new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning

Despite recent progress in large-scale reinforcement learning (RL) for reasoning, the training recipe for building high-performing reasoning models remains elusive. Key implementation details of frontier models, such as DeepSeek-R1, including data curation strategies and RL training recipe, are often omitted. Moreover, recent research indicates distillation remains more effective than RL for smaller models. In this work, we demonstrate that large-scale RL can significantly enhance the reasoning capabilities of strong, small- and mid-sized models, achieving results that surpass those of state-of-the-art distillation-based models. We systematically study the RL training process through extensive ablations and propose a simple yet effective approach: first training on math-only prompts, then on code-only prompts. Notably, we find that math-only RL not only significantly enhances the performance of strong distilled models on math benchmarks (e.g., +14.6% / +17.2% on AIME 2025 for the 7B / 14B models), but also code reasoning tasks (e.g., +6.8% / +5.8% on LiveCodeBench for the 7B / 14B models). In addition, extended code-only RL iterations further improve performance on code benchmarks with minimal or no degradation in math results. We develop a robust data curation pipeline to collect challenging prompts with high-quality, verifiable answers and test cases to enable verification-based RL across both domains. Finally, we identify key experimental insights, including curriculum learning with progressively increasing response lengths and the stabilizing effect of on-policy parameter updates. We find that RL not only elicits the foundational reasoning capabilities acquired during pretraining and supervised fine-tuning (e.g., distillation), but also pushes the limits of the model's reasoning ability, enabling it to solve problems that were previously unsolvable.

  • 8 authors
·
May 22 2

LLM360 K2: Building a 65B 360-Open-Source Large Language Model from Scratch

We detail the training of the LLM360 K2-65B model, scaling up our 360-degree OPEN SOURCE approach to the largest and most powerful models under project LLM360. While open-source LLMs continue to advance, the answer to "How are the largest LLMs trained?" remains unclear within the community. The implementation details for such high-capacity models are often protected due to business considerations associated with their high cost. This lack of transparency prevents LLM researchers from leveraging valuable insights from prior experience, e.g., "What are the best practices for addressing loss spikes?" The LLM360 K2 project addresses this gap by providing full transparency and access to resources accumulated during the training of LLMs at the largest scale. This report highlights key elements of the K2 project, including our first model, K2 DIAMOND, a 65 billion-parameter LLM that surpasses LLaMA-65B and rivals LLaMA2-70B, while requiring fewer FLOPs and tokens. We detail the implementation steps and present a longitudinal analysis of K2 DIAMOND's capabilities throughout its training process. We also outline ongoing projects such as TXT360, setting the stage for future models in the series. By offering previously unavailable resources, the K2 project also resonates with the 360-degree OPEN SOURCE principles of transparency, reproducibility, and accessibility, which we believe are vital in the era of resource-intensive AI research.

  • 25 authors
·
Jan 13

Whisper-LM: Improving ASR Models with Language Models for Low-Resource Languages

Automatic speech recognition systems have undoubtedly advanced with the integration of multilingual and multitask models such as Whisper, which have shown a promising ability to understand and process speech across a wide range of languages. Despite their robustness, these models often fall short in handling the linguistic distinctions of minority languages. This study addresses this gap by integrating traditional and novel language models with fine-tuned Whisper models to raise their performance in less commonly studied languages. Through rigorous fine-tuning and evaluation across multiple datasets, we demonstrate substantial improvements in word error rate, particularly in low-resource scenarios. Our approach not only does take advantage of the extensive data Whisper was pre-trained on, but also complements its linguistic adaptability by incorporating language models. We obtained improvements up to 51\% for in-distribution datasets and up to 34\% for out-of-distribution sentences using statistical language models, while large language models provided moderate but consistently robust improvement across diverse linguistic contexts. The findings reveal that, while the integration reliably benefits all model sizes, the extent of improvement varies, highlighting the importance of optimized language model parameters. Finally, we emphasize the importance of selecting appropriate evaluation parameters when reporting the results using transformer-based ASR models. In summary, this research clears the way for more inclusive ASR technologies that perform better across languages by enriching their linguistic knowledge. For further implementation details of this study, the technical documentation and source code are available at http://www.github.com/hitz-zentroa/whisper-lm.

  • 4 authors
·
Mar 30 3

Enhancing Retrieval-Augmented Generation: A Study of Best Practices

Retrieval-Augmented Generation (RAG) systems have recently shown remarkable advancements by integrating retrieval mechanisms into language models, enhancing their ability to produce more accurate and contextually relevant responses. However, the influence of various components and configurations within RAG systems remains underexplored. A comprehensive understanding of these elements is essential for tailoring RAG systems to complex retrieval tasks and ensuring optimal performance across diverse applications. In this paper, we develop several advanced RAG system designs that incorporate query expansion, various novel retrieval strategies, and a novel Contrastive In-Context Learning RAG. Our study systematically investigates key factors, including language model size, prompt design, document chunk size, knowledge base size, retrieval stride, query expansion techniques, Contrastive In-Context Learning knowledge bases, multilingual knowledge bases, and Focus Mode retrieving relevant context at sentence-level. Through extensive experimentation, we provide a detailed analysis of how these factors influence response quality. Our findings offer actionable insights for developing RAG systems, striking a balance between contextual richness and retrieval-generation efficiency, thereby paving the way for more adaptable and high-performing RAG frameworks in diverse real-world scenarios. Our code and implementation details are publicly available.

  • 4 authors
·
Jan 13

Causal Agent based on Large Language Model

Large language models (LLMs) have achieved significant success across various domains. However, the inherent complexity of causal problems and causal theory poses challenges in accurately describing them in natural language, making it difficult for LLMs to comprehend and use them effectively. Causal methods are not easily conveyed through natural language, which hinders LLMs' ability to apply them accurately. Additionally, causal datasets are typically tabular, while LLMs excel in handling natural language data, creating a structural mismatch that impedes effective reasoning with tabular data. This lack of causal reasoning capability limits the development of LLMs. To address these challenges, we have equipped the LLM with causal tools within an agent framework, named the Causal Agent, enabling it to tackle causal problems. The causal agent comprises tools, memory, and reasoning modules. In the tools module, the causal agent applies causal methods to align tabular data with natural language. In the reasoning module, the causal agent employs the ReAct framework to perform reasoning through multiple iterations with the tools. In the memory module, the causal agent maintains a dictionary instance where the keys are unique names and the values are causal graphs. To verify the causal ability of the causal agent, we established a benchmark consisting of four levels of causal problems: variable level, edge level, causal graph level, and causal effect level. We generated a test dataset of 1.3K using ChatGPT-3.5 for these four levels of issues and tested the causal agent on the datasets. Our methodology demonstrates remarkable efficacy on the four-level causal problems, with accuracy rates all above 80%. For further insights and implementation details, our code is accessible via the GitHub repository https://github.com/Kairong-Han/Causal_Agent.

  • 5 authors
·
Aug 13, 2024

Kolmogorov-Arnold Attention: Is Learnable Attention Better For Vision Transformers?

Kolmogorov-Arnold networks (KANs) are a remarkable innovation consisting of learnable activation functions with the potential to capture more complex relationships from data. Although KANs are useful in finding symbolic representations and continual learning of one-dimensional functions, their effectiveness in diverse machine learning (ML) tasks, such as vision, remains questionable. Presently, KANs are deployed by replacing multilayer perceptrons (MLPs) in deep network architectures, including advanced architectures such as vision Transformers (ViTs). In this paper, we are the first to design a general learnable Kolmogorov-Arnold Attention (KArAt) for vanilla ViTs that can operate on any choice of basis. However, the computing and memory costs of training them motivated us to propose a more modular version, and we designed particular learnable attention, called Fourier-KArAt. Fourier-KArAt and its variants either outperform their ViT counterparts or show comparable performance on CIFAR-10, CIFAR-100, and ImageNet-1K datasets. We dissect these architectures' performance and generalization capacity by analyzing their loss landscapes, weight distributions, optimizer path, attention visualization, and spectral behavior, and contrast them with vanilla ViTs. The goal of this paper is not to produce parameter- and compute-efficient attention, but to encourage the community to explore KANs in conjunction with more advanced architectures that require a careful understanding of learnable activations. Our open-source code and implementation details are available on: https://subhajitmaity.me/KArAt

  • 4 authors
·
Mar 13 3

Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences

Due to the cumbersome nature of human evaluation and limitations of code-based evaluation, Large Language Models (LLMs) are increasingly being used to assist humans in evaluating LLM outputs. Yet LLM-generated evaluators simply inherit all the problems of the LLMs they evaluate, requiring further human validation. We present a mixed-initiative approach to ``validate the validators'' -- aligning LLM-generated evaluation functions (be it prompts or code) with human requirements. Our interface, EvalGen, provides automated assistance to users in generating evaluation criteria and implementing assertions. While generating candidate implementations (Python functions, LLM grader prompts), EvalGen asks humans to grade a subset of LLM outputs; this feedback is used to select implementations that better align with user grades. A qualitative study finds overall support for EvalGen but underscores the subjectivity and iterative process of alignment. In particular, we identify a phenomenon we dub criteria drift: users need criteria to grade outputs, but grading outputs helps users define criteria. What is more, some criteria appears dependent on the specific LLM outputs observed (rather than independent criteria that can be defined a priori), raising serious questions for approaches that assume the independence of evaluation from observation of model outputs. We present our interface and implementation details, a comparison of our algorithm with a baseline approach, and implications for the design of future LLM evaluation assistants.

  • 5 authors
·
Apr 18, 2024

100 Days After DeepSeek-R1: A Survey on Replication Studies and More Directions for Reasoning Language Models

The recent development of reasoning language models (RLMs) represents a novel evolution in large language models. In particular, the recent release of DeepSeek-R1 has generated widespread social impact and sparked enthusiasm in the research community for exploring the explicit reasoning paradigm of language models. However, the implementation details of the released models have not been fully open-sourced by DeepSeek, including DeepSeek-R1-Zero, DeepSeek-R1, and the distilled small models. As a result, many replication studies have emerged aiming to reproduce the strong performance achieved by DeepSeek-R1, reaching comparable performance through similar training procedures and fully open-source data resources. These works have investigated feasible strategies for supervised fine-tuning (SFT) and reinforcement learning from verifiable rewards (RLVR), focusing on data preparation and method design, yielding various valuable insights. In this report, we provide a summary of recent replication studies to inspire future research. We primarily focus on SFT and RLVR as two main directions, introducing the details for data construction, method design and training procedure of current replication studies. Moreover, we conclude key findings from the implementation details and experimental results reported by these studies, anticipating to inspire future research. We also discuss additional techniques of enhancing RLMs, highlighting the potential of expanding the application scope of these models, and discussing the challenges in development. By this survey, we aim to help researchers and developers of RLMs stay updated with the latest advancements, and seek to inspire new ideas to further enhance RLMs.

SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning

In recent years, significant progress has been made in the field of robotic reinforcement learning (RL), enabling methods that handle complex image observations, train in the real world, and incorporate auxiliary data, such as demonstrations and prior experience. However, despite these advances, robotic RL remains hard to use. It is acknowledged among practitioners that the particular implementation details of these algorithms are often just as important (if not more so) for performance as the choice of algorithm. We posit that a significant challenge to widespread adoption of robotic RL, as well as further development of robotic RL methods, is the comparative inaccessibility of such methods. To address this challenge, we developed a carefully implemented library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment, a high-quality controller for a widely-adopted robot, and a number of challenging example tasks. We provide this library as a resource for the community, describe its design choices, and present experimental results. Perhaps surprisingly, we find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation between 25 to 50 minutes of training per policy on average, improving over state-of-the-art results reported for similar tasks in the literature. These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent recovery and correction behaviors. We hope that these promising results and our high-quality open-source implementation will provide a tool for the robotics community to facilitate further developments in robotic RL. Our code, documentation, and videos can be found at https://serl-robot.github.io/

  • 10 authors
·
Jan 29, 2024 1

Barlow Twins: Self-Supervised Learning via Redundancy Reduction

Self-supervised learning (SSL) is rapidly closing the gap with supervised methods on large computer vision benchmarks. A successful approach to SSL is to learn embeddings which are invariant to distortions of the input sample. However, a recurring issue with this approach is the existence of trivial constant solutions. Most current methods avoid such solutions by careful implementation details. We propose an objective function that naturally avoids collapse by measuring the cross-correlation matrix between the outputs of two identical networks fed with distorted versions of a sample, and making it as close to the identity matrix as possible. This causes the embedding vectors of distorted versions of a sample to be similar, while minimizing the redundancy between the components of these vectors. The method is called Barlow Twins, owing to neuroscientist H. Barlow's redundancy-reduction principle applied to a pair of identical networks. Barlow Twins does not require large batches nor asymmetry between the network twins such as a predictor network, gradient stopping, or a moving average on the weight updates. Intriguingly it benefits from very high-dimensional output vectors. Barlow Twins outperforms previous methods on ImageNet for semi-supervised classification in the low-data regime, and is on par with current state of the art for ImageNet classification with a linear classifier head, and for transfer tasks of classification and object detection.

  • 5 authors
·
Mar 4, 2021

State of the Art on Diffusion Models for Visual Computing

The field of visual computing is rapidly advancing due to the emergence of generative artificial intelligence (AI), which unlocks unprecedented capabilities for the generation, editing, and reconstruction of images, videos, and 3D scenes. In these domains, diffusion models are the generative AI architecture of choice. Within the last year alone, the literature on diffusion-based tools and applications has seen exponential growth and relevant papers are published across the computer graphics, computer vision, and AI communities with new works appearing daily on arXiv. This rapid growth of the field makes it difficult to keep up with all recent developments. The goal of this state-of-the-art report (STAR) is to introduce the basic mathematical concepts of diffusion models, implementation details and design choices of the popular Stable Diffusion model, as well as overview important aspects of these generative AI tools, including personalization, conditioning, inversion, among others. Moreover, we give a comprehensive overview of the rapidly growing literature on diffusion-based generation and editing, categorized by the type of generated medium, including 2D images, videos, 3D objects, locomotion, and 4D scenes. Finally, we discuss available datasets, metrics, open challenges, and social implications. This STAR provides an intuitive starting point to explore this exciting topic for researchers, artists, and practitioners alike.

  • 18 authors
·
Oct 11, 2023

Digital Twins: State of the Art Theory and Practice, Challenges, and Open Research Questions

Digital Twin was introduced over a decade ago, as an innovative all-encompassing tool, with perceived benefits including real-time monitoring, simulation and forecasting. However, the theoretical framework and practical implementations of digital twins (DT) are still far from this vision. Although successful implementations exist, sufficient implementation details are not publicly available, therefore it is difficult to assess their effectiveness, draw comparisons and jointly advance the DT methodology. This work explores the various DT features and current approaches, the shortcomings and reasons behind the delay in the implementation and adoption of digital twin. Advancements in machine learning, internet of things and big data have contributed hugely to the improvements in DT with regards to its real-time monitoring and forecasting properties. Despite this progress and individual company-based efforts, certain research gaps exist in the field, which have caused delay in the widespread adoption of this concept. We reviewed relevant works and identified that the major reasons for this delay are the lack of a universal reference framework, domain dependence, security concerns of shared data, reliance of digital twin on other technologies, and lack of quantitative metrics. We define the necessary components of a digital twin required for a universal reference framework, which also validate its uniqueness as a concept compared to similar concepts like simulation, autonomous systems, etc. This work further assesses the digital twin applications in different domains and the current state of machine learning and big data in it. It thus answers and identifies novel research questions, both of which will help to better understand and advance the theory and practice of digital twins.

  • 5 authors
·
Nov 2, 2020

GigaEvo: An Open Source Optimization Framework Powered By LLMs And Evolution Algorithms

Recent advances in LLM-guided evolutionary computation, particularly AlphaEvolve (Novikov et al., 2025; Georgiev et al., 2025), have demonstrated remarkable success in discovering novel mathematical constructions and solving challenging optimization problems. However, the high-level descriptions in published work leave many implementation details unspecified, hindering reproducibility and further research. In this report we present GigaEvo, an extensible open-source framework that enables researchers to study and experiment with hybrid LLM-evolution approaches inspired by AlphaEvolve. Our system provides modular implementations of key components: MAP-Elites quality-diversity algorithms, asynchronous DAG-based evaluation pipelines, LLM-driven mutation operators with insight generation and bidirectional lineage tracking, and flexible multi-island evolutionary strategies. In order to assess reproducibility and validate our implementation we evaluate GigaEvo on challenging problems from the AlphaEvolve paper: Heilbronn triangle placement, circle packing in squares, and high-dimensional kissing numbers. The framework emphasizes modularity, concurrency, and ease of experimentation, enabling rapid prototyping through declarative configuration. We provide detailed descriptions of system architecture, implementation decisions, and experimental methodology to support further research in LLM driven evolutionary methods. The GigaEvo framework and all experimental code are available at https://github.com/AIRI-Institute/gigaevo-core.

SearchInstruct: Enhancing Domain Adaptation via Retrieval-Based Instruction Dataset Creation

Supervised Fine-Tuning (SFT) is essential for training large language models (LLMs), significantly enhancing critical capabilities such as instruction following and in-context learning. Nevertheless, creating suitable training datasets tailored for specific domains remains challenging due to unique domain constraints and data scarcity. In this paper, we propose SearchInstruct, an innovative method explicitly designed to construct high quality instruction datasets for SFT. Our approach begins with a limited set of domain specific, human generated questions, which are systematically expanded using a large language model. Subsequently, domain relevant resources are dynamically retrieved to generate accurate and contextually appropriate answers for each augmented question. Experimental evaluation demonstrates that SearchInstruct enhances both the diversity and quality of SFT datasets, leading to measurable improvements in LLM performance within specialized domains. Additionally, we show that beyond dataset generation, the proposed method can also effectively facilitate tasks such as model editing, enabling efficient updates to existing models. To facilitate reproducibility and community adoption, we provide full implementation details, the complete set of generated instruction response pairs, and the source code in a publicly accessible Git repository: [https://github.com/mostafaamiri/SearchInstruct](https://github.com/mostafaamiri/SearchInstruct)

  • 3 authors
·
Sep 12 2

Improved baselines for vision-language pre-training

Contrastive learning has emerged as an efficient framework to learn multimodal representations. CLIP, a seminal work in this area, achieved impressive results by training on paired image-text data using the contrastive loss. Recent work claims improvements over CLIP using additional non-contrastive losses inspired from self-supervised learning. However, it is sometimes hard to disentangle the contribution of these additional losses from other implementation details, e.g., data augmentation or regularization techniques, used to train the model. To shed light on this matter, in this paper, we first propose, implement and evaluate several baselines obtained by combining contrastive learning with recent advances in self-supervised learning. In particular, we use the loss functions that were proven successful for visual self-supervised learning to align image and text modalities. We find that these baselines outperform a basic implementation of CLIP. However, when a stronger training recipe is employed, the advantage disappears. Indeed, we find that a simple CLIP baseline can also be improved substantially, up to a 25% relative improvement on downstream zero-shot tasks, by using well-known training techniques that are popular in other subfields. Moreover, we discover that it is enough to apply image and text augmentations to make up for most of the improvement attained by prior works. With our improved training recipe for CLIP, we obtain state-of-the-art performance on four standard datasets, and consistently outperform prior work (up to +4% on the largest dataset), while being substantially simpler.

  • 5 authors
·
May 15, 2023

EasyRec: Simple yet Effective Language Models for Recommendation

Deep neural networks have become a powerful technique for learning representations from user-item interaction data in collaborative filtering (CF) for recommender systems. However, many existing methods heavily rely on unique user and item IDs, which limits their ability to perform well in practical zero-shot learning scenarios where sufficient training data may be unavailable. Inspired by the success of language models (LMs) and their strong generalization capabilities, a crucial question arises: How can we harness the potential of language models to empower recommender systems and elevate its generalization capabilities to new heights? In this study, we propose EasyRec - an effective and easy-to-use approach that seamlessly integrates text-based semantic understanding with collaborative signals. EasyRec employs a text-behavior alignment framework, which combines contrastive learning with collaborative language model tuning, to ensure a strong alignment between the text-enhanced semantic space and the collaborative behavior information. Extensive empirical evaluations across diverse real-world datasets demonstrate the superior performance of EasyRec compared to state-of-the-art alternative models, particularly in the challenging text-based zero-shot recommendation scenarios. Furthermore, the study highlights the potential of seamlessly integrating EasyRec as a plug-and-play component into text-enhanced collaborative filtering frameworks, thereby empowering existing recommender systems to elevate their recommendation performance and adapt to the evolving user preferences in dynamic environments. For better result reproducibility of our EasyRec framework, the model implementation details, source code, and datasets are available at the link: https://github.com/HKUDS/EasyRec.

  • 2 authors
·
Aug 16, 2024

Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Large language model pre-training has traditionally relied on human experts to craft heuristics for improving the corpora quality, resulting in numerous rules developed to date. However, these rules lack the flexibility to address the unique characteristics of individual example effectively. Meanwhile, applying tailored rules to every example is impractical for human experts. In this paper, we demonstrate that even small language models, with as few as 0.3B parameters, can exhibit substantial data refining capabilities comparable to those of human experts. We introduce Programming Every Example (ProX), a novel framework that treats data refinement as a programming task, enabling models to refine corpora by generating and executing fine-grained operations, such as string normalization, for each individual example at scale. Experimental results show that models pre-trained on ProX-curated data outperform either original data or data filtered by other selection methods by more than 2% across various downstream benchmarks. Its effectiveness spans various model sizes and pre-training corpora, including C4, RedPajama-V2, and FineWeb. Furthermore, ProX exhibits significant potential in domain-specific continual pre-training: without domain specific design, models trained on OpenWebMath refined by ProX outperform human-crafted rule-based methods, improving average accuracy by 7.6% over Mistral-7B, with 14.6% for Llama-2-7B and 20.3% for CodeLlama-7B, all within 10B tokens to be comparable to models like Llemma-7B trained on 200B tokens. Further analysis highlights that ProX significantly saves training FLOPs, offering a promising path for efficient LLM pre-training.We are open-sourcing ProX with >100B corpus, models, and sharing all training and implementation details for reproducible research and future innovation. Code: https://github.com/GAIR-NLP/ProX

  • 5 authors
·
Sep 25, 2024 4

InternLM-XComposer2.5-Reward: A Simple Yet Effective Multi-Modal Reward Model

Despite the promising performance of Large Vision Language Models (LVLMs) in visual understanding, they occasionally generate incorrect outputs. While reward models (RMs) with reinforcement learning or test-time scaling offer the potential for improving generation quality, a critical gap remains: publicly available multi-modal RMs for LVLMs are scarce, and the implementation details of proprietary models are often unclear. We bridge this gap with InternLM-XComposer2.5-Reward (IXC-2.5-Reward), a simple yet effective multi-modal reward model that aligns LVLMs with human preferences. To ensure the robustness and versatility of IXC-2.5-Reward, we set up a high-quality multi-modal preference corpus spanning text, image, and video inputs across diverse domains, such as instruction following, general understanding, text-rich documents, mathematical reasoning, and video understanding. IXC-2.5-Reward achieves excellent results on the latest multi-modal reward model benchmark and shows competitive performance on text-only reward model benchmarks. We further demonstrate three key applications of IXC-2.5-Reward: (1) Providing a supervisory signal for RL training. We integrate IXC-2.5-Reward with Proximal Policy Optimization (PPO) yields IXC-2.5-Chat, which shows consistent improvements in instruction following and multi-modal open-ended dialogue; (2) Selecting the best response from candidate responses for test-time scaling; and (3) Filtering outlier or noisy samples from existing image and video instruction tuning training data. To ensure reproducibility and facilitate further research, we have open-sourced all model weights and training recipes at https://github.com/InternLM/InternLM-XComposer

  • 13 authors
·
Jan 21 3

SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores

The ever-growing complexity of reinforcement learning (RL) tasks demands a distributed RL system to efficiently generate and process a massive amount of data to train intelligent agents. However, existing open-source libraries suffer from various limitations, which impede their practical use in challenging scenarios where large-scale training is necessary. While industrial systems from OpenAI and DeepMind have achieved successful large-scale RL training, their system architecture and implementation details remain undisclosed to the community. In this paper, we present a novel abstraction on the dataflows of RL training, which unifies practical RL training across diverse applications into a general framework and enables fine-grained optimizations. Following this abstraction, we develop a scalable, efficient, and extensible distributed RL system called ReaLly Scalable RL (SRL). The system architecture of SRL separates major RL computation components and allows massively parallelized training. Moreover, SRL offers user-friendly and extensible interfaces for customized algorithms. Our evaluation shows that SRL outperforms existing academic libraries in both a single machine and a medium-sized cluster. In a large-scale cluster, the novel architecture of SRL leads to up to 3.7x speedup compared to the design choices adopted by the existing libraries. We also conduct a direct benchmark comparison to OpenAI's industrial system, Rapid, in the challenging hide-and-seek environment. SRL reproduces the same solution as reported by OpenAI with up to 5x speedup in wall-clock time. Furthermore, we also examine the performance of SRL in a much harder variant of the hide-and-seek environment and achieve substantial learning speedup by scaling SRL to over 15k CPU cores and 32 A100 GPUs. Notably, SRL is the first in the academic community to perform RL experiments at such a large scale.

  • 5 authors
·
Jun 29, 2023

GMML is All you Need

Vision transformers have generated significant interest in the computer vision community because of their flexibility in exploiting contextual information, whether it is sharply confined local, or long range global. However, they are known to be data hungry. This has motivated the research in self-supervised transformer pretraining, which does not need to decode the semantic information conveyed by labels to link it to the image properties, but rather focuses directly on extracting a concise representation of the image data that reflects the notion of similarity, and is invariant to nuisance factors. The key vehicle for the self-learning process used by the majority of self-learning methods is the generation of multiple views of the training data and the creation of pretext tasks which use these views to define the notion of image similarity, and data integrity. However, this approach lacks the natural propensity to extract contextual information. We propose group masked model learning (GMML), a self-supervised learning (SSL) mechanism for pretraining vision transformers with the ability to extract the contextual information present in all the concepts in an image. GMML achieves this by manipulating randomly groups of connected tokens, ensuingly covering a meaningful part of a semantic concept, and then recovering the hidden semantic information from the visible part of the concept. GMML implicitly introduces a novel data augmentation process. Unlike most of the existing SSL approaches, GMML does not require momentum encoder, nor rely on careful implementation details such as large batches and gradient stopping, which are all artefacts of most of the current self-supervised learning techniques. The source code is publicly available for the community to train on bigger corpora: https://github.com/Sara-Ahmed/GMML.

  • 3 authors
·
May 30, 2022

Lumina-T2X: Transforming Text into Any Modality, Resolution, and Duration via Flow-based Large Diffusion Transformers

Sora unveils the potential of scaling Diffusion Transformer for generating photorealistic images and videos at arbitrary resolutions, aspect ratios, and durations, yet it still lacks sufficient implementation details. In this technical report, we introduce the Lumina-T2X family - a series of Flow-based Large Diffusion Transformers (Flag-DiT) equipped with zero-initialized attention, as a unified framework designed to transform noise into images, videos, multi-view 3D objects, and audio clips conditioned on text instructions. By tokenizing the latent spatial-temporal space and incorporating learnable placeholders such as [nextline] and [nextframe] tokens, Lumina-T2X seamlessly unifies the representations of different modalities across various spatial-temporal resolutions. This unified approach enables training within a single framework for different modalities and allows for flexible generation of multimodal data at any resolution, aspect ratio, and length during inference. Advanced techniques like RoPE, RMSNorm, and flow matching enhance the stability, flexibility, and scalability of Flag-DiT, enabling models of Lumina-T2X to scale up to 7 billion parameters and extend the context window to 128K tokens. This is particularly beneficial for creating ultra-high-definition images with our Lumina-T2I model and long 720p videos with our Lumina-T2V model. Remarkably, Lumina-T2I, powered by a 5-billion-parameter Flag-DiT, requires only 35% of the training computational costs of a 600-million-parameter naive DiT. Our further comprehensive analysis underscores Lumina-T2X's preliminary capability in resolution extrapolation, high-resolution editing, generating consistent 3D views, and synthesizing videos with seamless transitions. We expect that the open-sourcing of Lumina-T2X will further foster creativity, transparency, and diversity in the generative AI community.

  • 20 authors
·
May 9, 2024

Paper2Code: Automating Code Generation from Scientific Papers in Machine Learning

Despite the rapid growth of machine learning research, corresponding code implementations are often unavailable, making it slow and labor-intensive for researchers to reproduce results and build upon prior work. In the meantime, recent Large Language Models (LLMs) excel at understanding scientific documents and generating high-quality code. Inspired by this, we introduce PaperCoder, a multi-agent LLM framework that transforms machine learning papers into functional code repositories. PaperCoder operates in three stages: planning, where it constructs a high-level roadmap, designs the system architecture with diagrams, identifies file dependencies, and generates configuration files; analysis, which focuses on interpreting implementation-specific details; and generation, where modular, dependency-aware code is produced. Moreover, each phase is instantiated through a set of specialized agents designed to collaborate effectively across the pipeline. We then evaluate PaperCoder on generating code implementations from machine learning papers based on both model-based and human evaluations, specifically from the original paper authors, with author-released repositories as ground truth if available. Our results demonstrate the effectiveness of PaperCoder in creating high-quality, faithful implementations. Furthermore, it consistently shows strengths in the recently released PaperBench benchmark, surpassing strong baselines by substantial margins.

  • 4 authors
·
Apr 23 6

Evaluating Large-Vocabulary Object Detectors: The Devil is in the Details

By design, average precision (AP) for object detection aims to treat all classes independently: AP is computed independently per category and averaged. On one hand, this is desirable as it treats all classes equally. On the other hand, it ignores cross-category confidence calibration, a key property in real-world use cases. Unfortunately, under important conditions (i.e., large vocabulary, high instance counts) the default implementation of AP is neither category independent, nor does it directly reward properly calibrated detectors. In fact, we show that on LVIS the default implementation produces a gameable metric, where a simple, un-intuitive re-ranking policy can improve AP by a large margin. To address these limitations, we introduce two complementary metrics. First, we present a simple fix to the default AP implementation, ensuring that it is independent across categories as originally intended. We benchmark recent LVIS detection advances and find that many reported gains do not translate to improvements under our new evaluation, suggesting recent improvements may arise from difficult to interpret changes to cross-category rankings. Given the importance of reliably benchmarking cross-category rankings, we consider a pooled version of AP (AP-Pool) that rewards properly calibrated detectors by directly comparing cross-category rankings. Finally, we revisit classical approaches for calibration and find that explicitly calibrating detectors improves state-of-the-art on AP-Pool by 1.7 points

  • 5 authors
·
Feb 1, 2021

High-Accuracy ECG Image Interpretation using Parameter-Efficient LoRA Fine-Tuning with Multimodal LLaMA 3.2

Electrocardiogram (ECG) interpretation is a cornerstone of cardiac diagnostics. This paper explores a practical approach to enhance ECG image interpretation using the multimodal LLaMA 3.2 model. We used a parameter-efficient fine-tuning strategy, Low-Rank Adaptation (LoRA), specifically designed to boost the model's ability to understand ECG images and achieve better outcomes across a wide range of cardiac conditions. Our method is tailored for ECG analysis and leverages ECGInstruct, a large-scale instruction dataset with 1 Million samples. This dataset is a rich collection of synthesized ECG images, generated from raw ECG data from trusted open-source repositories like MIMIC-IV ECG and PTB-XL. Each ECG image in ECGInstruct comes with expert-written questions and detailed answers, covering diverse ECG interpretation scenarios, including complex cardiac conditions like Myocardial Infarction and Conduction Disturbances. Our fine-tuning approach efficiently adapts the LLaMA 3.2 model (built upon LLaMA 3) by integrating low-rank adaptation techniques, focusing on efficiency by updating only a small set of parameters, specifically ignoring the `lm_head` and `embed_tokens` layers. This paper details the model setup, our efficient fine-tuning method, and implementation specifics. We provide a thorough evaluation through extensive experiments, demonstrating the effectiveness of our method across various ECG interpretation tasks. The results convincingly show that our parameter-efficient LoRA fine-tuning achieves excellent performance in ECG image interpretation, significantly outperforming baseline models and reaching accuracy comparable to or exceeding traditional CNN-based methods in identifying a wide range of cardiac abnormalities, including over 70 conditions from the PTB-XL dataset.

  • 2 authors
·
Jan 30

Lookup Table meets Local Laplacian Filter: Pyramid Reconstruction Network for Tone Mapping

Tone mapping aims to convert high dynamic range (HDR) images to low dynamic range (LDR) representations, a critical task in the camera imaging pipeline. In recent years, 3-Dimensional LookUp Table (3D LUT) based methods have gained attention due to their ability to strike a favorable balance between enhancement performance and computational efficiency. However, these methods often fail to deliver satisfactory results in local areas since the look-up table is a global operator for tone mapping, which works based on pixel values and fails to incorporate crucial local information. To this end, this paper aims to address this issue by exploring a novel strategy that integrates global and local operators by utilizing closed-form Laplacian pyramid decomposition and reconstruction. Specifically, we employ image-adaptive 3D LUTs to manipulate the tone in the low-frequency image by leveraging the specific characteristics of the frequency information. Furthermore, we utilize local Laplacian filters to refine the edge details in the high-frequency components in an adaptive manner. Local Laplacian filters are widely used to preserve edge details in photographs, but their conventional usage involves manual tuning and fixed implementation within camera imaging pipelines or photo editing tools. We propose to learn parameter value maps progressively for local Laplacian filters from annotated data using a lightweight network. Our model achieves simultaneous global tone manipulation and local edge detail preservation in an end-to-end manner. Extensive experimental results on two benchmark datasets demonstrate that the proposed method performs favorably against state-of-the-art methods.

  • 7 authors
·
Oct 26, 2023

DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments

Large Language Models (LLMs) equipped with web search capabilities have demonstrated impressive potential for deep research tasks. However, current approaches predominantly rely on either manually engineered prompts (prompt engineering-based) with brittle performance or reinforcement learning within controlled Retrieval-Augmented Generation (RAG) environments (RAG-based) that fail to capture the complexities of real-world interaction. In this paper, we introduce DeepResearcher, the first comprehensive framework for end-to-end training of LLM-based deep research agents through scaling reinforcement learning (RL) in real-world environments with authentic web search interactions. Unlike RAG-based approaches that assume all necessary information exists within a fixed corpus, our method trains agents to navigate the noisy, unstructured, and dynamic nature of the open web. We implement a specialized multi-agent architecture where browsing agents extract relevant information from various webpage structures and overcoming significant technical challenges. Extensive experiments on open-domain research tasks demonstrate that DeepResearcher achieves substantial improvements of up to 28.9 points over prompt engineering-based baselines and up to 7.2 points over RAG-based RL agents. Our qualitative analysis reveals emergent cognitive behaviors from end-to-end RL training, including the ability to formulate plans, cross-validate information from multiple sources, engage in self-reflection to redirect research, and maintain honesty when unable to find definitive answers. Our results highlight that end-to-end training in real-world web environments is not merely an implementation detail but a fundamental requirement for developing robust research capabilities aligned with real-world applications. We release DeepResearcher at https://github.com/GAIR-NLP/DeepResearcher.

Database Systems Course: Service Learning Project

This paper describes a service learning project used in an upper-level and graduate-level database systems course. Students complete a small database project for a real client. The final product must match the client specification and needs, and include the database design and the final working database system with embedded user documentation. The solution must be implemented in a way to make it as easy to use as possible for the client. Students are expected to conduct professional meetings with their clients to understand the project, analyze the project's requirements, as well as design and implement the solution to the project. Students must have each milestone approved before starting the next phase of the project. The student learning objectives of a database system semester project are to: analyze a client's information system problem and determine the requirements for the solution; design a suitable database solution to the problem; use software design and development tools to design and develop a solution to the problem; communicate and interact with a client on a professional level; prepare effective documentation for both non-technical and technical software users; and interact ethically with all persons involved with a project. The broader impact objectives of a database system semester project are to: provide needed database solutions for organizations and businesses in the local area; provide a resume and portfolio-building opportunity for the students; provide a measure for assessing how well the program meets it mission; provide a mechanism for implementing service-based learning; provide a mechanism for outreach to local-area organizations and businesses; and provide a starting-point for undergraduate research projects.

  • 1 authors
·
Jul 2, 2024

Towards an Approach for Evaluating the Impact of AI Standards

There have been multiple calls for investments in the development of AI standards that both preserve the transformative potential and minimize the risks of AI. The goals of AI standards, particularly with respect to AI data, performance, and governance, are to promote innovation and public trust in systems that use AI. However, there is a lack of a formal or shared method to measure the impact of these standardization activities on the goals of innovation and trust. This concept paper proposes an analytical approach that could inform the evaluation of the impact of AI standards. The proposed approach could be used to measure, assess, and eventually evaluate the extent to which AI standards achieve their stated goals, since most Standards Development Organizationss do not track the impact of their standards once completed. It is intended to stimulate discussions with a wide variety of stakeholders, including academia and the standards community, about the potential for the approach to evaluate the effectiveness, utility, and relative value of AI standards. The document draws on successful and well-tested evaluation frameworks, tools, and metrics that are used for monitoring and assessing the effect of programmatic interventions in other domains to describe a possible approach. It begins by describing the context within which an evaluation would be designed, and then introduces a standard evaluation framework. These sections are followed by a description of what outputs and outcomes might result from the adoption and implementation of AI standards and the process whereby those AI standards are developed . Subsequent sections provide an overview of how the effectiveness of AI standards might be assessed and a conclusion.

  • 1 authors
·
Jun 16

NOTE: Notable generation Of patient Text summaries through Efficient approach based on direct preference optimization

The discharge summary is a one of critical documents in the patient journey, encompassing all events experienced during hospitalization, including multiple visits, medications, tests, surgery/procedures, and admissions/discharge. Providing a summary of the patient's progress is crucial, as it significantly influences future care and planning. Consequently, clinicians face the laborious and resource-intensive task of manually collecting, organizing, and combining all the necessary data for a discharge summary. Therefore, we propose "NOTE", which stands for "Notable generation Of patient Text summaries through an Efficient approach based on direct preference optimization". NOTE is based on Medical Information Mart for Intensive Care- III dataset and summarizes a single hospitalization of a patient. Patient events are sequentially combined and used to generate a discharge summary for each hospitalization. In the present circumstances, large language models' application programming interfaces (LLMs' APIs) are widely available, but importing and exporting medical data presents significant challenges due to privacy protection policies in healthcare institutions. Moreover, to ensure optimal performance, it is essential to implement a lightweight model for internal server or program within the hospital. Therefore, we utilized DPO and parameter efficient fine tuning (PEFT) techniques to apply a fine-tuning method that guarantees superior performance. To demonstrate the practical application of the developed NOTE, we provide a webpage-based demonstration software. In the future, we will aim to deploy the software available for actual use by clinicians in hospital. NOTE can be utilized to generate various summaries not only discharge summaries but also throughout a patient's journey, thereby alleviating the labor-intensive workload of clinicians and aiming for increased efficiency.

  • 5 authors
·
Feb 19, 2024

Large Language Model Distilling Medication Recommendation Model

The recommendation of medication is a vital aspect of intelligent healthcare systems, as it involves prescribing the most suitable drugs based on a patient's specific health needs. Unfortunately, many sophisticated models currently in use tend to overlook the nuanced semantics of medical data, while only relying heavily on identities. Furthermore, these models face significant challenges in handling cases involving patients who are visiting the hospital for the first time, as they lack prior prescription histories to draw upon. To tackle these issues, we harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs). Our research aims to transform existing medication recommendation methodologies using LLMs. In this paper, we introduce a novel approach called Large Language Model Distilling Medication Recommendation (LEADER). We begin by creating appropriate prompt templates that enable LLMs to suggest medications effectively. However, the straightforward integration of LLMs into recommender systems leads to an out-of-corpus issue specific to drugs. We handle it by adapting the LLMs with a novel output layer and a refined tuning loss function. Although LLM-based models exhibit remarkable capabilities, they are plagued by high computational costs during inference, which is impractical for the healthcare sector. To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model. Extensive experiments conducted on two real-world datasets, MIMIC-III and MIMIC-IV, demonstrate that our proposed model not only delivers effective results but also is efficient. To ease the reproducibility of our experiments, we release the implementation code online.

  • 7 authors
·
Feb 5, 2024

Automatic answering of scientific questions using the FACTS-V1 framework: New methods in research to increase efficiency through the use of AI

The use of artificial intelligence (AI) offers various possibilities to expand and support educational research. Specifically, the implementation of AI can be used to develop new frameworks to establish new research tools that accelerate and meaningfully expand the efficiency of data evaluation and interpretation (Buckingham Shum et al., 2023). This article presents the prototype of the FACTS-V1 (Filtering and Analysis of Content in Textual Sources) framework. With the help of the application, numerous scientific papers can be automatically extracted, analyzed and interpreted from open access document servers without having to rely on proprietary applications and their limitations. The FACTS-V1 prototype consists of three building blocks. The first part deals with the extraction of texts, the second with filtering and interpretation, and the last with the actual statistical evaluation (topic modeling) using an interactive overview. The aim of the framework is to provide recommendations for future scientific questions based on existing data. The functionality is illustrated by asking how the use of AI will change the education sector. The data used to answer the question comes from 82 scientific papers on the topic of AI from 2024. The papers are publicly available on the peDOCS document server of the Leibniz Institute for Educational Research and Educational Information.

  • 1 authors
·
Dec 1, 2024

Proof-of-Contribution-Based Design for Collaborative Machine Learning on Blockchain

We consider a project (model) owner that would like to train a model by utilizing the local private data and compute power of interested data owners, i.e., trainers. Our goal is to design a data marketplace for such decentralized collaborative/federated learning applications that simultaneously provides i) proof-of-contribution based reward allocation so that the trainers are compensated based on their contributions to the trained model; ii) privacy-preserving decentralized model training by avoiding any data movement from data owners; iii) robustness against malicious parties (e.g., trainers aiming to poison the model); iv) verifiability in the sense that the integrity, i.e., correctness, of all computations in the data market protocol including contribution assessment and outlier detection are verifiable through zero-knowledge proofs; and v) efficient and universal design. We propose a blockchain-based marketplace design to achieve all five objectives mentioned above. In our design, we utilize a distributed storage infrastructure and an aggregator aside from the project owner and the trainers. The aggregator is a processing node that performs certain computations, including assessing trainer contributions, removing outliers, and updating hyper-parameters. We execute the proposed data market through a blockchain smart contract. The deployed smart contract ensures that the project owner cannot evade payment, and honest trainers are rewarded based on their contributions at the end of training. Finally, we implement the building blocks of the proposed data market and demonstrate their applicability in practical scenarios through extensive experiments.

  • 8 authors
·
Feb 27, 2023

Verifying International Agreements on AI: Six Layers of Verification for Rules on Large-Scale AI Development and Deployment

The risks of frontier AI may require international cooperation, which in turn may require verification: checking that all parties follow agreed-on rules. For instance, states might need to verify that powerful AI models are widely deployed only after their risks to international security have been evaluated and deemed manageable. However, research on AI verification could benefit from greater clarity and detail. To address this, this report provides an in-depth overview of AI verification, intended for both policy professionals and technical researchers. We present novel conceptual frameworks, detailed implementation options, and key R&D challenges. These draw on existing literature, expert interviews, and original analysis, all within the scope of confidentially overseeing AI development and deployment that uses thousands of high-end AI chips. We find that states could eventually verify compliance by using six largely independent verification approaches with substantial redundancy: (1) built-in security features in AI chips; (2-3) separate monitoring devices attached to AI chips; and (4-6) personnel-based mechanisms, such as whistleblower programs. While promising, these approaches require guardrails to protect against abuse and power concentration, and many of these technologies have yet to be built or stress-tested. To enable states to confidently verify compliance with rules on large-scale AI development and deployment, the R&D challenges we list need significant progress.

  • 5 authors
·
Jul 21

The AI Assessment Scale Revisited: A Framework for Educational Assessment

Recent developments in Generative Artificial Intelligence (GenAI) have created significant uncertainty in education, particularly in terms of assessment practices. Against this backdrop, we present an updated version of the AI Assessment Scale (AIAS), a framework with two fundamental purposes: to facilitate open dialogue between educators and students about appropriate GenAI use and to support educators in redesigning assessments in an era of expanding AI capabilities. Grounded in social constructivist principles and designed with assessment validity in mind, the AIAS provides a structured yet flexible approach that can be adapted across different educational contexts. Building on implementation feedback from global adoption across both the K-12 and higher education contexts, this revision represents a significant change from the original AIAS. Among these changes is a new visual guide that moves beyond the original traffic light system and utilises a neutral colour palette that avoids implied hierarchies between the levels. The scale maintains five distinct levels of GenAI integration in assessment, from "No AI" to "AI Exploration", but has been refined to better reflect rapidly advancing technological capabilities and emerging pedagogical needs. This paper presents the theoretical foundations of the revised framework, provides detailed implementation guidance through practical vignettes, and discusses its limitations and future directions. As GenAI capabilities continue to expand, particularly in multimodal content generation, the AIAS offers a starting point for reimagining assessment design in an era of disruptive technologies.

  • 3 authors
·
Dec 12, 2024

Iterative Service-Learning: A Computing-Based Case-study Applied to Small Rural Organizations

This paper describes the iterative use of service learning to develop, review, and improve computing-based artifacts. It is well-known that computing students benefit from service-learning experiences as do the community partners. It is also well-known that computing artifacts rarely function well long-term without versioning and updates. Service-learning projects are often one-time engagements, completed by single teams of students over the course of a semester course. This limits the benefit for community partners that do not have the expertise or resources to review and update a project on their own. Over several years, teams of undergraduate students in a capstone course created tailored social media plans for numerous small rural organizations. The projects were required to meet client specific needs, with identified audiences, measurable goals, and strategies and tactics to reach the identified goals. This paper builds on previously results for 60 projects conducted over several years. Nine clients were selected to participate in the iterative follow-up process, where new student teams conducted client interviews, reviewed the initial plans, and analyzed metrics from the current strategies and tactics to provide updated, improved artifacts. Using ABET learning objectives as a basis, clients reviewed the student teams and artifacts. This longitudinal study discusses the impact of this intervention to increase implementation and sustained use rates of computing artifacts developed through service learning. Both students and clients reported high satisfaction levels, and clients were particularly satisfied with the iterative improvement process. This research demonstrates an innovative practice for creating and maintaining computing artifacts through iterative service learning, while addressing the resource constraints of small organizations.

  • 1 authors
·
Jun 21, 2024

SciReplicate-Bench: Benchmarking LLMs in Agent-driven Algorithmic Reproduction from Research Papers

This study evaluates large language models (LLMs) in generating code from algorithm descriptions from recent NLP papers. The task requires two key competencies: (1) algorithm comprehension: synthesizing information from papers and academic literature to understand implementation logic, and (2) coding expertise: identifying dependencies and correctly implementing necessary APIs. To facilitate rigorous evaluation, we introduce SciReplicate-Bench, a benchmark of 100 tasks from 36 NLP papers published in 2024, featuring detailed annotations and comprehensive test cases. Building on SciReplicate-Bench, we propose Sci-Reproducer, a multi-agent framework consisting of a Paper Agent that interprets algorithmic concepts from literature and a Code Agent that retrieves dependencies from repositories and implement solutions. To assess algorithm understanding, we introduce reasoning graph accuracy, which quantifies similarity between generated and reference reasoning graphs derived from code comments and structure. For evaluating implementation quality, we employ execution accuracy, CodeBLEU, and repository dependency/API recall metrics. In our experiments, we evaluate various powerful Non-Reasoning LLMs and Reasoning LLMs as foundational models. The best-performing LLM using Sci-Reproducer achieves only 39% execution accuracy, highlighting the benchmark's difficulty.Our analysis identifies missing or inconsistent algorithm descriptions as key barriers to successful reproduction. We will open-source our benchmark, and code at https://github.com/xyzCS/SciReplicate-Bench.

  • 5 authors
·
Mar 31

Experimenting with Multi-Agent Software Development: Towards a Unified Platform

Large language models are redefining software engineering by implementing AI-powered techniques throughout the whole software development process, including requirement gathering, software architecture, code generation, testing, and deployment. However, it is still difficult to develop a cohesive platform that consistently produces the best outcomes across all stages. The objective of this study is to develop a unified platform that utilizes multiple artificial intelligence agents to automate the process of transforming user requirements into well-organized deliverables. These deliverables include user stories, prioritization, and UML sequence diagrams, along with the modular approach to APIs, unit tests, and end-to-end tests. Additionally, the platform will organize tasks, perform security and compliance, and suggest design patterns and improvements for non-functional requirements. We allow users to control and manage each phase according to their preferences. In addition, the platform provides security and compliance checks following European standards and proposes design optimizations. We use multiple models, such as GPT-3.5, GPT-4, and Llama3 to enable to generation of modular code as per user choice. The research also highlights the limitations and future research discussions to overall improve the software development life cycle. The source code for our uniform platform is hosted on GitHub, enabling additional experimentation and supporting both research and practical uses. \end

  • 6 authors
·
Jun 8, 2024

Efficient and Green Large Language Models for Software Engineering: Vision and the Road Ahead

Large Language Models (LLMs) have recently shown remarkable capabilities in various software engineering tasks, spurring the rapid growth of the Large Language Models for Software Engineering (LLM4SE) area. However, limited attention has been paid to developing efficient LLM4SE techniques that demand minimal computational cost, time, and memory resources, as well as green LLM4SE solutions that reduce energy consumption, water usage, and carbon emissions. This paper aims to redirect the focus of the research community towards the efficiency and greenness of LLM4SE, while also sharing potential research directions to achieve this goal. It commences with a brief overview of the significance of LLM4SE and highlights the need for efficient and green LLM4SE solutions. Subsequently, the paper presents a vision for a future where efficient and green LLM4SE revolutionizes the LLM-based software engineering tool landscape, benefiting various stakeholders, including industry, individual practitioners, and society. The paper then delineates a roadmap for future research, outlining specific research paths and potential solutions for the research community to pursue. While not intended to be a definitive guide, the paper aims to inspire further progress, with the ultimate goal of establishing efficient and green LLM4SE as a central element in the future of software engineering.

  • 3 authors
·
Apr 6, 2024

Planning-Driven Programming: A Large Language Model Programming Workflow

The strong performance of large language models (LLMs) on natural language processing tasks raises extensive discussion on their application to code generation. Recent work suggests multiple sampling approaches to improve initial code generation accuracy or program repair approaches to refine the code. However, these methods suffer from LLMs' inefficiencies and limited reasoning capacity. In this work, we propose an LLM programming workflow (LPW) designed to improve both initial code generation and subsequent refinements within a structured two-phase workflow. Specifically, in the solution generation phase, the LLM first outlines a solution plan that decomposes the problem into manageable sub-problems and then verifies the generated solution plan through visible test cases. Subsequently, in the code implementation phase, the LLM initially drafts a code according to the solution plan and its verification. If the generated code fails the visible tests, the plan verification serves as the intended natural language solution to inform the refinement process for correcting bugs. We further introduce SLPW, a sampling variant of LPW, which initially generates multiple solution plans and plan verifications, produces a program for each plan and its verification, and refines each program as necessary until one successfully passes the visible tests. Compared to the state-of-the-art methods across various existing LLMs, our experimental results show that LPW significantly improves the Pass@1 accuracy by up to 16.4% on well-established text-to-code generation benchmarks, especially with a notable improvement of around 10% on challenging benchmarks. Additionally, SLPW demonstrates up to a 5.6% improvement over LPW and sets new state-of-the-art Pass@1 accuracy on various benchmarks, e.g., 98.2% on HumanEval, 84.8% on MBPP, 64.0% on APPS, and 35.3% on CodeContest, using GPT-4o as the backbone.

  • 4 authors
·
Nov 21, 2024

FeatBench: Evaluating Coding Agents on Feature Implementation for Vibe Coding

The rapid advancement of Large Language Models (LLMs) has given rise to a novel software development paradigm known as "vibe coding," where users interact with coding agents through high-level natural language. However, existing evaluation benchmarks for code generation inadequately assess an agent's vibe coding capabilities. Existing benchmarks are misaligned, as they either require code-level specifications or focus narrowly on issue-solving, neglecting the critical scenario of feature implementation within the vibe coding paradiam. To address this gap, we propose FeatBench, a novel benchmark for vibe coding that focuses on feature implementation. Our benchmark is distinguished by several key features: 1. Pure Natural Language Prompts. Task inputs consist solely of abstract natural language descriptions, devoid of any code or structural hints. 2. A Rigorous & Evolving Data Collection Process. FeatBench is built on a multi-level filtering pipeline to ensure quality and a fully automated pipeline to evolve the benchmark, mitigating data contamination. 3. Comprehensive Test Cases. Each task includes Fail-to-Pass (F2P) and Pass-to-Pass (P2P) tests to verify correctness and prevent regressions. 4. Diverse Application Domains. The benchmark includes repositories from diverse domains to ensure it reflects real-world scenarios. We evaluate two state-of-the-art agent frameworks with four leading LLMs on FeatBench. Our evaluation reveals that feature implementation within the vibe coding paradigm is a significant challenge, with the highest success rate of only 29.94%. Our analysis also reveals a tendency for "aggressive implementation," a strategy that paradoxically leads to both critical failures and superior software design. We release FeatBench, our automated collection pipeline, and all experimental results to facilitate further community research.

  • 3 authors
·
Sep 26

ProSper -- A Python Library for Probabilistic Sparse Coding with Non-Standard Priors and Superpositions

ProSper is a python library containing probabilistic algorithms to learn dictionaries. Given a set of data points, the implemented algorithms seek to learn the elementary components that have generated the data. The library widens the scope of dictionary learning approaches beyond implementations of standard approaches such as ICA, NMF or standard L1 sparse coding. The implemented algorithms are especially well-suited in cases when data consist of components that combine non-linearly and/or for data requiring flexible prior distributions. Furthermore, the implemented algorithms go beyond standard approaches by inferring prior and noise parameters of the data, and they provide rich a-posteriori approximations for inference. The library is designed to be extendable and it currently includes: Binary Sparse Coding (BSC), Ternary Sparse Coding (TSC), Discrete Sparse Coding (DSC), Maximal Causes Analysis (MCA), Maximum Magnitude Causes Analysis (MMCA), and Gaussian Sparse Coding (GSC, a recent spike-and-slab sparse coding approach). The algorithms are scalable due to a combination of variational approximations and parallelization. Implementations of all algorithms allow for parallel execution on multiple CPUs and multiple machines for medium to large-scale applications. Typical large-scale runs of the algorithms can use hundreds of CPUs to learn hundreds of dictionary elements from data with tens of millions of floating-point numbers such that models with several hundred thousand parameters can be optimized. The library is designed to have minimal dependencies and to be easy to use. It targets users of dictionary learning algorithms and Machine Learning researchers.

  • 7 authors
·
Aug 1, 2019

The First Prompt Counts the Most! An Evaluation of Large Language Models on Iterative Example-based Code Generation

The capabilities of Large Language Models (LLMs) in code generation, particularly for implementing target functionalities from natural language descriptions, have been extensively studied. As an alternative form of natural language, input-output examples (I/O examples) provide an accessible, unambiguous, and flexible way to describe functionalities, but the diversity, sparseness, and incompleteness of I/O examples also place challenges on understanding and implementing requirements. Therefore, generating code from input-output examples (i.e., example-based code generation) provides a new perspective, allowing us to evaluate LLMs' capability to infer target functionalities from limited information and to process new-form requirements. However, related research about LLMs in example-based code generation remains largely unexplored. To fill this gap, this paper presents the first comprehensive study on example-based code generation using LLMs. To address the incorrectness caused by the incompleteness of I/O examples, we adopt an iterative evaluation framework and formalize the objective of example-based code generation as two sequential sub-objectives: generating code conforming to given examples and generating code that successfully implements the target functionalities from (iteratively) given examples. We assess six state-of-the-art LLMs using a new benchmark of 168 diverse target functionalities. The results demonstrate that when requirements were described using iterative I/O examples rather than natural language, the LLMs' score decreased by over 60%, indicating that example-based code generation remains challenging for the evaluated LLMs. More interestingly, the vast majority (even over 95%) of successfully implemented functionalities are achieved in the first round of iterations, suggesting that the LLMs struggle to effectively utilize the iteratively supplemented requirements.

  • 5 authors
·
Nov 11, 2024

An adapted large language model facilitates multiple medical tasks in diabetes care

Diabetes is a chronic disease that poses a significant global health burden, and optimizing diabetes management requires multi-stakeholder collaboration. Large language models (LLMs) have shown promise in various healthcare scenarios, but their effectiveness across a diverse range of diabetes tasks remains unproven. In this study, we introduced a framework to train and validate diabetes-specific LLMs. We first developed a comprehensive data processing pipeline that includes data collection, filtering, augmentation and refinement. This approach contributes to creating a high-quality, diabetes-specific dataset, and several evaluation benchmarks entirely from scratch. Utilizing the collected training dataset, we fine-tuned a diabetes-specific LLM family that demonstrated state-of-the-art proficiency in understanding and processing various diabetes tasks compared to other LLMs. Furthermore, clinical studies showed the potential applications of our models in diabetes care, including providing personalized healthcare, assisting medical education, and streamlining clinical tasks. In conclusion, our study introduced a framework to develop and evaluate a diabetes-specific LLM family, and highlighted its potential to enhance clinical practice and provide personalized, data-driven support for diabetes support when facing different end users. The code is provided via GitHub at https://github.com/waltonfuture/Diabetica.

  • 10 authors
·
Sep 19, 2024 2

aiSTROM -- A roadmap for developing a successful AI strategy

A total of 34% of AI research and development projects fails or are abandoned, according to a recent survey by Rackspace Technology of 1,870 companies. We propose a new strategic framework, aiSTROM, that empowers managers to create a successful AI strategy based on a thorough literature review. This provides a unique and integrated approach that guides managers and lead developers through the various challenges in the implementation process. In the aiSTROM framework, we start by identifying the top n potential projects (typically 3-5). For each of those, seven areas of focus are thoroughly analysed. These areas include creating a data strategy that takes into account unique cross-departmental machine learning data requirements, security, and legal requirements. aiSTROM then guides managers to think about how to put together an interdisciplinary artificial intelligence (AI) implementation team given the scarcity of AI talent. Once an AI team strategy has been established, it needs to be positioned within the organization, either cross-departmental or as a separate division. Other considerations include AI as a service (AIaas), or outsourcing development. Looking at new technologies, we have to consider challenges such as bias, legality of black-box-models, and keeping humans in the loop. Next, like any project, we need value-based key performance indicators (KPIs) to track and validate the progress. Depending on the company's risk-strategy, a SWOT analysis (strengths, weaknesses, opportunities, and threats) can help further classify the shortlisted projects. Finally, we should make sure that our strategy includes continuous education of employees to enable a culture of adoption. This unique and comprehensive framework offers a valuable, literature supported, tool for managers and lead developers.

  • 1 authors
·
Jun 25, 2021

Leveraging Graph-RAG and Prompt Engineering to Enhance LLM-Based Automated Requirement Traceability and Compliance Checks

Ensuring that Software Requirements Specifications (SRS) align with higher-level organizational or national requirements is vital, particularly in regulated environments such as finance and aerospace. In these domains, maintaining consistency, adhering to regulatory frameworks, minimizing errors, and meeting critical expectations are essential for the reliable functioning of systems. The widespread adoption of large language models (LLMs) highlights their immense potential, yet there remains considerable scope for improvement in retrieving relevant information and enhancing reasoning capabilities. This study demonstrates that integrating a robust Graph-RAG framework with advanced prompt engineering techniques, such as Chain of Thought and Tree of Thought, can significantly enhance performance. Compared to baseline RAG methods and simple prompting strategies, this approach delivers more accurate and context-aware results. While this method demonstrates significant improvements in performance, it comes with challenges. It is both costly and more complex to implement across diverse contexts, requiring careful adaptation to specific scenarios. Additionally, its effectiveness heavily relies on having complete and accurate input data, which may not always be readily available, posing further limitations to its scalability and practicality.

  • 5 authors
·
Dec 11, 2024