation emission lines, only a tentative 2.9\sig detection of [OII]. Using photometry, this emission appears to be extended, possibly corresponding to weakly ionised gas expelled during or after the quenching process. JADES-GS8-RL-1 is spatially resolved with a half-light radius of 240 pc and has an exponential, disc-like morphology. It appears to have formed all its stars in a short burst within the past 100 Myr with a formation time of approx70 Myr and a quenching time of approx30 Myr. This quenching would have occurred rapidly, making it a more distant example of the kind of low-mass "mini-quenched" galaxies previously observed at high-z. Due to the extremely blue beta_{UV} slope, our best-fit model predicts a high value for \fesc of >10\%, consistent with the value derived from the beta_{UV} slope, which when combined with our extraordinarily low O32 upper limit suggests JADES-GS8-RL-1 is a fascinating example of a high-z "remnant leaker" in one of its earliest phases, deep in the epoch of reionisation.

  • 20 authors
·
Jan 15, 2025

RayGauss: Volumetric Gaussian-Based Ray Casting for Photorealistic Novel View Synthesis

Differentiable volumetric rendering-based methods made significant progress in novel view synthesis. On one hand, innovative methods have replaced the Neural Radiance Fields (NeRF) network with locally parameterized structures, enabling high-quality renderings in a reasonable time. On the other hand, approaches have used differentiable splatting instead of NeRF's ray casting to optimize radiance fields rapidly using Gaussian kernels, allowing for fine adaptation to the scene. However, differentiable ray casting of irregularly spaced kernels has been scarcely explored, while splatting, despite enabling fast rendering times, is susceptible to clearly visible artifacts. Our work closes this gap by providing a physically consistent formulation of the emitted radiance c and density {\sigma}, decomposed with Gaussian functions associated with Spherical Gaussians/Harmonics for all-frequency colorimetric representation. We also introduce a method enabling differentiable ray casting of irregularly distributed Gaussians using an algorithm that integrates radiance fields slab by slab and leverages a BVH structure. This allows our approach to finely adapt to the scene while avoiding splatting artifacts. As a result, we achieve superior rendering quality compared to the state-of-the-art while maintaining reasonable training times and achieving inference speeds of 25 FPS on the Blender dataset. Project page with videos and code: https://raygauss.github.io/

  • 3 authors
·
Aug 6, 2024 2

First Light and Reionization Epoch Simulations (FLARES) -- XVIII: the ionising emissivities and hydrogen recombination line properties of early AGN

One of the most remarkable results from the James Webb Space Telescope has been the discovery of a large population of compact sources exhibiting strong broad Halpha emission, typically interpreted to be low-luminosity broad-line (Type 1) active galactic nuclei (BLAGN). An important question is whether these observations are in tension with galaxy formation models, and if so how? While comparisons have been made using physical properties (i.e.~black hole mass and accretion rate) inferred from observations, these require the use of SED modelling assumptions, or locally inferred scaling relations, which may be unjustified, at least in the distant high-redshift Universe. In this work we take an alternative approach and forward model predictions from the First Light And Reionisation Epoch Simulations (FLARES) suite of cosmological hydrodynamical zoom simulations to predict the observable properties of BLAGN. We achieve this by first coupling \flares\ with the \qsosed\ model to predict the ionising photon luminosities of high-redshift (z>5) AGN. To model the observed broad Halpha emission we then assume a constant conversion factor and covering fraction, and the fraction of AGN that have observable broad-lines. With a reasonable choice of these parameters, \flares\ is able to reproduce observational constraints on the Halpha luminosity function and equivalent width distribution at z=5.

  • 13 authors
·
May 8, 2025

Adaptive Detection of Fast Moving Celestial Objects Using a Mixture of Experts and Physical-Inspired Neural Network

Fast moving celestial objects are characterized by velocities across the celestial sphere that significantly differ from the motions of background stars. In observational images, these objects exhibit distinct shapes, contrasting with the typical appearances of stars. Depending on the observational method employed, these celestial entities may be designated as near-Earth objects or asteroids. Historically, fast moving celestial objects have been observed using ground-based telescopes, where the relative stability of stars and Earth facilitated effective image differencing techniques alongside traditional fast moving celestial object detection and classification algorithms. However, the growing prevalence of space-based telescopes, along with their diverse observational modes, produces images with different properties, rendering conventional methods less effective. This paper presents a novel algorithm for detecting fast moving celestial objects within star fields. Our approach enhances state-of-the-art fast moving celestial object detection neural networks by transforming them into physical-inspired neural networks. These neural networks leverage the point spread function of the telescope and the specific observational mode as prior information; they can directly identify moving fast moving celestial objects within star fields without requiring additional training, thereby addressing the limitations of traditional techniques. Additionally, all neural networks are integrated using the mixture of experts technique, forming a comprehensive fast moving celestial object detection algorithm. We have evaluated our algorithm using simulated observational data that mimics various observations carried out by space based telescope scenarios and real observation images. Results demonstrate that our method effectively detects fast moving celestial objects across different observational modes.

  • 5 authors
·
Apr 10, 2025

Analytical sensitivity curves of the second-generation time-delay interferometry

Forthcoming space-based gravitational-wave (GW) detectors will employ second-generation time-delay interferometry (TDI) to suppress laser frequency noise and achieve the sensitivity required for GW detection. We introduce an inverse light-path operator P_{i_{1}i_{2}i_{3}ldots i_{n-1}i_{n}}, which enables simple representation of second-generation TDI combinations and a concise description of light propagation. Analytical expressions and high-accuracy approximate formulas are derived for the sky- and polarization-averaged response functions, noise power spectral densities (PSDs), and sensitivity curves of TDI Michelson, (alpha,beta,gamma), Monitor, Beacon, Relay, and Sagnac combinations, as well as their orthogonal A, E, T channels. Our results show that: (i) second-generation TDIs have the same sensitivities as their first-generation counterparts; (ii) the A, E, T sensitivities and the optimal sensitivity are independent of the TDI generation and specific combination; (iii) the A and E channels have equal averaged responses, noise PSDs, and sensitivities, while the T channel has much weaker response and sensitivity at low frequencies (2pi fL/clesssim3); (iv) except for the (alpha,beta,gamma) and zeta combinations and the T channel, all sensitivity curves exhibit a flat section in the range f_{n}<flesssim 1.5/(2pi L/c), where the noise-balance frequency f_{n} separates the proof-mass- and optical-path-dominated regimes, while the response-transition frequency sim 1.5/(2pi L/c) separates the response function's low- and high-frequency behaviors; (v) the averaged response, noise PSD, and sensitivity of zeta scales with those of the T channel. These analytical and approximate formulations provide useful benchmarks for instrument optimization and data-analysis studies for future space-based GW detectors.

  • 1 authors
·
Nov 3, 2025

Synthetic Light Curves and Spectra for the Photospheric Phase of a 3D Stripped-Envelope Supernova Explosion Model

We present synthetic light curves and spectra from three-dimensional (3D) Monte Carlo radiative transfer simulations based on a 3D core-collapse supernova explosion model of an ultra-stripped 3.5,M_{odot} progenitor. Our calculations predict a fast and faint transient with Delta m_{15} sim 1- 2,mag and peak bolometric luminosity between -15.3,mag and -16.4,mag. Due to a large-scale unipolar asymmetry in the distribution of ^{56}Ni, there is a pronounced viewing-angle dependence with about 1,mag difference between the directions of highest and lowest luminosity. The predicted spectra for this rare class of explosions do not yet match any observed counterpart. They are dominated by prominent Mg~II lines, but features from O, C, Si, and Ca are also found. In particular, the O~I line at 7{774} appears as a blended feature together with Mg~II emission. Our model is not only faster and fainter than the observed Ib/c supernova population, but also shows a correlation between higher peak luminosity and larger Delta m_{15} that is not present in observational samples. A possible explanation is that the unusually small ejecta mass of our model accentuates the viewing-angle dependence of the photometry. We suggest that the viewing-angle dependence of the photometry may be used to constrain asymmetries in explosion models of more typical stripped-envelope supernova progenitors in future.

  • 5 authors
·
Oct 28, 2024

Pre-perihelion Development of Interstellar Comet 3I/ATLAS

We describe pre-perihelion optical observations of interstellar comet 3I/ATLAS taken during July - September 2025 using the Nordic Optical Telescope. Fixed aperture photometry of the comet is well described by a power law function of heliocentric distance, rH, with the exponent (``index") n = 3.8+/-0.3 across the 4.6 au to 1.8 au distance range (phase function 0.04+/-0.02 magnitude/degree assumed). This indicates that the dust production rates vary in proportion to rH**(-1.8+/-0.3). An rH**(-2) variation is expected of a strongly volatile material, and consistent with independent spectroscopic observations showing that carbon dioxide is the primary driver of activity. The measured heliocentric index is unremarkable in the context of solar system comets, for which n is widely dispersed, and provides no basis on which to describe 3I as either dynamically old (thermally processed) or new (pristine). The morphology of the comet changes from a Sun-facing dust fan in the early 2025 July observations, to one dominated by an antisolar dust tail at later dates. We attribute the delayed emergence of the tail to the large size (effective radius 0.1 mm) and slow ejection (5 m/s) of the optically dominant dust particles, and their consequently sluggish response to solar radiation pressure. Small (micron-sized) particles may be present but not in numbers sufficient to dominate the scattering cross-section. Their relative depletion possibly reflects interparticle cohesion, which binds small particles more effectively than large ones. A similar preponderance of 0.1 mm grains was reported in 2I/Borisov. However, 2I differed from 3I in having a much smaller (asteroid-like) heliocentric index, n = 1.9+/-0.1. Dust production rates in 3I are 180 kg/s at 2 au, compared with 70 kg/s in 2I/Borisov at the same distance.

  • 2 authors
·
Oct 21, 2025

Soft X-ray line emission from hot gas in intervening galaxy halos and diffuse gas in the cosmic web

Cosmic hot-gas emission is closely related to halo gas acquisition and galactic feedback processes. Their X-ray observations reveal important physical properties and movements of the baryonic cycle of galactic ecosystems. However, the measured emissions toward a target at a cosmological distance would always include contributions from hot gases along the entire line of sight to the target. Observationally, such contaminations are routinely subtracted via different strategies. With this work, we aim to answer an interesting theoretical question regarding the amount of soft X-ray line emissions from intervening hot gases of different origins. We tackled this problem with the aid of the TNG100 simulation. We generated typical wide-field light cones and estimated their impacts on spectral and flux measurements toward X-ray-emitting galaxy-, group- and cluster-halo targets at lower redshifts. We split the intervening hot gases into three categories; that is, the hot gas that is gravitationally bound to either star-forming or quenched galaxy halos, and the diffuse gas, which is more tenuously distributed permeating the cosmic web structures. We find that along a given line of sight, the diffuse gas that permeates the cosmic web structures produces strong oxygen and iron line emissions at different redshifts. The diffuse gas emission in the soft X-ray band can be equal to the emission from hot gases that are gravitationally bound to intervening galaxy halos. The hot-gas emission from the quiescent galaxy halos can be significantly less than that from star-forming halos along the line of sight. The fluxes from all of the line-of-sight emitters as measured in the energy band of 0.4--0.85 keV can reach ~20--200 % of the emission from the target galaxy, group, and cluster halos.

  • 4 authors
·
Jun 17, 2025

The SRG/eROSITA All-Sky Survey: Large-scale view of the Centaurus cluster

Methods. We utilized the combined five SRG/eROSITA All-Sky Survey data (eRASS:5) to perform X-ray imaging and spectral analyses of the Centaurus cluster in various directions to large radii. Surface brightness (SB) profiles out to 2R_{200} were constructed. We acquired gas temperature, metallicity, and normalization per area profiles out to R_{200}. We compared our results with previous Centaurus studies, cluster outskirts measurements, and simulations. Comprehensive sky background analysis was done across the FoV, in particular, to assess the variation of the eROSITA Bubble emission that partially contaminates the field. Results. The processed X-ray images show the known sloshing-induced structures in the core. The core (rleq11~kpc) is better described with a 2T model than a 1T model. Here, we measured lower T from the cooler component (~1.0 keV) and higher Z (sim!1.6Z_odot), signifying an iron bias. In the intermediate radial range, we observed prominent SB and normalization per area excesses in the eastern sector (Cen 45 location), reaching out to R_{500}. Temperature enhancements near the location of Cen 45 imply that the gas is shock-heated due to the interaction with Cen 30, the significant excess behind Cen 45 center might be the tail/ram-pressure-stripped gas. We found good agreement between the outskirt temperatures with the profile from simulations and fit from Suzaku outskirts measurements. We detected significant SB emission to the sky background level out to R_{200} with a 3.5sigma and followed by 2.9sigma at 1.1R_{200}. The metallicity at R_{500}-R_{200} is low but within the ranges of other outskirts studies. Conclusions. We present the first measurement of ICM morphology and properties of Centaurus cluster sampling the whole azimuth beyond 30', increasing the probed volume by a factor of almost 30.

  • 12 authors
·
Apr 7, 2024

Indirect dark matter searches at ultrahigh energy neutrino detectors

High to ultrahigh energy neutrino detectors can uniquely probe the properties of dark matter χ by searching for the secondary products produced through annihilation and/or decay processes. We evaluate the sensitivities to dark matter thermally averaged annihilation cross section langleσvrangle and partial decay width into neutrinos Γ_{χrightarrowνbarν} (in the mass scale 10^7 leq m_χ/{rm GeV} leq 10^{15}) for next generation observatories like POEMMA and GRAND. We show that in the range 10^7 leq m_χ/{rm GeV} leq 10^{11}, space-based Cherenkov detectors like POEMMA have the advantage of full-sky coverage and rapid slewing, enabling an optimized dark matter observation strategy focusing on the Galactic center. We also show that ground-based radio detectors such as GRAND can achieve high sensitivities and high duty cycles in radio quiet areas. We compare the sensitivities of next generation neutrino experiments with existing constraints from IceCube and updated 90\% C.L. upper limits on langleσvrangle and Γ_{χrightarrowνbarν} using results from the Pierre Auger Collaboration and ANITA. We show that in the range 10^7 leq m_χ/{rm GeV} leq 10^{11} POEMMA and GRAND10k will improve the neutrino sensitivity to particle dark matter by factors of 2 to 10 over existing limits, whereas GRAND200k will improve this sensitivity by two orders of magnitude. In the range 10^{11} leq m_χ/{rm GeV} leq 10^{15}, POEMMA's fluorescence observation mode will achieve an unprecedented sensitivity to dark matter properties. Finally, we highlight the importance of the uncertainties related to the dark matter distribution in the Galactic halo, using the latest fit and estimates of the Galactic parameters.

  • 8 authors
·
Jun 8, 2021

A Comparative Study on Generative Models for High Resolution Solar Observation Imaging

Solar activity is one of the main drivers of variability in our solar system and the key source of space weather phenomena that affect Earth and near Earth space. The extensive record of high resolution extreme ultraviolet (EUV) observations from the Solar Dynamics Observatory (SDO) offers an unprecedented, very large dataset of solar images. In this work, we make use of this comprehensive dataset to investigate capabilities of current state-of-the-art generative models to accurately capture the data distribution behind the observed solar activity states. Starting from StyleGAN-based methods, we uncover severe deficits of this model family in handling fine-scale details of solar images when training on high resolution samples, contrary to training on natural face images. When switching to the diffusion based generative model family, we observe strong improvements of fine-scale detail generation. For the GAN family, we are able to achieve similar improvements in fine-scale generation when turning to ProjectedGANs, which uses multi-scale discriminators with a pre-trained frozen feature extractor. We conduct ablation studies to clarify mechanisms responsible for proper fine-scale handling. Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts, as suggested by the evaluation we conduct. We make all code, models and workflows used in this study publicly available at https://github.com/SLAMPAI/generative-models-for-highres-solar-images.

  • 5 authors
·
Apr 14, 2023

FLARES IX: The Physical Mechanisms Driving Compact Galaxy Formation and Evolution

In the FLARES (First Light And Reionisation Epoch Simulations) suite of hydrodynamical simulations, we find the high redshift (z>5) intrinsic size-luminosity relation is, surprisingly, negatively sloped. However, after including the effects of dust attenuation we find a positively sloped UV observed size-luminosity relation in good agreement with other simulated and observational studies. In this work, we extend this analysis to probe the underlying physical mechanisms driving the formation and evolution of the compact galaxies driving the negative size-mass/size-luminosity relation. We find the majority of compact galaxies (R_{1/2, star}< 1 pkpc), which drive the negative slope of the size-mass relation, have transitioned from extended to compact sizes via efficient centralised cooling, resulting in high specific star formation rates in their cores. These compact stellar systems are enshrouded by non-star forming gas distributions as much as 100times larger than their stellar counterparts. By comparing with galaxies from the EAGLE simulation suite, we find that these extended gas distributions `turn on' and begin to form stars between z=5 and z=0 leading to increasing sizes, and thus the evolution of the size-mass relation from a negative to a positive slope. This explicitly demonstrates the process of inside-out galaxy formation in which compact bulges form earlier than the surrounding discs.

  • 9 authors
·
Jan 12, 2023

Water Snowline in Young Stellar Objects with Various Density Structures Using Radiative Transfer Models

Tracing the water snowline in low-mass young stellar objects (YSOs) is important because dust grain growth is promoted and the chemical composition varies at the water snowline, which influences planet formation and its properties. In protostellar envelopes, the water snowline can be estimated as a function of luminosity using a relation derived from radiative transfer models, and these predictions are consistent with observations. However, accurately estimating the water snowline in protoplanetary disks requires new relations that account for the disk structure. We present the relations between luminosity and water snowline using the dust continuum radiative transfer models with various density structures. We adopt two-dimensional density structures for an envelope-only model (Model E), an envelope+disk+cavity model (Model E+D), and a protoplanetary disk model (Model PPD). The relations between the water snowline, where T_dust = 100 K, and the total luminosity, ranging 0.1-1,000 solar luminosity, are well fitted by a power-law relation, R_snow=a * (L/L_solar)^p au. The factor a decreases with increasing disk density, while the power index p has values around 0.5 in all models. As the disk becomes denser, the water snowline forms at smaller radii even at the same luminosity, since dense dust hinders photon propagation. We also explore the effect of viscous heating on the water snowline. In Model PPD with viscous heating, the water snowline shifts outward by a few au up to 15 au, increasing the factor a and decreasing the power index p. In Model E+D with lower disk mass, the effect of viscous heating is negligible, indicating that the disk mass controls the effect. The discrepancy between our models and direct observations provides insights into the recent outburst event and the presence of a disk structure in low-mass YSOs.

  • 4 authors
·
Oct 16, 2025

Efficient View Synthesis with Neural Radiance Distribution Field

Recent work on Neural Radiance Fields (NeRF) has demonstrated significant advances in high-quality view synthesis. A major limitation of NeRF is its low rendering efficiency due to the need for multiple network forwardings to render a single pixel. Existing methods to improve NeRF either reduce the number of required samples or optimize the implementation to accelerate the network forwarding. Despite these efforts, the problem of multiple sampling persists due to the intrinsic representation of radiance fields. In contrast, Neural Light Fields (NeLF) reduce the computation cost of NeRF by querying only one single network forwarding per pixel. To achieve a close visual quality to NeRF, existing NeLF methods require significantly larger network capacities which limits their rendering efficiency in practice. In this work, we propose a new representation called Neural Radiance Distribution Field (NeRDF) that targets efficient view synthesis in real-time. Specifically, we use a small network similar to NeRF while preserving the rendering speed with a single network forwarding per pixel as in NeLF. The key is to model the radiance distribution along each ray with frequency basis and predict frequency weights using the network. Pixel values are then computed via volume rendering on radiance distributions. Experiments show that our proposed method offers a better trade-off among speed, quality, and network size than existing methods: we achieve a ~254x speed-up over NeRF with similar network size, with only a marginal performance decline. Our project page is at yushuang-wu.github.io/NeRDF.

  • 6 authors
·
Aug 21, 2023

UNIONS: The Ultraviolet Near-Infrared Optical Northern Survey

The Ultraviolet Near-Infrared Optical Northern Survey (UNIONS) is a "collaboration of collaborations" that is using the Canada-France-Hawai'i Telescope, the Pan-STARRS telescopes, and the Subaru Observatory to obtain ugriz images of a core survey region of 6250 deg^2 of the northern sky. The 10sigma point source depth of the data, as measured within a 2-arcsecond diameter aperture, are [u,g,r,i,z] = [23.7, 24.5, 24.2, 23.8, 23.3]\ in AB magnitudes. UNIONS is addressing some of the most fundamental questions in astronomy, including the properties of dark matter, the growth of structure in the Universe from the very smallest galaxies to large-scale structure, and the assembly of the Milky Way. It is set to become the major ground-based legacy survey for the northern hemisphere for the next decade and provides an essential northern complement to the static-sky science of the Vera C. Rubin Observatory's Legacy Survey of Space and Time. UNIONS supports the core science mission of the {\it Euclid} space mission by providing the data necessary in the northern hemisphere for the calibration of the wavelength dependence of the {\it Euclid} point-spread function and derivation of photometric redshifts in the North Galactic Cap. This region contains the highest quality sky for {\it Euclid}, with low backgrounds from the zodiacal light, stellar density, extinction, and emission from Galactic cirrus. Here, we describe the UNIONS survey components, science goals, data products, and the current status of the overall program.

  • 89 authors
·
Mar 17, 2025

Red, hot, and very metal poor: extreme properties of a massive accreting black hole in the first 500 Myr

The James Webb Space Telescope (JWST) has recently discovered a new population of objects at high redshift referred to as `Little Red Dots' (LRDs). Their nature currently remains elusive, despite their surprisingly high inferred number densities. This emerging population of red point-like sources is reshaping our view of the early Universe and may shed light on the formation of high-redshift supermassive black holes. Here we present a spectroscopically confirmed LRD CANUCS-LRD-z8.6 at z_{rm spec}=8.6319pm 0.0005 hosting an Active Galactic Nucleus (AGN), using JWST data. This source shows the typical spectral shape of an LRD (blue UV and red optical continuum, unresolved in JWST imaging), along with broad Hbeta line emission, detection of high-ionization emission lines (CIV, NIV]) and very high electron temperature indicative of the presence of AGN. This is also combined with a very low metallicity (Z<0.1 Z_odot). The presence of all these diverse features in one source makes CANUCS-LRD-z8.6 unique. We show that the inferred black hole mass of CANUCS-LRD-z8.6 (M_{rm BH}=1.0^{+0.6}_{-0.4}times 10^{8}rm ~M_odot) strongly challenges current standard theoretical models and simulations of black hole formation, and forces us to adopt `ad hoc' prescriptions. Indeed if massive seeds, or light seeds with super-Eddington accretion, are considered, the observed BH mass of CANUCS-LRD-z8.6 at z=8.6 can be reproduced. Moreover, the black hole is over-massive compared to its host, relative to the local M_{rm BH}-M_* relations, pointing towards an earlier and faster evolution of the black hole compared to its host galaxy.

  • 32 authors
·
Dec 6, 2024

Identification of Low Surface Brightness Tidal Features in Galaxies Using Convolutional Neural Networks

Faint tidal features around galaxies record their merger and interaction histories over cosmic time. Due to their low surface brightnesses and complex morphologies, existing automated methods struggle to detect such features and most work to date has heavily relied on visual inspection. This presents a major obstacle to quantitative study of tidal debris features in large statistical samples, and hence the ability to be able to use these features to advance understanding of the galaxy population as a whole. This paper uses convolutional neural networks (CNNs) with dropout and augmentation to identify galaxies in the CFHTLS-Wide Survey that have faint tidal features. Evaluating the performance of the CNNs against previously-published expert visual classifications, we find that our method achieves high (76%) completeness and low (20%) contamination, and also performs considerably better than other automated methods recently applied in the literature. We argue that CNNs offer a promising approach to effective automatic identification of low surface brightness tidal debris features in and around galaxies. When applied to forthcoming deep wide-field imaging surveys (e.g. LSST, Euclid), CNNs have the potential to provide a several order-of-magnitude increase in the sample size of morphologically-perturbed galaxies and thereby facilitate a much-anticipated revolution in terms of quantitative low surface brightness science.

  • 4 authors
·
Nov 28, 2018

Learning Multiple-Scattering Solutions for Sphere-Tracing of Volumetric Subsurface Effects

Accurate subsurface scattering solutions require the integration of optical material properties along many complicated light paths. We present a method that learns a simple geometric approximation of random paths in a homogeneous volume of translucent material. The generated representation allows determining the absorption along the path as well as a direct lighting contribution, which is representative of all scattering events along the path. A sequence of conditional variational auto-encoders (CVAEs) is trained to model the statistical distribution of the photon paths inside a spherical region in presence of multiple scattering events. A first CVAE learns to sample the number of scattering events, occurring on a ray path inside the sphere, which effectively determines the probability of the ray being absorbed. Conditioned on this, a second model predicts the exit position and direction of the light particle. Finally, a third model generates a representative sample of photon position and direction along the path, which is used to approximate the contribution of direct illumination due to in-scattering. To accelerate the tracing of the light path through the volumetric medium toward the solid boundary, we employ a sphere-tracing strategy that considers the light absorption and is able to perform statistically accurate next-event estimation. We demonstrate efficient learning using shallow networks of only three layers and no more than 16 nodes. In combination with a GPU shader that evaluates the CVAEs' predictions, performance gains can be demonstrated for a variety of different scenarios. A quality evaluation analyzes the approximation error that is introduced by the data-driven scattering simulation and sheds light on the major sources of error in the accelerated path tracing process.

  • 3 authors
·
Nov 5, 2020

Pz Cats: Photometric redshift catalogs based on DES Y3 BAO sample

The photometric redshift estimation (photo-z) has been developed over the years with various methods. In this work, we analyse four different photo-z estimators using the Dark Energy Survey Y3 BAO Sample: ANNz2, BPZ, ENF, and DNF. Unlike what is usually found in the literature, we investigate the possibility of selecting the best galaxies according to their redshift Probability Distribution Function (PDF). We selected 25,760 galaxies from four different spectroscopic surveys and cross-matched them with the photo-z sample. These galaxies served to understand the redshift bias and its 68th percentile sigma_{68}. We found that within a range of 0.79<z_p<0.85 there is the lowest sigma for all the estimators we analysed. DNF has the biggest absolute value of the bias (sigma), while ENF, ANNz2 and BPZ lose precision for a redshift range below 0.7 and higher than 0.9. If one wants to pick the best galaxies by removing the bins with the worst bias, one will find that ANNz2 is the most robust algorithm for all chosen criteria. When selecting the best PDFs, the resulting sub-samples gave BPZ with more selected objects. ANNz2 shows better precision, ENF has the worst selection of Gaussian PDFs, with very few galaxies left for an LSS study. We also showed that even though the PDFs are smooth, there are catastrophic redshift results. Lastly, DNF is the worst in precision but with sufficient galaxies for cosmological analysis. We also selected galaxies whose PDFs have only secondary peaks not bigger than 30\% of the main peak height, called Small Peaks. For these sub-samples, ANNz2 outperformed the other algorithms. We will make all catalogs publicly available through the package Pz Cats.

  • 2 authors
·
Jan 7, 2025

oMEGACat. VII. Tracing Interstellar and Intracluster Medium of ω Centauri using Sodium Absorptions

We investigate the foreground interstellar medium along the line of sight and intracluster medium of omega Centauri (omega Cen) by measuring the equivalent width of Na I D absorptions from MUSE observations. The large line-of-sight velocity difference between omega Cen and the foreground enables us to separate Na I D absorption contributed from atomic gas in the interstellar and intracluster medium. We find that small-scale substructures in the foreground Na I D distribution correlate with differential reddening derived from photometric methods. Using an empirical Na I D equivalent width-reddening relation, we determine an average reddening of E(B-V)=0.153pm0.003 mag within the half-light radius of omega Cen. However, the Na I D-inferred differential reddening is significantly larger than photometric estimates. This is likely due to scatter in the Na I D-reddening relation. We find no evidence for intracluster atomic gas from spectra of horizontal branch stars, as there is no significant Na I D absorption at omega Cen's systemic velocity. Given this non-detection, we place the strongest upper limit to date on the intracluster atomic gas column density in omega Cen of lesssim2.17 times 10^{18}~cm^{-2}. We also estimate the ionized gas density from pulsar dispersion measure variations, which exceed the atomic gas limit by sim50 times. Nevertheless, the strong correlation between dispersion measure and foreground Na I D suggests that much or all of this ionized gas resides in the foreground. Given ongoing mass loss from bright giant stars, our findings imply that the intracluster gas accumulation timescale is short, and gas removal in the cluster is likely not tied to stripping as omega Cen passes through the Galactic disk.

  • 17 authors
·
Sep 30, 2025

First Light and Reionization Epoch Simulations (FLARES) -- XV: The physical properties of super-massive black holes and their impact on galaxies in the early universe

Understanding the co-evolution of super-massive black holes (SMBHs) and their host galaxies remains a key challenge of extragalactic astrophysics, particularly the earliest stages at high-redshift. However, studying SMBHs at high-redshift with cosmological simulations, is challenging due to the large volumes and high-resolution required. Through its innovative simulation strategy, the First Light And Reionisation Epoch Simulations (FLARES) suite of cosmological hydrodynamical zoom simulations allows us to simulate a much wider range of environments which contain SMBHs with masses extending to M_{bullet}>10^{9} M_{odot} at z=5. In this paper, we use FLARES to study the physical properties of SMBHs and their hosts in the early Universe (5le, z le10). FLARES predicts a sharply declining density with increasing redshift, decreasing by a factor of 100 over the range z=5to 10. Comparison between our predicted bolometric luminosity function and pre-JWST observations yield a good match. However, recent JWST observations appear to suggest a larger contribution of SMBHs than previously observed, or predicted by FLARES. Finally, by using a re-simulation with AGN feedback disabled, we explore the impact of AGN feedback on their host galaxies. This reveals that AGN feedback results in a reduction of star formation activity, even at z>5, but only in the most massive galaxies. A deeper analysis reveals that AGN are also the cause of suppressed star formation in passive galaxies but that the presence of an AGN doesn't necessarily result in the suppression of star formation.

  • 12 authors
·
Apr 3, 2024

A helical magnetic field in quasar NRAO150 revealed by Faraday rotation

Active Galactic Nuclei (AGN) are some of the most luminous and extreme environments in the Universe. The central engines of AGN, believed to be super-massive black-holes, are fed by accretion discs threaded by magnetic fields within a dense magneto-ionic medium. We report our findings from polarimetric Very-long-baseline Interferometry (VLBI) observations of quasar NRAO150 taken in October 2022 using a combined network of the Very Long Baseline Array (VLBA) and Effelsberg 100-m Radio Telescope. These observations are the first co-temporal multi-frequency polarimetric VLBI observations of NRAO150 at frequencies above 15GHz. We use the new VLBI polarization calibration procedure, GPCAL, with polarization observations of frequencies of 12GHz, 15GHz, 24GHz, and 43GHz of NRAO150. From these observations, we measure Faraday rotation. Using our measurement of Faraday rotation, we also derive the intrinsic electric vector position angle (EVPA0) for the source. As a complementary measurement we determine the behavior of polarization as a function of observed frequency. The polarization from NRAO150 only comes from the core region, with a peak polarization intensity occurring at 24GHz. Across the core region of NRAO150 we see clear gradients in Faraday rotation and EVPA0 values that are aligned with the direction of the jet curving around the core region. We find that for the majority of the polarized region the polarization fraction is greater at higher frequencies, with intrinsic polarization fractions in the core 3%. The Faraday rotation gradients and circular patterns in EVPA0 are strong evidence for a helical/toroidal magnetic field, and the presence of low intrinsic polarization fractions indicate that the polarized emission and hence the helical/toroidal magnetic field, occur within the innermost jet.

  • 10 authors
·
Mar 5, 2025

Analysis of Two Models for the Angular Structure of the Outflows Producing the Swift/XRT "Larger-Angle Emission" of Gamma-Ray Bursts

The instantaneous emission from a relativistic surface endowed with a Lorentz factor Gamma that decreases away from the outflow symmetry axis can naturally explain the three phases observed by Swift/XRT in GRBs and their afterglows (GRB tail, afterglow plateau and post-plateau). We expand the analytical formalism of the "Larger-Angle Emission" model previously developed for "Power-Law" outflows to "n-Exponential" outflows (e.g. exponential with n=1 and Gaussian with n=2) and compare their abilities to account for the X-ray emission of XRT afterglows. We assume power-law Gamma-dependences of two spectral characteristics (peak-energy and peak intensity) and find that, unlike Power-Law outflows, n-Exponential outflows cannot account for plateaus with a temporal dynamical range larger than 100. To include all information existing in the Swift/XRT measurements of X-ray aferglows (0.3-10 keV unabsorbed flux and effective spectral slope), we calculate 0.3 keV and 10 keV light-curves using a broken power-law emission spectrum of peak-energy and low-and high-energy slopes that are derived from the effective slope measured by XRT. This economical peak-energy determination is found to be consistent with more expensive spectral fits. The angular distributions of the Lorentz factor, comoving frame peak-energy, and peak-intensity (Gamma (theta), E'_p (theta), i'_p(theta)) constrain the (yet-to-be determined) convolution of various features of the production of relativistic jets by solar-mass black-holes and of their propagation through the progenitor/circumburst medium, while the E'_p (Gamma) and i'_p (Gamma) dependences may constrain the GRB dissipation mechanism and the GRB emission process.

  • 1 authors
·
May 9, 2025

An Atlas of Color-selected Quiescent Galaxies at z>3 in Public JWST Fields

We present the results of a systematic search for candidate quiescent galaxies in the distant Universe in eleven JWST fields with publicly available observations collected during the first three months of operations and covering an effective sky area of sim145 arcmin^2. We homogeneously reduce the new JWST data and combine them with existing observations from the Hubble,Space,Telescope. We select a robust sample of sim80 candidate quiescent and quenching galaxies at 3 < z < 5 using two methods: (1) based on their rest-frame UVJ colors, and (2) a novel quantitative approach based on Gaussian Mixture Modeling of the NUV-U, U-V, and V-J rest-frame color space, which is more sensitive to recently quenched objects. We measure comoving number densities of massive (M_stargeq 10^{10.6} M_odot) quiescent galaxies consistent with previous estimates relying on ground-based observations, after homogenizing the results in the literature with our mass and redshift intervals. However, we find significant field-to-field variations of the number densities up to a factor of 2-3, highlighting the effect of cosmic variance and suggesting the presence of overdensities of red quiescent galaxies at z>3, as it could be expected for highly clustered massive systems. Importantly, JWST enables the robust identification of quenching/quiescent galaxy candidates at lower masses and higher redshifts than before, challenging standard formation scenarios. All data products, including the literature compilation, are made publicly available.

  • 27 authors
·
Feb 21, 2023

The DESI PRObabilistic Value-Added Bright Galaxy Survey (PROVABGS) Mock Challenge

The PRObabilistic Value-Added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of galaxy properties, such as stellar mass (M_*), star formation rate ({rm SFR}), stellar metallicity (Z_{rm MW}), and stellar age (t_{rm age, MW}), for >10 million galaxies of the DESI Bright Galaxy Survey. Full posterior distributions of the galaxy properties will be inferred using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and Legacy Surveys photometry. In this work, we present the SED model, Bayesian inference framework, and methodology of PROVABGS. Furthermore, we apply the PROVABGS SED modeling on realistic synthetic DESI spectra and photometry, constructed using the L-GALAXIES semi-analytic model. We compare the inferred galaxy properties to the true galaxy properties of the simulation using a hierarchical Bayesian framework to quantify accuracy and precision. Overall, we accurately infer the true M_*, {rm SFR}, Z_{rm MW}, and t_{rm age, MW} of the simulated galaxies. However, the priors on galaxy properties induced by the SED model have a significant impact on the posteriors. They impose a {rm SFR}{>}10^{-1} M_odot/{rm yr} lower bound on {rm SFR}, a {sim}0.3 dex bias on log Z_{rm MW} for galaxies with low spectral signal-to-noise, and t_{rm age, MW} < 8,{rm Gyr} upper bound on stellar age. This work also demonstrates that a joint analysis of spectra and photometry significantly improves the constraints on galaxy properties over photometry alone and is necessary to mitigate the impact of the priors. With the methodology presented and validated in this work, PROVABGS will maximize information extracted from DESI observations and provide a probabilistic value-added galaxy catalog that will extend current galaxy studies to new regimes and unlock cutting-edge probabilistic analyses.

  • 19 authors
·
Feb 3, 2022

Euclid. II. The VIS Instrument

This paper presents the specification, design, and development of the Visible Camera (VIS) on the ESA Euclid mission. VIS is a large optical-band imager with a field of view of 0.54 deg^2 sampled at 0.1" with an array of 609 Megapixels and spatial resolution of 0.18". It will be used to survey approximately 14,000 deg^2 of extragalactic sky to measure the distortion of galaxies in the redshift range z=0.1-1.5 resulting from weak gravitational lensing, one of the two principal cosmology probes of Euclid. With photometric redshifts, the distribution of dark matter can be mapped in three dimensions, and, from how this has changed with look-back time, the nature of dark energy and theories of gravity can be constrained. The entire VIS focal plane will be transmitted to provide the largest images of the Universe from space to date, reaching m_AB>24.5 with S/N >10 in a single broad I_E~(r+i+z) band over a six year survey. The particularly challenging aspects of the instrument are the control and calibration of observational biases, which lead to stringent performance requirements and calibration regimes. With its combination of spatial resolution, calibration knowledge, depth, and area covering most of the extra-Galactic sky, VIS will also provide a legacy data set for many other fields. This paper discusses the rationale behind the VIS concept and describes the instrument design and development before reporting the pre-launch performance derived from ground calibrations and brief results from the in-orbit commissioning. VIS should reach fainter than m_AB=25 with S/N>10 for galaxies of full-width half-maximum of 0.3" in a 1.3" diameter aperture over the Wide Survey, and m_AB>26.4 for a Deep Survey that will cover more than 50 deg^2. The paper also describes how VIS works with the other Euclid components of survey, telescope, and science data processing to extract the cosmological information.

  • 435 authors
·
May 22, 2024

EvidenceMoE: A Physics-Guided Mixture-of-Experts with Evidential Critics for Advancing Fluorescence Light Detection and Ranging in Scattering Media

Fluorescence LiDAR (FLiDAR), a Light Detection and Ranging (LiDAR) technology employed for distance and depth estimation across medical, automotive, and other fields, encounters significant computational challenges in scattering media. The complex nature of the acquired FLiDAR signal, particularly in such environments, makes isolating photon time-of-flight (related to target depth) and intrinsic fluorescence lifetime exceptionally difficult, thus limiting the effectiveness of current analytical and computational methodologies. To overcome this limitation, we present a Physics-Guided Mixture-of-Experts (MoE) framework tailored for specialized modeling of diverse temporal components. In contrast to the conventional MoE approaches our expert models are informed by underlying physics, such as the radiative transport equation governing photon propagation in scattering media. Central to our approach is EvidenceMoE, which integrates Evidence-Based Dirichlet Critics (EDCs). These critic models assess the reliability of each expert's output by providing per-expert quality scores and corrective feedback. A Decider Network then leverages this information to fuse expert predictions into a robust final estimate adaptively. We validate our method using realistically simulated Fluorescence LiDAR (FLiDAR) data for non-invasive cancer cell depth detection generated from photon transport models in tissue. Our framework demonstrates strong performance, achieving a normalized root mean squared error (NRMSE) of 0.030 for depth estimation and 0.074 for fluorescence lifetime.

  • 9 authors
·
May 23, 2025

What Determines the Brightness of the Magnetically Open Solar Corona?: Insights from Three-dimensional Radiative Magnetohydrodynamic Simulations and Observations

We investigate the relationship between solar coronal holes and open-field regions using three-dimensional radiative magnetohydrodynamic (MHD) simulations combined with remote-sensing observations from the Solar Dynamics Observatory (SDO). Our numerical simulations reveal that magnetically open regions in the corona can exhibit brightness comparable to quiet regions, challenging the conventional view that open-field regions are inherently dark coronal holes. We find that the coronal brightness is primarily determined by the total energy input from photospheric magnetic activities, such as the small-scale dynamo, rather than differences in dissipative processes within the corona. Using synthesized EUV intensity maps, we show that brightness thresholds commonly used to identify coronal holes may overlook open-field regions, especially at lower spatial resolutions. Observational analysis utilizing SDO/HMI and AIA synoptic maps supports our simulation results, demonstrating that magnetic field extrapolation techniques, such as the Potential Field Source Surface (PFSS) model, are sensitive to the chosen parameters, including the source surface height. We suggest that discrepancies in estimates of open magnetic flux (the ``open flux problem'') arise both from the modeling assumptions in coronal magnetic field extrapolation and systematic biases in solar surface magnetic field observations. Our findings indicate the need for reconsidering criteria used to identify coronal holes as indicators of open-field regions to better characterize the solar open magnetic flux.

  • 1 authors
·
Apr 18, 2025

Flashlights: An Off-Caustic Lensed Star at Redshift z = 1.26 in Abell 370

We report the discovery of a transient seen in a strongly lensed arc at redshift z_{rm s}=1.2567 in Hubble Space Telescope imaging of the Abell 370 galaxy cluster. The transient is detected at 29.51pm0.14 AB mag in a WFC3/UVIS F200LP difference image made using observations from two different epochs, obtained in the framework of the Flashlights program, and is also visible in the F350LP band (m_{rm F350LP} approx 30.53pm0.76 AB mag). The transient is observed on the negative-parity side of the critical curve at a distance of sim 0.6" from it, greater than previous examples of lensed stars. The large distance from the critical curve yields a significantly smaller macromagnification, but our simulations show that bright, O/B-type supergiants can reach sufficiently high magnifications to be seen at the observed position and magnitude. In addition, the observed transient image is a trailing image with an observer-frame time delay of sim+0.8 days from its expected counterpart, so that any transient lasting for longer than that should have also been seen on the minima side and is thus excluded. This, together with the blue colour we measure for the transient (m_{rm F200LP} - m_{rm F350LP} approx [-0.3,-1.6] AB), rules out most other transient candidates such as (kilo)novae, for example, and makes a lensed star the prime candidate. Assuming the transient is indeed a lensed star as suggested, many more such events should be detected in the near future in cluster surveys with the Hubble Space Telescope and James Webb Space Telescope.

  • 13 authors
·
Nov 2, 2022

Search for dark matter subhalos among unassociated Fermi-LAT sources in presence of dataset shift

We search for dark matter (DM) annihilating subhalos of the Milky Way halo among the Fermi Large Area Telescope (LAT) unassociated sources. We construct, for the first time, a statistical model of the unassociated sources at latitudes above 10 degrees. The latter is built as a combination of both DM annihilation subhalos as well as Galactic and extragalactic astrophysical components. The astrophysical components are constructed based on distributions of associated sources, while the distribution of DM subhalos is derived from Monte Carlo simulations. In this model we take into account the differences in the distributions of associated and unassociated sources including both covariate and prior probability shifts (both being forms of ``dataset shifts''). Previous searches of DM subhalos were based on classify-and-count strategies, while the approach adopted in this work is based on quantification learning, which allows one to determine a well-defined statistical interpretation of the contribution of a population of DM subhalos to the unassociated Fermi-LAT sources. In the bb annihilation channel and for a range of DM masses from 10 GeV to 1 TeV, we don't find a significant contribution from DM subhalos and derive a statistical 95% confidence upper limit on the DM annihilation cross section in this channel. While the derived limits are consistent with previous classify-and-count approaches, our generative statistical model opens new avenues for population studies of Fermi-LAT sources and, more generally, for searches of anomalies on top of backgrounds in presence of statistical and systematic uncertainties.

  • 5 authors
·
Mar 18, 2025

The challenge of simulating the star cluster population of dwarf galaxies with resolved interstellar medium

We present results on the star cluster properties from a series of high resolution smoothed particles hydrodynamics (SPH) simulations of isolated dwarf galaxies as part of the GRIFFIN project. The simulations at sub-parsec spatial resolution and a minimum particle mass of 4 M_odot incorporate non-equilibrium heating, cooling and chemistry processes, and realise individual massive stars. All the simulations follow feedback channels of massive stars that include the interstellar-radiation field, that is variable in space and time, the radiation input by photo-ionisation and supernova explosions. Varying the star formation efficiency per free-fall time in the range epsilon_ff = 0.2 - 50% neither changes the star formation rates nor the outflow rates. While the environmental densities at star formation change significantly with epsilon_ff, the ambient densities of supernovae are independent of epsilon_ff indicating a decoupling of the two processes. At low epsilon_ff, more massive, and increasingly more bound star clusters are formed, which are typically not destroyed. With increasing epsilon_ff there is a trend for shallower cluster mass functions and the cluster formation efficiency Gamma for young bound clusters decreases from 50 % to sim 1 % showing evidence for cluster disruption. However, none of our simulations form low mass (< 10^3 M_odot) clusters with structural properties in perfect agreement with observations. Traditional star formation models used in galaxy formation simulations based on local free-fall times might therefore not be able to capture low mass star cluster properties without significant fine-tuning.

  • 7 authors
·
Sep 16, 2021

Galaxy Spectra neural Networks (GaSNets). I. Searching for strong lens candidates in eBOSS spectra using Deep Learning

With the advent of new spectroscopic surveys from ground and space, observing up to hundreds of millions of galaxies, spectra classification will become overwhelming for standard analysis techniques. To prepare for this challenge, we introduce a family of deep learning tools to classify features in one-dimensional spectra. As the first application of these Galaxy Spectra neural Networks (GaSNets), we focus on tools specialized at identifying emission lines from strongly lensed star-forming galaxies in the eBOSS spectra. We first discuss the training and testing of these networks and define a threshold probability, PL, of 95% for the high quality event detection. Then, using a previous set of spectroscopically selected strong lenses from eBOSS, confirmed with HST, we estimate a completeness of ~80% as the fraction of lenses recovered above the adopted PL. We finally apply the GaSNets to ~1.3M spectra to collect a first list of ~430 new high quality candidates identified with deep learning applied to spectroscopy and visually graded as highly probable real events. A preliminary check against ground-based observations tentatively shows that this sample has a confirmation rate of 38%, in line with previous samples selected with standard (no deep learning) classification tools and follow-up by Hubble Space Telescope. This first test shows that machine learning can be efficiently extended to feature recognition in the wavelength space, which will be crucial for future surveys like 4MOST, DESI, Euclid, and the Chinese Space Station Telescope (CSST).

  • 3 authors
·
Feb 16, 2022

On the statistical theory of self-gravitating collisionless dark matter flow: Scale and redshift variation of velocity and density distributions

This paper studies the scale and redshift variation of density and velocity distributions in self-gravitating collisionless dark matter flow by a halo-based non-projection approach. All particles are divided into halo and out-of-halo particles for redshift variation of distributions. Without projecting particle fields onto a structured grid, the scale variation is analyzed by identifying all particle pairs on different scales r. We demonstrate that: i) Delaunay tessellation can be used to reconstruct the density field. The density correlation, spectrum, and dispersion functions were obtained, modeled, and compared with the N-body simulation; ii) the velocity distributions are symmetric on both small and large scales and are non-symmetric with a negative skewness on intermediate scales due to the inverse energy cascade at a constant rate varepsilon_u; iii) On small scales, the even order moments of pairwise velocity Delta u_L follow a two-thirds law (-varepsilon_ur)^{2/3}, while the odd order moments follow a linear scaling langle(Delta u_L)^{2n+1}rangle=(2n+1)langle(Delta u_L)^{2n}ranglelangleDelta u_Lrangler; iv) The scale variation of the velocity distributions was studied for longitudinal velocities u_L or u_L^{'}, pairwise velocity (velocity difference) Delta u_L=u_L^{'}-u_L and velocity sum Sigma u_L=u^{'}_L+u_L. Fully developed velocity fields are never Gaussian on any scale, despite that they can initially be Gaussian; v) On small scales, u_L and Sigma u_L can be modeled by a X distribution to maximize the system entropy; vi) On large scales, Delta u_L and Sigma u_L can be modeled by a logistic or a X distribution; vii) the redshift variation of the velocity distributions follows the evolution of the X distribution involving a shape parameter alpha(z) decreasing with time.

  • 1 authors
·
Feb 14, 2022

Euclid Quick Data Release (Q1). Active galactic nuclei identification using diffusion-based inpainting of Euclid VIS images

Light emission from galaxies exhibit diverse brightness profiles, influenced by factors such as galaxy type, structural features and interactions with other galaxies. Elliptical galaxies feature more uniform light distributions, while spiral and irregular galaxies have complex, varied light profiles due to their structural heterogeneity and star-forming activity. In addition, galaxies with an active galactic nucleus (AGN) feature intense, concentrated emission from gas accretion around supermassive black holes, superimposed on regular galactic light, while quasi-stellar objects (QSO) are the extreme case of the AGN emission dominating the galaxy. The challenge of identifying AGN and QSO has been discussed many times in the literature, often requiring multi-wavelength observations. This paper introduces a novel approach to identify AGN and QSO from a single image. Diffusion models have been recently developed in the machine-learning literature to generate realistic-looking images of everyday objects. Utilising the spatial resolving power of the Euclid VIS images, we created a diffusion model trained on one million sources, without using any source pre-selection or labels. The model learns to reconstruct light distributions of normal galaxies, since the population is dominated by them. We condition the prediction of the central light distribution by masking the central few pixels of each source and reconstruct the light according to the diffusion model. We further use this prediction to identify sources that deviate from this profile by examining the reconstruction error of the few central pixels regenerated in each source's core. Our approach, solely using VIS imaging, features high completeness compared to traditional methods of AGN and QSO selection, including optical, near-infrared, mid-infrared, and X-rays.

  • 274 authors
·
Mar 19, 2025

AstroMLab 1: Who Wins Astronomy Jeopardy!?

We present a comprehensive evaluation of proprietary and open-weights large language models using the first astronomy-specific benchmarking dataset. This dataset comprises 4,425 multiple-choice questions curated from the Annual Review of Astronomy and Astrophysics, covering a broad range of astrophysical topics. Our analysis examines model performance across various astronomical subfields and assesses response calibration, crucial for potential deployment in research environments. Claude-3.5-Sonnet outperforms competitors by up to 4.6 percentage points, achieving 85.0% accuracy. For proprietary models, we observed a universal reduction in cost every 3-to-12 months to achieve similar score in this particular astronomy benchmark. Open-source models have rapidly improved, with LLaMA-3-70b (80.6%) and Qwen-2-72b (77.7%) now competing with some of the best proprietary models. We identify performance variations across topics, with non-English-focused models generally struggling more in exoplanet-related fields, stellar astrophysics, and instrumentation related questions. These challenges likely stem from less abundant training data, limited historical context, and rapid recent developments in these areas. This pattern is observed across both open-weights and proprietary models, with regional dependencies evident, highlighting the impact of training data diversity on model performance in specialized scientific domains. Top-performing models demonstrate well-calibrated confidence, with correlations above 0.9 between confidence and correctness, though they tend to be slightly underconfident. The development for fast, low-cost inference of open-weights models presents new opportunities for affordable deployment in astronomy. The rapid progress observed suggests that LLM-driven research in astronomy may become feasible in the near future.

  • 11 authors
·
Jul 15, 2024

A Machine Learning Framework for Stellar Collision Transient Identification

Modern astronomical surveys, such as the Zwicky Transient Facility (ZTF), are capable of detecting thousands of transient events per year, necessitating the use of automated and scalable data analysis techniques. Recent advances in machine learning have enabled the efficient classification and characterization of these transient phenomena. We aim to develop a fully systematic pipeline to identify candidate stellar collision events in galactic nuclei, which may otherwise be identified as tidal disruption events or other transients. We also seek to validate our simulations by comparing key physical parameters derived from observations and used in modeling these events. We generate a comprehensive bank of simulated light curves spanning a range of physical parameters and employ an approximate nearest neighbor algorithm (via the annoy library) to match these with observed ZTF light curves. Our pipeline is successfully able to associate observed ZTF light curves with simulated events. The resulting estimated parameters, including supermassive black hole masses and ejecta mass, are presented and compared to known values when applicable. We demonstrate that a systematic, machine learning-based approach can effectively identify and characterize stellar collision candidate events from large-scale transient surveys. This methodology is especially promising for future surveys which will provide us with significantly high volumes of data, such as LSST, where automated, data-intensive analysis will be critical for advancing our understanding of transient astrophysical phenomena.

  • 2 authors
·
Apr 15, 2025

Statistical selection of high-redshift, neutral-hydrogen-rich, lensed galaxies with the Square Kilometre Array

Deep wide spectral line surveys with the Square Kilometre Array (SKA) will expand the cosmic frontiers of neutral atomic hydrogen (HI) in galaxies. However, at cosmologically significant redshifts (z gtrsim 0.5), detections will typically be spatially unresolved and limited to the highest mass systems. Gravitational lensing could potentially alleviate these limitations, enabling lower mass systems to be studied at higher redshift and spatially resolved dynamical studies of some HI discs. Additionally, lensed HI systems would select foreground dark matter haloes using a different, more extended baryonic tracer compared to other lens surveys. This may result in a wider selected range of foreground dark matter halo properties, such as the concentration parameter. This paper uses the distortion of the observed HI mass function (HIMF) produced by strong gravitational lensing to find a flux density criterion for selecting lensed HI sources in future SKA-Mid spectral line surveys. This selection approach could yield lensed HI source densities in the range of sim 0.1--10 galaxies per square degree out to a redshift of z simeq 3 covered by SKA-MID Band 1. Although the sample sizes are modest, even with the proposed SKA-Mid surveys, the selection approach is straightforward and should have a 50% efficiency without any additional information, such as low-impact-factor or lower-redshift massive galaxies. The efficiency of selecting high-redshift, neutral-hydrogen-rich, lensed galaxies should then be greatly enhanced by using SKA-MID data in concert with the Vera C. Rubin Large Survey of Space and Time.

  • 2 authors
·
Feb 11, 2025

COSMOS-3D: Two obscured X-ray AGNs with hot dust and He Iλ10830 absorption at z~3

We report the discovery of two broad-line X-ray AGNs cid_414 and cid_947 at z~3 that exhibit prominent He Iλ10830+ Paγ emission and absorption, identified from the JWST Cycle 3 large GO treasury program COSMOS-3D using NIRCam F444W grism spectroscopy. Additional UV/optical line measurements (e.g., Lyα, Si IV, C IV) come from complementary COSMOS-field spectroscopy. Both sources are robustly detected in the mid-infrared, with detections in MIRI F1000W for both AGNs and an additional detection in MIRI F2100W for cid_414, indicating the presence of hot dust emission. The source cid_947 shows a higher He Iλ10830 absorption column density and X-ray-inferred N_{rm H}, and displays strong outflow signatures in He I, Si IV, and C IV with velocity offsets exceeding 5000 km/s. The source cid_414 shows a narrow Lyα emission line with luminosity log L_{rm Lyα}=42.49pm0.01~erg~s^{-1} and a higher intrinsic 2-10 keV X-ray luminosity. Host-galaxy decomposition and multi-component SED fitting indicate that cid_947 hosts a more massive black hole but lower star formation rate than cid_414. From simplified photoionization modeling, we infer that the dense absorbing gas has a characteristic size comparable to the nuclear broad-line region and is likely kinematically coupled to the obscuration associated with the dust torus. He Iλ1083 absorption has also been identified in several compact little red dots at similar redshifts. Together with the two AGNs reported here, these findings suggest that dense circumnuclear gas are plausibly prevalent at high redshift and plays an important role in regulating AGN obscuration and black hole--host co-evolution.

  • 28 authors
·
Dec 1, 2025

Analysis of the JWST spectra of the kilonova AT 2023vfi accompanying GRB 230307A

Kilonovae are key to advancing our understanding of r-process nucleosynthesis. To date, only two kilonovae have been spectroscopically observed, AT 2017gfo and AT 2023vfi. Here, we present an analysis of the James Webb Space Telescope (JWST) spectra obtained +29 and +61 days post-merger for AT 2023vfi (the kilonova associated with GRB 230307A). After re-reducing and photometrically flux-calibrating the data, we empirically model the observed X-ray to mid-infrared continua with a power law and a blackbody, to replicate the non-thermal afterglow and apparent thermal continuum gtrsim 2 , mum. We fit Gaussians to the apparent emission features, obtaining line centroids of 20218_{-38}^{+37}, 21874 pm 89 and 44168_{-152}^{+153}\,\AA, and velocity widths spanning 0.057 - 0.110\,c. These line centroid constraints facilitated a detailed forbidden line identification search, from which we shortlist a number of r-process species spanning all three r-process peaks. We rule out Ba II and Ra II as candidates and propose Te I-III, Er I-III and W III as the most promising ions for further investigation, as they plausibly produce multiple emission features from one (W III) or multiple (Te I-III, Er I-III) ion stages. We compare to the spectra of AT 2017gfo, which also exhibit prominent emission at sim 2.1 , mum, and conclude that [Te III] lambda21050 remains the most plausible cause of the observed sim 2.1 , mum emission in both kilonovae. However, the observed line centroids are not consistent between both objects, and they are significantly offset from [Te III] lambda21050. The next strongest [Te III] transition at 29290\,\AA\ is not observed, and we quantify its detectability. Further study is required, with particular emphasis on expanding the available atomic data to enable quantitative non-LTE spectral modelling.

  • 2 authors
·
Aug 20, 2024

Ground-based image deconvolution with Swin Transformer UNet

As ground-based all-sky astronomical surveys will gather millions of images in the coming years, a critical requirement emerges for the development of fast deconvolution algorithms capable of efficiently improving the spatial resolution of these images. By successfully recovering clean and high-resolution images from these surveys, the objective is to deepen the understanding of galaxy formation and evolution through accurate photometric measurements. We introduce a two-step deconvolution framework using a Swin Transformer architecture. Our study reveals that the deep learning-based solution introduces a bias, constraining the scope of scientific analysis. To address this limitation, we propose a novel third step relying on the active coefficients in the sparsity wavelet framework. We conducted a performance comparison between our deep learning-based method and Firedec, a classical deconvolution algorithm, based on an analysis of a subset of the EDisCS cluster samples. We demonstrate the advantage of our method in terms of resolution recovery, generalisation to different noise properties, and computational efficiency. The analysis of this cluster sample not only allowed us to assess the efficiency of our method, but it also enabled us to quantify the number of clumps within these galaxies in relation to their disc colour. This robust technique that we propose holds promise for identifying structures in the distant universe through ground-based images.

  • 4 authors
·
May 13, 2024

Planck 2018 results. V. CMB power spectra and likelihoods

This paper describes the 2018 Planck CMB likelihoods, following a hybrid approach similar to the 2015 one, with different approximations at low and high multipoles, and implementing several methodological and analysis refinements. With more realistic simulations, and better correction and modelling of systematics, we can now make full use of the High Frequency Instrument polarization data. The low-multipole 100x143 GHz EE cross-spectrum constrains the reionization optical-depth parameter tau to better than 15% (in combination with with the other low- and high-ell likelihoods). We also update the 2015 baseline low-ell joint TEB likelihood based on the Low Frequency Instrument data, which provides a weaker tau constraint. At high multipoles, a better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (polarization efficiency or PE) allow us to fully use the polarization spectra, improving the constraints on the LambdaCDM parameters by 20 to 30% compared to TT-only constraints. Tests on the modelling of the polarization demonstrate good consistency, with some residual modelling uncertainties, the accuracy of the PE modelling being the main limitation. Using our various tests, simulations, and comparison between different high-ell implementations, we estimate the consistency of the results to be better than the 0.5sigma level. Minor curiosities already present before (differences between ell<800 and ell>800 parameters or the preference for more smoothing of the C_ell peaks) are shown to be driven by the TT power spectrum and are not significantly modified by the inclusion of polarization. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations. (Abridged)

  • 168 authors
·
Jul 30, 2019

The dark side of early galaxies: geko uncovers dark-matter fractions at zsim4-6

JWST/NIRCam slitless spectroscopy enables dynamical mass measurements for typical star-forming galaxies only a billion years after the Big Bang. We model the Halpha morpho-kinematics of 163 galaxies at redshift zapprox4-6 from FRESCO and CONGRESS (with JADES imaging), using the geko code, and infer rotational velocities and dispersions within r_{rm e}. Our sample spans log M_{star}approx7-10 and log M_{rm dyn}approx9-11. Gas masses are estimated via scaling relations, yielding baryonic masses and dark-matter (DM) fractions f_{rm DM}(r<r_{rm e}) within the Halpha half-light radius. We find high median fractions of langle f_{rm gas}rangle=0.77 and langle f_{rm DM}rangle=0.73, where f_{rm gas} is measured with respect to the baryonic mass and f_{rm DM} with respect to the DM+baryonic mass. About two-thirds of systems are DM-dominated within r_{rm e}sim0.5-1 kpc. Both f_{rm gas} and f_{rm DM} decrease with stellar mass, consistent with simulations. The stellar Tully-Fisher relation shows a tentative offset to higher v_{rm circ} at fixed M_{star} and substantial intrinsic scatter, suggesting that the relation is only beginning to emerge at zsim5. We measure a negative correlation between f_{rm DM} and baryonic surface density Sigma_{rm bar}, weaker but broadly consistent with trends at cosmic noon and at zsim0. Qualitatively comparing with modified NFW profiles coupled to an empirical stellar-to-halo mass relation suggests that the lowest f_{rm DM} (lesssim0.4) require cored inner DM profiles, while the highest fractions favour cuspier profiles, potentially reflecting adiabatic contraction. Overall, the elevated f_{rm gas} and f_{rm DM} at zgtrsim4 are compatible with progenitors of baryon-dominated systems at zsim2 and naturally anticipate overmassive black holes at fixed M_{star}.

  • 18 authors
·
Oct 16, 2025

A UV to X-ray view of soft excess in type 1 AGNs: I. sample selection and spectral profile

A core sample of 59 unobscured type 1 AGNs with simultaneous XMM-Newton X-ray and UV observations is compiled from archive to probe the nature of soft X-ray excess (SE). In the first paper of this series, our focus centers on scrutinizing the spectral profile of the soft excess. Of the sources, approx 71% (42/59) exhibit powerlaw-like (po-like) soft excess, while approx 29% (17/59) exhibit blackbody-like (bb-like) soft excess. We show a cut-off powerlaw could uniformly characterize both types of soft excesses, with median Ecut of 1.40 keV for po-like and 0.14 keV for bb-like. For the first time, we report a robust and quantitative correlation between the SE profile and SE strength (the ratio of SE luminosity to that of the primary powerlaw continuum in 0.5 - 2.0 keV), indicating that stronger soft excess is more likely to be po-like, or effectively has a higher Ecut. This correlation cannot be explained by ionized disk reflection alone, which produces mostly bb-like soft excess (Ecut sim 0.1 keV) as revealed by relxilllp simulation. Remarkably, we show with simulations that a toy hybrid scenario, where both ionized disk reflection (relxilllp, with all reflection parameters fixed at default values except for ionization of the disk) and warm corona (compTT, with temperature fixed at 1 keV) contribute to the observed soft excess, can successfully reproduce the observed correlation. This highlights the ubiquitous hybrid nature of the soft X-ray excess in AGNs, and underscores the importance of considering both components while fitting the spectra of soft excess.

  • 8 authors
·
Dec 15, 2024

Cosmological Distance Measurement of 12 Nearby Supernovae IIP with ROTSE-IIIB

We present cosmological analysis of 12 nearby (z<0.06) Type IIP supernovae (SNe IIP) observed with the ROTSE-IIIb telescope. To achieve precise photometry, we present a new image differencing technique that is implemented for the first time on the ROTSE SN photometry pipeline. With this method, we find up to a 20\% increase in the detection efficiency and significant reduction in residual RMS scatter of the SN lightcurves when compared to the previous pipeline performance. We use the published optical spectra and broadband photometry of well studied SNe IIP to establish temporal models for ejecta velocity and photospheric temperature evolution for our SNe IIP population. This study yields measurements that are competitive to other methods even when the data are limited to a single epoch during the photospheric phase of SNe IIP. Using the fully reduced ROTSE photometry and optical spectra, we apply these models to the respective photometric epochs for each SN in the ROTSE IIP sample. This facilitates the use of the Expanding Photosphere Method (EPM) to obtain distance estimates to their respective host galaxies. We then perform cosmological parameter fitting using these EPM distances from which we measure the Hubble constant to be 72.9^{+5.7}_{-4.3}~{rm kms^{-1}~Mpc^{-1}}, which is consistent with the standard Lambda CDM model values derived using other independent techniques.

  • 17 authors
·
Aug 1, 2023

SNAD catalogue of M-dwarf flares from the Zwicky Transient Facility

Most of the stars in the Universe are M spectral class dwarfs, which are known to be the source of bright and frequent stellar flares. In this paper, we propose new approaches to discover M-dwarf flares in ground-based photometric surveys. We employ two approaches: a modification of a traditional method of parametric fit search and a machine learning algorithm based on active anomaly detection. The algorithms are applied to Zwicky Transient Facility (ZTF) data release 8, which includes the data from the ZTF high-cadence survey, allowing us to reveal flares lasting from minutes to hours. We analyze over 35 million ZTF light curves and visually scrutinize 1168 candidates suggested by the algorithms to filter out artifacts, occultations of a star by an asteroid, and other types of known variable objects. The result of this analysis is the largest catalogue of ZTF flaring stars to date, representing 134 flares with amplitudes ranging from -0.2 to -4.6 magnitudes, including repeated flares. Using Pan-STARRS DR2 colors, we assign a spectral subclass to each object in the sample. For 13 flares with well-sampled light curves and available geometric distances from Gaia DR3, we estimate the bolometric energy. This research shows that the proposed methods combined with the ZTF's cadence strategy are suitable for identifying M-dwarf flares and other fast transients, allowing for the extraction of significant astrophysical information from their light curves.

  • 14 authors
·
Apr 11, 2024

The Stellar Populations and Rest-Frame Colors of Star-Forming Galaxies at z approx 8: Exploring the Impact of Filter Choice and Star Formation History Assumption with JADES

Our understanding of the physical properties of star-forming galaxies during the Epoch of Reionization (EoR, at z > 6) suffers from degeneracies among the apparent properties of the stars, the nebular gas, and the dust. These degeneracies are most prominent with photometry, which has insufficient (1) spectral resolution and (2) rest-frame spectral coverage. We explore ways to break these degeneracies with a sample of N = 22 high-redshift star-forming galaxies at 7 < z_{phot} leq 9, using some of the deepest existing imaging from JWST/NIRCam and JWST/MIRI with JADES. Key to this study is the imaging from JWST/MIRI at 7.7 mum, which provides coverage of the rest-frame I-band at the observed redshifts. We infer stellar population properties and rest-frame colors using a variety of filter sets and star formation history assumptions to explore the impact of these choices. Evaluating these quantities both with and without the 7.7 mum data point shows that dense spectral coverage with JWST/NIRCam (eight or more filters, including at least one medium-band) can compensate for lacking the rest-frame I-band coverage for the vast majority (approx 80%) of our sample. Furthermore, these galaxy properties are most consistently determined by assuming the delayed-tau star formation history, which provides the smallest offsets and scatters around these offsets when including JWST/MIRI. Within extragalactic surveys like JADES and CEERS, our findings suggest that robust characterization of the stellar population properties and rest-frame colors for high-redshift star-forming galaxies is possible with JWST/NIRCam alone at z approx 8.

  • 33 authors
·
Jun 2, 2025

Revision of the Phenomenological Characteristics of the Algol-Type Stars Using the NAV Algorithm

Phenomenological characteristics of the sample of the Algol-type stars are revised using a recently developed NAV ("New Algol Variable") algorithm (2012Ap.....55..536A, 2012arXiv 1212.6707A) and compared to that obtained using common methods of Trigonometric Polynomial Fit (TP) or local Algebraic Polynomial (A) fit of a fixed or (alternately) statistically optimal degree (1994OAP.....7...49A, 2003ASPC..292..391A). The computer program NAV is introduced, which allows to determine the best fit with 7 "linear" and 5 "non-linear" parameters and their error estimates. The number of parameters is much smaller than for the TP fit (typically 20-40, depending on the width of the eclipse, and is much smaller (5-20) for the W UMa and beta Lyrae - type stars. This causes more smooth approximation taking into account the reflection and ellipsoidal effects (TP2) and generally different shapes of the primary and secondary eclipses. An application of the method to two-color CCD photometry to the recently discovered eclipsing variable 2MASS J18024395 + 4003309 = VSX J180243.9 +400331 (2015JASS...32..101A) allowed to make estimates of the physical parameters of the binary system based on the phenomenological parameters of the light curve. The phenomenological parameters of the light curves were determined for the sample of newly discovered EA and EW - type stars (VSX J223429.3+552903, VSX J223421.4+553013, VSX J223416.2+553424, US-NO-B1.0 1347-0483658, UCAC3-191-085589, VSX J180755.6+074711= UCAC3 196-166827). Despite we have used original observations published by the discoverers, the accuracy estimates of the period using the NAV method are typically better than the original ones.

  • 3 authors
·
Nov 30, 2015

Size and Shape Constraints of (486958) Arrokoth from Stellar Occultations

We present the results from four stellar occultations by (486958) Arrokoth, the flyby target of the New Horizons extended mission. Three of the four efforts led to positive detections of the body, and all constrained the presence of rings and other debris, finding none. Twenty-five mobile stations were deployed for 2017 June 3 and augmented by fixed telescopes. There were no positive detections from this effort. The event on 2017 July 10 was observed by SOFIA with one very short chord. Twenty-four deployed stations on 2017 July 17 resulted in five chords that clearly showed a complicated shape consistent with a contact binary with rough dimensions of 20 by 30 km for the overall outline. A visible albedo of 10% was derived from these data. Twenty-two systems were deployed for the fourth event on 2018 Aug 4 and resulted in two chords. The combination of the occultation data and the flyby results provides a significant refinement of the rotation period, now estimated to be 15.9380 pm 0.0005 hours. The occultation data also provided high-precision astrometric constraints on the position of the object that were crucial for supporting the navigation for the New Horizons flyby. This work demonstrates an effective method for obtaining detailed size and shape information and probing for rings and dust on distant Kuiper Belt objects as well as being an important source of positional data that can aid in spacecraft navigation that is particularly useful for small and distant bodies.

  • 133 authors
·
Dec 31, 2019

Optimised angular power spectra for spectroscopic galaxy surveys

The angular power spectrum is a gauge-independent observable that is in principle the natural tool for analysing galaxy number counts. In practice, the problem is that the computational requirements for next-generation spectroscopic surveys such as Euclid and the Square Kilometre Array are currently unfeasible. We propose a new method to save computational time for spectroscopic angular power spectra. This hybrid method is modelled on the Fourier power spectrum approach of treating relatively thick redshift bins (redshift width ~0.1) as separate surveys. In the hybrid method, each thick bin is further subdivided into thin bins (redshift width ~0.01); all the correlations within each thick bin are computed, while cross-bin correlations beyond the thick bins are neglected. Constraints on cosmological parameters from the hybrid method are comparable to those from the standard galaxy power spectrum analysis - but they have the advantage that cosmic evolution, wide-angle and lensing effects are naturally included, while no Alcock-Paczynski correction is needed. The hybrid method delivers much tighter constraints than a 2D tomographic approach that is typical for photometric surveys, which considers only thick bins and the correlations between them. Furthermore, for standard cosmological parameters our method is not biased by neglecting the effects of lensing on number counts, while the tomographic method is strongly biased.

  • 4 authors
·
Mar 28, 2018

Cosmic reflections I: the structural diversity of simulated and observed low-mass galaxy analogues

Dwarf galaxies serve as powerful laboratories for investigating the underlying physics of galaxy evolution including the impact of baryonic feedback processes and environmental influences. We compare the visual and structural properties of dwarf galaxies in ultra-deep HSC-SSP imaging of the COSMOS field with those measured from realistic HSC-like synthetic observations of dwarfs generated by the Illustris TNG50 and NewHorizon simulations. Using S\'ersic profile fitting and non-parametric morphological metrics (Gini, M_{20}, asymmetry, and concentration), we evaluate the diversity of structural properties in observed and simulated galaxies. Our analysis shows that NewHorizon and TNG50 galaxies lie at opposite extremes of observed structural trends: NewHorizon produces diffuse, extended galaxies with shallow S\'ersic indices, while TNG50 yields compact, concentrated systems with steep indices. Both simulations reproduce observed structural trends more closely at higher stellar masses (M_{star}sim10^{9.5} {rm M_{odot}}) but fail to capture the full diversity of COSMOS dwarfs at lower masses. Non-parametric metrics further show that NewHorizon galaxies exhibit more uneven, clumpy light distributions while TNG50 galaxies have smoother but excessively concentrated profiles. These structural differences reflect underlying differences in their physical prescriptions and are likely driven by differing approaches to ISM physics, supernova feedback and star formation in addition to differences in numerical resolution. Our findings highlight the unique power of low-mass galaxies to constrain differences in simulation physics, especially star formation and feedback. Upcoming surveys from facilities like the Vera C. Rubin Observatory and Euclid will enable more rigorous comparisons with simulations, offering deeper insights into the physical processes shaping galaxy evolution.

  • 13 authors
·
May 7, 2025

Pixel-level modelling of group-scale strong lens CASSOWARY 19

We present the first high-precision model for the group-scale strong lensing system CASSOWARY 19 (CSWA19), utilising images from the Hubble Space Telescope (HST). Sixteen member galaxies identified via the red-sequence method, and the main halo, all modelled as the dual Pseudo Isothermal Elliptical profile (dPIE), are incorporated into a parametric lens model alongside an external shear field. To model the system, we adopt the PyAutoLens software package, employing a progressive search chain strategy for realizing the transition of source model from multiple S\'ersic profiles to a brightness-adaptive pixelization, which uses 1000 pixels in the source plane to reconstruct the background source corresponding to 177,144 image pixels in the image plane. Our results indicate that the total mass within the Einstein radius is M_{theta_E} approx 1.41times10^{13}M_{odot} and the average slope of the total mass density rho (r)propto r^{-gamma} is gamma=1.33 within the effective radius. This slope is shallower than those measured in galaxies and groups but is closer to those of galaxy clusters. In addition, our approach successfully resolves the two merging galaxies in the background source and yields a total magnification of mu=103.18^{+0.23}_{-0.19}, which is significantly higher than the outcomes from previous studies of CSWA19. In summary, our research demonstrates the effectiveness of the brightness-adaptive pixelization source reconstruction technique for modelling group-scale strong lensing systems. It can serve as a technical reference for future investigations into pixel-level modelling of the group- and cluster-scale strong lensing systems.

  • 9 authors
·
Apr 15, 2025