new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 12

Lexinvariant Language Models

Token embeddings, a mapping from discrete lexical symbols to continuous vectors, are at the heart of any language model (LM). However, lexical symbol meanings can also be determined and even redefined by their structural role in a long context. In this paper, we ask: is it possible for a language model to be performant without any fixed token embeddings? Such a language model would have to rely entirely on the co-occurence and repetition of tokens in the context rather than the a priori identity of any token. To answer this, we study lexinvariantlanguage models that are invariant to lexical symbols and therefore do not need fixed token embeddings in practice. First, we prove that we can construct a lexinvariant LM to converge to the true language model at a uniform rate that is polynomial in terms of the context length, with a constant factor that is sublinear in the vocabulary size. Second, to build a lexinvariant LM, we simply encode tokens using random Gaussian vectors, such that each token maps to the same representation within each sequence but different representations across sequences. Empirically, we demonstrate that it can indeed attain perplexity comparable to that of a standard language model, given a sufficiently long context. We further explore two properties of the lexinvariant language models: First, given text generated from a substitution cipher of English, it implicitly implements Bayesian in-context deciphering and infers the mapping to the underlying real tokens with high accuracy. Second, it has on average 4X better accuracy over synthetic in-context reasoning tasks. Finally, we discuss regularizing standard language models towards lexinvariance and potential practical applications.

  • 6 authors
·
May 24, 2023

NovoMolGen: Rethinking Molecular Language Model Pretraining

Designing de-novo molecules with desired property profiles requires efficient exploration of the vast chemical space ranging from 10^{23} to 10^{60} possible synthesizable candidates. While various deep generative models have been developed to design small molecules using diverse input representations, Molecular Large Language Models (Mol-LLMs) based on string representations have emerged as a scalable approach capable of exploring billions of molecules. However, there remains limited understanding regarding how standard language modeling practices such as textual representations, tokenization strategies, model size, and dataset scale impact molecular generation performance. In this work, we systematically investigate these critical aspects by introducing NovoMolGen, a family of transformer-based foundation models pretrained on 1.5 billion molecules for de-novo molecule generation. Through extensive empirical analyses, we identify a weak correlation between performance metrics measured during pretraining and actual downstream performance, revealing important distinctions between molecular and general NLP training dynamics. NovoMolGen establishes new state-of-the-art results, substantially outperforming prior Mol-LLMs and specialized generative models in both unconstrained and goal-directed molecular generation tasks, thus providing a robust foundation for advancing efficient and effective molecular modeling strategies.

  • 5 authors
·
Aug 18

VQ-Logits: Compressing the Output Bottleneck of Large Language Models via Vector Quantized Logits

Large Language Models (LLMs) have achieved remarkable success but face significant computational and memory challenges, particularly due to their extensive output vocabularies. The final linear projection layer, mapping hidden states to vocabulary-sized logits, often constitutes a substantial portion of the model's parameters and computational cost during inference. Existing methods like adaptive softmax or hierarchical softmax introduce structural complexities. In this paper, we propose VQ-Logits, a novel approach that leverages Vector Quantization (VQ) to drastically reduce the parameter count and computational load of the LLM output layer. VQ-Logits replaces the large V * dmodel output embedding matrix with a small, shared codebook of K embedding vectors (K << V ). Each token in the vocabulary is mapped to one of these K codebook vectors. The LLM predicts logits over this compact codebook, which are then efficiently "scattered" to the full vocabulary space using the learned or preassigned mapping. We demonstrate through extensive experiments on standard language modeling benchmarks (e.g., WikiText-103, C4) that VQ-Logits can achieve up to 99% parameter reduction in the output layer and 6x speedup in logit computation, with only a marginal 4% increase in perplexity compared to full softmax baselines. We further provide detailed ablation studies on codebook size, initialization, and learning strategies, showcasing the robustness and effectiveness of our approach.

  • 7 authors
·
May 15

Lizard: An Efficient Linearization Framework for Large Language Models

We propose Lizard, a linearization framework that transforms pretrained Transformer-based Large Language Models (LLMs) into flexible, subquadratic architectures for infinite-context generation. Transformer-based LLMs face significant memory and computational bottlenecks as context lengths increase, due to the quadratic complexity of softmax attention and the growing key-value (KV) cache. Lizard addresses these limitations by introducing a subquadratic attention mechanism that closely approximates softmax attention while preserving the output quality. Unlike previous linearization methods, which are often limited by fixed model structures and therefore exclude gating mechanisms, Lizard incorporates a gating module inspired by recent state-of-the-art linear models. This enables adaptive memory control, supports constant-memory inference, offers strong length generalization, and allows more flexible model design. Lizard combines gated linear attention for global context compression with sliding window attention enhanced by meta memory, forming a hybrid mechanism that captures both long-range dependencies and fine-grained local interactions. Moreover, we introduce a hardware-aware algorithm that accelerates the training speed of our models. Extensive experiments show that Lizard achieves near-lossless recovery of the teacher model's performance across standard language modeling tasks, while significantly outperforming previous linearization methods. On the 5-shot MMLU benchmark, Lizard improves over prior models by 18 points and shows significant improvements on associative recall tasks.

A Systematic Analysis of Hybrid Linear Attention

Transformers face quadratic complexity and memory issues with long sequences, prompting the adoption of linear attention mechanisms using fixed-size hidden states. However, linear models often suffer from limited recall performance, leading to hybrid architectures that combine linear and full attention layers. Despite extensive hybrid architecture research, the choice of linear attention component has not been deeply explored. We systematically evaluate various linear attention models across generations - vector recurrences to advanced gating mechanisms - both standalone and hybridized. To enable this comprehensive analysis, we trained and open-sourced 72 models: 36 at 340M parameters (20B tokens) and 36 at 1.3B parameters (100B tokens), covering six linear attention variants across five hybridization ratios. Benchmarking on standard language modeling and recall tasks reveals that superior standalone linear models do not necessarily excel in hybrids. While language modeling remains stable across linear-to-full attention ratios, recall significantly improves with increased full attention layers, particularly below a 3:1 ratio. Our study highlights selective gating, hierarchical recurrence, and controlled forgetting as critical for effective hybrid models. We recommend architectures such as HGRN-2 or GatedDeltaNet with a linear-to-full ratio between 3:1 and 6:1 to achieve Transformer-level recall efficiently. Our models are open-sourced at https://huggingface.co/collections/m-a-p/hybrid-linear-attention-research-686c488a63d609d2f20e2b1e.

Generating EDU Extracts for Plan-Guided Summary Re-Ranking

Two-step approaches, in which summary candidates are generated-then-reranked to return a single summary, can improve ROUGE scores over the standard single-step approach. Yet, standard decoding methods (i.e., beam search, nucleus sampling, and diverse beam search) produce candidates with redundant, and often low quality, content. In this paper, we design a novel method to generate candidates for re-ranking that addresses these issues. We ground each candidate abstract on its own unique content plan and generate distinct plan-guided abstracts using a model's top beam. More concretely, a standard language model (a BART LM) auto-regressively generates elemental discourse unit (EDU) content plans with an extractive copy mechanism. The top K beams from the content plan generator are then used to guide a separate LM, which produces a single abstractive candidate for each distinct plan. We apply an existing re-ranker (BRIO) to abstractive candidates generated from our method, as well as baseline decoding methods. We show large relevance improvements over previously published methods on widely used single document news article corpora, with ROUGE-2 F1 gains of 0.88, 2.01, and 0.38 on CNN / Dailymail, NYT, and Xsum, respectively. A human evaluation on CNN / DM validates these results. Similarly, on 1k samples from CNN / DM, we show that prompting GPT-3 to follow EDU plans outperforms sampling-based methods by 1.05 ROUGE-2 F1 points. Code to generate and realize plans is available at https://github.com/griff4692/edu-sum.

  • 5 authors
·
May 28, 2023

Parallelizing Linear Transformers with the Delta Rule over Sequence Length

Transformers with linear attention (i.e., linear transformers) and state-space models have recently been suggested as a viable linear-time alternative to transformers with softmax attention. However, these models still underperform transformers especially on tasks that require in-context retrieval. While more expressive variants of linear transformers which replace the additive outer-product update in linear transformers with the delta rule have been found to be more effective at associative recall, existing algorithms for training such models do not parallelize over sequence length and are thus inefficient to train on modern hardware. This work describes a hardware-efficient algorithm for training linear transformers with the delta rule, which exploits a memory-efficient representation for computing products of Householder matrices. This algorithm allows us to scale up DeltaNet to standard language modeling settings. We train a 1.3B model for 100B tokens and find that it outperforms recent linear-time baselines such as Mamba and GLA in terms of perplexity and zero-shot performance on downstream tasks (including on tasks that focus on recall). We also experiment with two hybrid models which combine DeltaNet layers with (1) sliding-window attention layers every other layer or (2) two global attention layers, and find that these hybrid models outperform strong transformer baselines.

  • 5 authors
·
Jun 10, 2024 2

Hierarchical Pretraining for Biomedical Term Embeddings

Electronic health records (EHR) contain narrative notes that provide extensive details on the medical condition and management of patients. Natural language processing (NLP) of clinical notes can use observed frequencies of clinical terms as predictive features for downstream applications such as clinical decision making and patient trajectory prediction. However, due to the vast number of highly similar and related clinical concepts, a more effective modeling strategy is to represent clinical terms as semantic embeddings via representation learning and use the low dimensional embeddings as feature vectors for predictive modeling. To achieve efficient representation, fine-tuning pretrained language models with biomedical knowledge graphs may generate better embeddings for biomedical terms than those from standard language models alone. These embeddings can effectively discriminate synonymous pairs of from those that are unrelated. However, they often fail to capture different degrees of similarity or relatedness for concepts that are hierarchical in nature. To overcome this limitation, we propose HiPrBERT, a novel biomedical term representation model trained on additionally complied data that contains hierarchical structures for various biomedical terms. We modify an existing contrastive loss function to extract information from these hierarchies. Our numerical experiments demonstrate that HiPrBERT effectively learns the pair-wise distance from hierarchical information, resulting in a substantially more informative embeddings for further biomedical applications

  • 6 authors
·
Jul 1, 2023

Diminished Diversity-of-Thought in a Standard Large Language Model

We test whether Large Language Models (LLMs) can be used to simulate human participants in social-science studies. To do this, we run replications of 14 studies from the Many Labs 2 replication project with OpenAI's text-davinci-003 model, colloquially known as GPT3.5. Based on our pre-registered analyses, we find that among the eight studies we could analyse, our GPT sample replicated 37.5% of the original results and 37.5% of the Many Labs 2 results. However, we were unable to analyse the remaining six studies due to an unexpected phenomenon we call the "correct answer" effect. Different runs of GPT3.5 answered nuanced questions probing political orientation, economic preference, judgement, and moral philosophy with zero or near-zero variation in responses: with the supposedly "correct answer." In one exploratory follow-up study, we found that a "correct answer" was robust to changing the demographic details that precede the prompt. In another, we found that most but not all "correct answers" were robust to changing the order of answer choices. One of our most striking findings occurred in our replication of the Moral Foundations Theory survey results, where we found GPT3.5 identifying as a political conservative in 99.6% of the cases, and as a liberal in 99.3% of the cases in the reverse-order condition. However, both self-reported 'GPT conservatives' and 'GPT liberals' showed right-leaning moral foundations. Our results cast doubts on the validity of using LLMs as a general replacement for human participants in the social sciences. Our results also raise concerns that a hypothetical AI-led future may be subject to a diminished diversity-of-thought.

  • 3 authors
·
Feb 13, 2023

Hyperbolic Safety-Aware Vision-Language Models

Addressing the retrieval of unsafe content from vision-language models such as CLIP is an important step towards real-world integration. Current efforts have relied on unlearning techniques that try to erase the model's knowledge of unsafe concepts. While effective in reducing unwanted outputs, unlearning limits the model's capacity to discern between safe and unsafe content. In this work, we introduce a novel approach that shifts from unlearning to an awareness paradigm by leveraging the inherent hierarchical properties of the hyperbolic space. We propose to encode safe and unsafe content as an entailment hierarchy, where both are placed in different regions of hyperbolic space. Our HySAC, Hyperbolic Safety-Aware CLIP, employs entailment loss functions to model the hierarchical and asymmetrical relations between safe and unsafe image-text pairs. This modelling, ineffective in standard vision-language models due to their reliance on Euclidean embeddings, endows the model with awareness of unsafe content, enabling it to serve as both a multimodal unsafe classifier and a flexible content retriever, with the option to dynamically redirect unsafe queries toward safer alternatives or retain the original output. Extensive experiments show that our approach not only enhances safety recognition but also establishes a more adaptable and interpretable framework for content moderation in vision-language models. Our source code is available at https://github.com/aimagelab/HySAC.

  • 5 authors
·
Mar 15 2

SecureBERT: A Domain-Specific Language Model for Cybersecurity

Natural Language Processing (NLP) has recently gained wide attention in cybersecurity, particularly in Cyber Threat Intelligence (CTI) and cyber automation. Increased connection and automation have revolutionized the world's economic and cultural infrastructures, while they have introduced risks in terms of cyber attacks. CTI is information that helps cybersecurity analysts make intelligent security decisions, that is often delivered in the form of natural language text, which must be transformed to machine readable format through an automated procedure before it can be used for automated security measures. This paper proposes SecureBERT, a cybersecurity language model capable of capturing text connotations in cybersecurity text (e.g., CTI) and therefore successful in automation for many critical cybersecurity tasks that would otherwise rely on human expertise and time-consuming manual efforts. SecureBERT has been trained using a large corpus of cybersecurity text.To make SecureBERT effective not just in retaining general English understanding, but also when applied to text with cybersecurity implications, we developed a customized tokenizer as well as a method to alter pre-trained weights. The SecureBERT is evaluated using the standard Masked Language Model (MLM) test as well as two additional standard NLP tasks. Our evaluation studies show that SecureBERT\url{https://github.com/ehsanaghaei/SecureBERT} outperforms existing similar models, confirming its capability for solving crucial NLP tasks in cybersecurity.

  • 4 authors
·
Apr 6, 2022

Leveraging Large Language Models for Web Scraping

Large Language Models (LLMs) demonstrate remarkable capabilities in replicating human tasks and boosting productivity. However, their direct application for data extraction presents limitations due to a prioritisation of fluency over factual accuracy and a restricted ability to manipulate specific information. Therefore to overcome these limitations, this research leverages the knowledge representation power of pre-trained LLMs and the targeted information access enabled by RAG models, this research investigates a general-purpose accurate data scraping recipe for RAG models designed for language generation. To capture knowledge in a more modular and interpretable way, we use pre trained language models with a latent knowledge retriever, which allows the model to retrieve and attend over documents from a large corpus. We utilised RAG model architecture and did an in-depth analysis of their capabilities under three tasks: (i) Semantic Classification of HTML elements, (ii) Chunking HTML text for effective understanding, and (iii) comparing results from different LLMs and ranking algorithms. While previous work has developed dedicated architectures and training procedures for HTML understanding and extraction, we show that LLMs pre-trained on standard natural language with an addition of effective chunking, searching and ranking algorithms, can prove to be efficient data scraping tool to extract complex data from unstructured text. Future research directions include addressing the challenges of provenance tracking and dynamic knowledge updates within the proposed RAG-based data extraction framework. By overcoming these limitations, this approach holds the potential to revolutionise data extraction from vast repositories of textual information.

  • 2 authors
·
Jun 12, 2024

Enhancing Trust in Large Language Models with Uncertainty-Aware Fine-Tuning

Large language models (LLMs) have revolutionized the field of natural language processing with their impressive reasoning and question-answering capabilities. However, these models are sometimes prone to generating credible-sounding but incorrect information, a phenomenon known as LLM hallucinations. Reliable uncertainty estimation in LLMs is essential for fostering trust in their generated responses and serves as a critical tool for the detection and prevention of erroneous or hallucinated outputs. To achieve reliable and well-calibrated uncertainty quantification in open-ended and free-form natural language generation, we propose an uncertainty-aware fine-tuning approach for LLMs. This approach enhances the model's ability to provide reliable uncertainty estimates without compromising accuracy, thereby guiding them to produce more trustworthy responses. We introduce a novel uncertainty-aware causal language modeling loss function, grounded in the principles of decision theory. Through rigorous evaluation on multiple free-form question-answering datasets and models, we demonstrate that our uncertainty-aware fine-tuning approach yields better calibrated uncertainty estimates in natural language generation tasks than fine-tuning with the standard causal language modeling loss. Furthermore, the experimental results show that the proposed method significantly improves the model's ability to detect hallucinations and identify out-of-domain prompts.

  • 3 authors
·
Dec 3, 2024

CAD-Tokenizer: Towards Text-based CAD Prototyping via Modality-Specific Tokenization

Computer-Aided Design (CAD) is a foundational component of industrial prototyping, where models are defined not by raw coordinates but by construction sequences such as sketches and extrusions. This sequential structure enables both efficient prototype initialization and subsequent editing. Text-guided CAD prototyping, which unifies Text-to-CAD generation and CAD editing, has the potential to streamline the entire design pipeline. However, prior work has not explored this setting, largely because standard large language model (LLM) tokenizers decompose CAD sequences into natural-language word pieces, failing to capture primitive-level CAD semantics and hindering attention modules from modeling geometric structure. We conjecture that a multimodal tokenization strategy, aligned with CAD's primitive and structural nature, can provide more effective representations. To this end, we propose CAD-Tokenizer, a framework that represents CAD data with modality-specific tokens using a sequence-based VQ-VAE with primitive-level pooling and constrained decoding. This design produces compact, primitive-aware representations that align with CAD's structural nature. Applied to unified text-guided CAD prototyping, CAD-Tokenizer significantly improves instruction following and generation quality, achieving better quantitative and qualitative performance over both general-purpose LLMs and task-specific baselines.

microsoft Microsoft
·
Sep 25 2

Style Over Substance: Evaluation Biases for Large Language Models

As large language models (LLMs) continue to advance, accurately and comprehensively evaluating their performance becomes increasingly challenging. Human evaluations are conventionally considered the gold standard in natural language generation, but recent advancements incorporate state-of-the-art LLMs as proxies for human judges in evaluation processes. However, the extent to which humans and LLMs are capable evaluators remains uncertain. This study investigates the behavior of crowd-sourced and expert annotators, as well as LLMs, when comparing outputs from different models. To achieve this, we curate a dataset of intentionally flawed machine-generated answers. Our findings reveal a concerning bias in the evaluation process, as answers with factual errors are rated more favorably than answers that are too short or contained grammatical errors. To address this issue, we propose independently evaluating machine-generated text across multiple dimensions, rather than merging all the evaluation aspects into a single score. We instantiate this idea with the Elo rating system, resulting in the Multi-Elo Rating System. Empirical results from our study reveal that this proposed approach significantly enhances the quality of LLM-based evaluations, particularly in terms of factual accuracy. However, there is no significant improvement in crowd-sourced-based evaluations, indicating the need for further investigation and refinement.

  • 2 authors
·
Jul 6, 2023

Reactive Transformer (RxT) -- Stateful Real-Time Processing for Event-Driven Reactive Language Models

The Transformer architecture has become the de facto standard for Large Language Models (LLMs), demonstrating remarkable capabilities in language understanding and generation. However, its application in conversational AI is fundamentally constrained by its stateless nature and the quadratic computational complexity (O(L^2)) with respect to sequence length L. Current models emulate memory by reprocessing an ever-expanding conversation history with each turn, leading to prohibitive costs and latency in long dialogues. This paper introduces the Reactive Transformer (RxT), a novel architecture designed to overcome these limitations by shifting from a data-driven to an event-driven paradigm. RxT processes each conversational turn as a discrete event in real-time, maintaining context in an integrated, fixed-size Short-Term Memory (STM) system. The architecture features a distinct operational cycle where a generator-decoder produces a response based on the current query and the previous memory state, after which a memory-encoder and a dedicated Memory Attention network asynchronously update the STM with a representation of the complete interaction. This design fundamentally alters the scaling dynamics, reducing the total user-facing cost of a conversation from quadratic (O(N^2 cdot T)) to linear (O(N cdot T)) with respect to the number of interactions N. By decoupling response generation from memory updates, RxT achieves low latency, enabling truly real-time, stateful, and economically viable long-form conversations. We validated our architecture with a series of proof-of-concept experiments on synthetic data, demonstrating superior performance and constant-time inference latency compared to a baseline stateless model of comparable size.

ReactiveAI Reactive AI
·
Oct 3 2

Prioritizing Image-Related Tokens Enhances Vision-Language Pre-Training

In standard large vision-language models (LVLMs) pre-training, the model typically maximizes the joint probability of the caption conditioned on the image via next-token prediction (NTP); however, since only a small subset of caption tokens directly relates to the visual content, this naive NTP unintentionally fits the model to noise and increases the risk of hallucination. We present PRIOR, a simple vision-language pre-training approach that addresses this issue by prioritizing image-related tokens through differential weighting in the NTP loss, drawing from the importance sampling framework. PRIOR introduces a reference model-a text-only large language model (LLM) trained on the captions without image inputs, to weight each token based on its probability for LVLMs training. Intuitively, tokens that are directly related to the visual inputs are harder to predict without the image and thus receive lower probabilities from the text-only reference LLM. During training, we implement a token-specific re-weighting term based on the importance scores to adjust each token's loss. We implement PRIOR in two distinct settings: LVLMs with visual encoders and LVLMs without visual encoders. We observe 19% and 8% average relative improvement, respectively, on several vision-language benchmarks compared to NTP. In addition, PRIOR exhibits superior scaling properties, as demonstrated by significantly higher scaling coefficients, indicating greater potential for performance gains compared to NTP given increasing compute and data.

  • 4 authors
·
May 13

What Makes Convolutional Models Great on Long Sequence Modeling?

Convolutional models have been widely used in multiple domains. However, most existing models only use local convolution, making the model unable to handle long-range dependency efficiently. Attention overcomes this problem by aggregating global information but also makes the computational complexity quadratic to the sequence length. Recently, Gu et al. [2021] proposed a model called S4 inspired by the state space model. S4 can be efficiently implemented as a global convolutional model whose kernel size equals the input sequence length. S4 can model much longer sequences than Transformers and achieve significant gains over SoTA on several long-range tasks. Despite its empirical success, S4 is involved. It requires sophisticated parameterization and initialization schemes. As a result, S4 is less intuitive and hard to use. Here we aim to demystify S4 and extract basic principles that contribute to the success of S4 as a global convolutional model. We focus on the structure of the convolution kernel and identify two critical but intuitive principles enjoyed by S4 that are sufficient to make up an effective global convolutional model: 1) The parameterization of the convolutional kernel needs to be efficient in the sense that the number of parameters should scale sub-linearly with sequence length. 2) The kernel needs to satisfy a decaying structure that the weights for convolving with closer neighbors are larger than the more distant ones. Based on the two principles, we propose a simple yet effective convolutional model called Structured Global Convolution (SGConv). SGConv exhibits strong empirical performance over several tasks: 1) With faster speed, SGConv surpasses S4 on Long Range Arena and Speech Command datasets. 2) When plugging SGConv into standard language and vision models, it shows the potential to improve both efficiency and performance.

  • 5 authors
·
Oct 17, 2022

T-VEC: A Telecom-Specific Vectorization Model with Enhanced Semantic Understanding via Deep Triplet Loss Fine-Tuning

The specialized vocabulary and complex concepts of the telecommunications industry present significant challenges for standard Natural Language Processing models. Generic text embeddings often fail to capture telecom-specific semantics, hindering downstream task performance. We introduce T-VEC (Telecom Vectorization Model), a novel embedding model tailored for the telecom domain through deep fine-tuning. Developed by NetoAI, T-VEC is created by adapting the state-of-the-art gte-Qwen2-1.5B-instruct model using a triplet loss objective on a meticulously curated, large-scale dataset of telecom-specific data. Crucially, this process involved substantial modification of weights across 338 layers of the base model, ensuring deep integration of domain knowledge, far exceeding superficial adaptation techniques. We quantify this deep change via weight difference analysis. A key contribution is the development and open-sourcing (MIT License) of the first dedicated telecom-specific tokenizer, enhancing the handling of industry jargon. T-VEC achieves a leading average MTEB score (0.825) compared to established models and demonstrates vastly superior performance (0.9380 vs. less than 0.07) on our internal telecom-specific triplet evaluation benchmark, indicating an exceptional grasp of domain-specific nuances, visually confirmed by improved embedding separation. This work positions NetoAI at the forefront of telecom AI innovation, providing the community with a powerful, deeply adapted, open-source tool.

  • 3 authors
·
Apr 23

Beyond Standard MoE: Mixture of Latent Experts for Resource-Efficient Language Models

Mixture of Experts (MoE) has emerged as a pivotal architectural paradigm for efficient scaling of Large Language Models (LLMs), operating through selective activation of parameter subsets for each input token. Nevertheless, conventional MoE architectures encounter substantial challenges, including excessive memory utilization and communication overhead during training and inference, primarily attributable to the proliferation of expert modules. In this paper, we introduce Mixture of Latent Experts (MoLE), a novel parameterization methodology that facilitates the mapping of specific experts into a shared latent space. Specifically, all expert operations are systematically decomposed into two principal components: a shared projection into a lower-dimensional latent space, followed by expert-specific transformations with significantly reduced parametric complexity. This factorized approach substantially diminishes parameter count and computational requirements. Beyond the pretraining implementation of the MoLE architecture, we also establish a rigorous mathematical framework for transforming pre-trained MoE models into the MoLE architecture, characterizing the sufficient conditions for optimal factorization and developing a systematic two-phase algorithm for this conversion process. Our comprehensive theoretical analysis demonstrates that MoLE significantly enhances computational efficiency across multiple dimensions while preserving model representational capacity. Empirical evaluations corroborate our theoretical findings, confirming that MoLE achieves performance comparable to standard MoE implementations while substantially reducing resource requirements.

  • 7 authors
·
Mar 29

Evaluating Language Models for Mathematics through Interactions

The standard methodology of evaluating large language models (LLMs) based on static pairs of inputs and outputs is insufficient for developing assistants: this kind of assessments fails to take into account the essential interactive element in their deployment, and therefore limits how we understand language model capabilities. We introduce CheckMate, an adaptable prototype platform for humans to interact with and evaluate LLMs. We conduct a study with CheckMate to evaluate three language models~(InstructGPT, ChatGPT, and GPT-4) as assistants in proving undergraduate-level mathematics, with a mixed cohort of participants from undergraduate students to professors of mathematics. We release the resulting interaction and rating dataset, MathConverse. By analysing MathConverse, we derive a preliminary taxonomy of human behaviours and uncover that despite a generally positive correlation, there are notable instances of divergence between correctness and perceived helpfulness in LLM generations, amongst other findings. Further, we identify useful scenarios and existing issues of GPT-4 in mathematical reasoning through a series of case studies contributed by expert mathematicians. We conclude with actionable takeaways for ML practitioners and mathematicians: models which communicate uncertainty, respond well to user corrections, are more interpretable and concise may constitute better assistants; interactive evaluation is a promising way to continually navigate the capability of these models; humans should be aware of language models' algebraic fallibility, and for that reason discern where they should be used.

  • 14 authors
·
Jun 2, 2023

Large Language Models for Scientific Idea Generation: A Creativity-Centered Survey

Scientific idea generation lies at the heart of scientific discovery and has driven human progress-whether by solving unsolved problems or proposing novel hypotheses to explain unknown phenomena. Unlike standard scientific reasoning or general creative generation, idea generation in science is a multi-objective and open-ended task, where the novelty of a contribution is as essential as its empirical soundness. Large language models (LLMs) have recently emerged as promising generators of scientific ideas, capable of producing coherent and factual outputs with surprising intuition and acceptable reasoning, yet their creative capacity remains inconsistent and poorly understood. This survey provides a structured synthesis of methods for LLM-driven scientific ideation, examining how different approaches balance creativity with scientific soundness. We categorize existing methods into five complementary families: External knowledge augmentation, Prompt-based distributional steering, Inference-time scaling, Multi-agent collaboration, and Parameter-level adaptation. To interpret their contributions, we employ two complementary frameworks: Boden's taxonomy of Combinatorial, Exploratory and Transformational creativity to characterize the level of ideas each family expected to generate, and Rhodes' 4Ps framework-Person, Process, Press, and Product-to locate the aspect or source of creativity that each method emphasizes. By aligning methodological advances with creativity frameworks, this survey clarifies the state of the field and outlines key directions toward reliable, systematic, and transformative applications of LLMs in scientific discovery.

Vision-Language Models as Differentiable Semantic and Spatial Rewards for Text-to-3D Generation

Score Distillation Sampling (SDS) enables high-quality text-to-3D generation by supervising 3D models through the denoising of multi-view 2D renderings, using a pretrained text-to-image diffusion model to align with the input prompt and ensure 3D consistency. However, existing SDS-based methods face two fundamental limitations: (1) their reliance on CLIP-style text encoders leads to coarse semantic alignment and struggles with fine-grained prompts; and (2) 2D diffusion priors lack explicit 3D spatial constraints, resulting in geometric inconsistencies and inaccurate object relationships in multi-object scenes. To address these challenges, we propose VLM3D, a novel text-to-3D generation framework that integrates large vision-language models (VLMs) into the SDS pipeline as differentiable semantic and spatial priors. Unlike standard text-to-image diffusion priors, VLMs leverage rich language-grounded supervision that enables fine-grained prompt alignment. Moreover, their inherent vision language modeling provides strong spatial understanding, which significantly enhances 3D consistency for single-object generation and improves relational reasoning in multi-object scenes. We instantiate VLM3D based on the open-source Qwen2.5-VL model and evaluate it on the GPTeval3D benchmark. Experiments across diverse objects and complex scenes show that VLM3D significantly outperforms prior SDS-based methods in semantic fidelity, geometric coherence, and spatial correctness.

  • 5 authors
·
Sep 19

Large Language Models Encode Clinical Knowledge

Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.

  • 30 authors
·
Dec 26, 2022

Distilling Large Language Models for Biomedical Knowledge Extraction: A Case Study on Adverse Drug Events

Large language models (LLMs), such as GPT-4, have demonstrated remarkable capabilities across a wide range of tasks, including health applications. In this paper, we study how LLMs can be used to scale biomedical knowledge curation. We find that while LLMs already possess decent competency in structuring biomedical text, by distillation into a task-specific student model through self-supervised learning, substantial gains can be attained over out-of-box LLMs, with additional advantages such as cost, efficiency, and white-box model access. We conduct a case study on adverse drug event (ADE) extraction, which is an important area for improving care. On standard ADE extraction evaluation, a GPT-3.5 distilled PubMedBERT model attained comparable accuracy as supervised state-of-the-art models without using any labeled data. Despite being over 1,000 times smaller, the distilled model outperformed its teacher GPT-3.5 by over 6 absolute points in F1 and GPT-4 by over 5 absolute points. Ablation studies on distillation model choice (e.g., PubMedBERT vs BioGPT) and ADE extraction architecture shed light on best practice for biomedical knowledge extraction. Similar gains were attained by distillation for other standard biomedical knowledge extraction tasks such as gene-disease associations and protected health information, further illustrating the promise of this approach.

  • 11 authors
·
Jul 12, 2023 1

MASS: Motion-Aware Spatial-Temporal Grounding for Physics Reasoning and Comprehension in Vision-Language Models

Vision Language Models (VLMs) perform well on standard video tasks but struggle with physics-driven reasoning involving motion dynamics and spatial interactions. This limitation reduces their ability to interpret real or AI-generated content (AIGC) videos and to generate physically consistent content. We present an approach that addresses this gap by translating physical-world context cues into interpretable representations aligned with VLMs' perception, comprehension, and reasoning. We introduce MASS-Bench, a comprehensive benchmark consisting of 4,350 real-world and AIGC videos and 8,361 free-form video question-answering pairs focused on physics-related comprehension tasks, with detailed annotations including visual detections, sub-segment grounding, and full-sequence 3D motion tracking of entities. We further present MASS, a model-agnostic method that injects spatial-temporal signals into the VLM language space via depth-based 3D encoding and visual grounding, coupled with a motion tracker for object dynamics. To strengthen cross-modal alignment and reasoning, we apply reinforcement fine-tuning. Experiments and ablations show that our refined VLMs outperform comparable and larger baselines, as well as prior state-of-the-art models, by 8.7% and 6.0%, achieving performance comparable to close-source SoTA VLMs such as Gemini-2.5-Flash on physics reasoning and comprehension. These results validate the effectiveness of our approach.

Self-Exploring Language Models: Active Preference Elicitation for Online Alignment

Preference optimization, particularly through Reinforcement Learning from Human Feedback (RLHF), has achieved significant success in aligning Large Language Models (LLMs) to adhere to human intentions. Unlike offline alignment with a fixed dataset, online feedback collection from humans or AI on model generations typically leads to more capable reward models and better-aligned LLMs through an iterative process. However, achieving a globally accurate reward model requires systematic exploration to generate diverse responses that span the vast space of natural language. Random sampling from standard reward-maximizing LLMs alone is insufficient to fulfill this requirement. To address this issue, we propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions. By solving the inner-level problem with the reparameterized reward function, the resulting algorithm, named Self-Exploring Language Models (SELM), eliminates the need for a separate RM and iteratively updates the LLM with a straightforward objective. Compared to Direct Preference Optimization (DPO), the SELM objective reduces indiscriminate favor of unseen extrapolations and enhances exploration efficiency. Our experimental results demonstrate that when finetuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, SELM significantly boosts the performance on instruction-following benchmarks such as MT-Bench and AlpacaEval 2.0, as well as various standard academic benchmarks in different settings. Our code and models are available at https://github.com/shenao-zhang/SELM.

  • 7 authors
·
May 29, 2024 1

Achieving Tokenizer Flexibility in Language Models through Heuristic Adaptation and Supertoken Learning

Pretrained language models (LLMs) are often constrained by their fixed tokenization schemes, leading to inefficiencies and performance limitations, particularly for multilingual or specialized applications. This tokenizer lock-in presents significant challenges. standard methods to overcome this often require prohibitive computational resources. Although tokenizer replacement with heuristic initialization aims to reduce this burden, existing methods often require exhaustive residual fine-tuning and still may not fully preserve semantic nuances or adequately address the underlying compression inefficiencies. Our framework introduces two innovations: first, Tokenadapt, a model-agnostic tokenizer transplantation method, and second, novel pre-tokenization learning for multi-word Supertokens to enhance compression and reduce fragmentation. Tokenadapt initializes new unique token embeddings via a hybrid heuristic that combines two methods: a local estimate based on subword decomposition using the old tokenizer, and a global estimate utilizing the top-k semantically similar tokens from the original vocabulary. This methodology aims to preserve semantics while significantly minimizing retraining requirements. Empirical investigations validate both contributions: the transplantation heuristic successfully initializes unique tokens, markedly outperforming conventional baselines and sophisticated methods including Transtokenizer and ReTok, while our Supertokens achieve notable compression gains. Our zero-shot perplexity results demonstrate that the TokenAdapt hybrid initialization consistently yields lower perplexity ratios compared to both ReTok and TransTokenizer baselines across different base models and newly trained target tokenizers. TokenAdapt typically reduced the overall perplexity ratio significantly compared to ReTok, yielding at least a 2-fold improvement in these aggregate scores.

  • 4 authors
·
May 14 2

LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language Models

Large language models (LLMs) provide excellent text-generation capabilities, but standard prompting and generation methods generally do not lead to intentional or goal-directed agents and might necessitate considerable prompt tuning. This becomes particularly apparent in multi-turn conversations: even the best current LLMs rarely ask clarifying questions, engage in explicit information gathering, or take actions now that lead to better decisions after multiple turns. Reinforcement learning has the potential to leverage the powerful modeling capabilities of LLMs, as well as their internal representation of textual interactions, to create capable goal-directed language agents. This can enable intentional and temporally extended interactions, such as with humans, through coordinated persuasion and carefully crafted questions, or in goal-directed play through text games to bring about desired final outcomes. However, enabling this requires the community to develop stable and reliable reinforcement learning algorithms that can effectively train LLMs. Developing such algorithms requires tasks that can gauge progress on algorithm design, provide accessible and reproducible evaluations for multi-turn interactions, and cover a range of task properties and challenges in improving reinforcement learning algorithms. Our paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for LLMs, together with an open-source research framework containing a basic toolkit for getting started on multi-turn RL with offline value-based and policy-based RL methods. Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.

  • 8 authors
·
Nov 29, 2023

Tracing the Representation Geometry of Language Models from Pretraining to Post-training

Standard training metrics like loss fail to explain the emergence of complex capabilities in large language models. We take a spectral approach to investigate the geometry of learned representations across pretraining and post-training, measuring effective rank (RankMe) and eigenspectrum decay (α-ReQ). With OLMo (1B-7B) and Pythia (160M-12B) models, we uncover a consistent non-monotonic sequence of three geometric phases during autoregressive pretraining. The initial "warmup" phase exhibits rapid representational collapse. This is followed by an "entropy-seeking" phase, where the manifold's dimensionality expands substantially, coinciding with peak n-gram memorization. Subsequently, a "compression-seeking" phase imposes anisotropic consolidation, selectively preserving variance along dominant eigendirections while contracting others, a transition marked with significant improvement in downstream task performance. We show these phases can emerge from a fundamental interplay of cross-entropy optimization under skewed token frequencies and representational bottlenecks (d ll |V|). Post-training further transforms geometry: SFT and DPO drive "entropy-seeking" dynamics to integrate specific instructional or preferential data, improving in-distribution performance while degrading out-of-distribution robustness. Conversely, RLVR induces "compression-seeking", enhancing reward alignment but reducing generation diversity.

  • 7 authors
·
Sep 26

Complex QA and language models hybrid architectures, Survey

This paper reviews the state-of-the-art of language models architectures and strategies for "complex" question-answering (QA, CQA, CPS) with a focus on hybridization. Large Language Models (LLM) are good at leveraging public data on standard problems but once you want to tackle more specific complex questions or problems (e.g. How does the concept of personal freedom vary between different cultures ? What is the best mix of power generation methods to reduce climate change ?) you may need specific architecture, knowledge, skills, methods, sensitive data protection, explainability, human approval and versatile feedback... Recent projects like ChatGPT and GALACTICA have allowed non-specialists to grasp the great potential as well as the equally strong limitations of LLM in complex QA. In this paper, we start by reviewing required skills and evaluation techniques. We integrate findings from the robust community edited research papers BIG, BLOOM and HELM which open source, benchmark and analyze limits and challenges of LLM in terms of tasks complexity and strict evaluation on accuracy (e.g. fairness, robustness, toxicity, ...) as a baseline. We discuss some challenges associated with complex QA, including domain adaptation, decomposition and efficient multi-step QA, long form and non-factoid QA, safety and multi-sensitivity data protection, multimodal search, hallucinations, explainability and truthfulness, temporal reasoning. We analyze current solutions and promising research trends, using elements such as: hybrid LLM architectural patterns, training and prompting strategies, active human reinforcement learning supervised with AI, neuro-symbolic and structured knowledge grounding, program synthesis, iterated decomposition and others.

  • 5 authors
·
Feb 17, 2023

Pretraining Language Models with Human Preferences

Language models (LMs) are pretrained to imitate internet text, including content that would violate human preferences if generated by an LM: falsehoods, offensive comments, personally identifiable information, low-quality or buggy code, and more. Here, we explore alternative objectives for pretraining LMs in a way that also guides them to generate text aligned with human preferences. We benchmark five objectives for pretraining with human feedback across three tasks and study how they affect the trade-off between alignment and capabilities of pretrained LMs. We find a Pareto-optimal and simple approach among those we explored: conditional training, or learning distribution over tokens conditional on their human preference scores given by a reward model. Conditional training reduces the rate of undesirable content by up to an order of magnitude, both when generating without a prompt and with an adversarially-chosen prompt. Moreover, conditional training maintains the downstream task performance of standard LM pretraining, both before and after task-specific finetuning. Pretraining with human feedback results in much better preference satisfaction than standard LM pretraining followed by finetuning with feedback, i.e., learning and then unlearning undesirable behavior. Our results suggest that we should move beyond imitation learning when pretraining LMs and incorporate human preferences from the start of training.

  • 8 authors
·
Feb 16, 2023

Language Models for Code Completion: A Practical Evaluation

Transformer-based language models for automatic code completion have shown great promise so far, yet the evaluation of these models rarely uses real data. This study provides both quantitative and qualitative assessments of three public code language models when completing real-world code. We first developed an open-source IDE extension, Code4Me, for the online evaluation of the models. We collected real auto-completion usage data for over a year from more than 1200 users, resulting in over 600K valid completions. These models were then evaluated using six standard metrics across twelve programming languages. Next, we conducted a qualitative study of 1690 real-world completion requests to identify the reasons behind the poor model performance. A comparative analysis of the models' performance in online and offline settings was also performed, using benchmark synthetic datasets and two masking strategies. Our findings suggest that while developers utilize code completion across various languages, the best results are achieved for mainstream languages such as Python and Java. InCoder outperformed the other models across all programming languages, highlighting the significance of training data and objectives. Our study also revealed that offline evaluations do not accurately reflect real-world scenarios. Upon qualitative analysis of the model's predictions, we found that 66.3% of failures were due to the models' limitations, 24.4% occurred due to inappropriate model usage in a development context, and 9.3% were valid requests that developers overwrote. Given these findings, we propose several strategies to overcome the current limitations. These include refining training objectives, improving resilience to typographical errors, adopting hybrid approaches, and enhancing implementations and usability.

  • 6 authors
·
Feb 25, 2024

Improving Translation Faithfulness of Large Language Models via Augmenting Instructions

Large Language Models (LLMs) present strong general capabilities, and a current compelling challenge is stimulating their specialized capabilities, such as machine translation, through low-cost instruction tuning. The standard instruction-following data is sequentially organized as the concatenation of an instruction, an input, and a response. As the attention mechanism of LLMs has limitations on local focus, LLMs tend to focus more on the words or sentences nearby at each position. This leads to a high risk of instruction forgetting during decoding. To alleviate the above issues, We propose SWIE (Segment-Weighted Instruction Embedding) and an instruction-following dataset OVERMISS. SWIE improves the model instruction understanding by adding a global instruction representation on the following input and response representations. OVERMISS improves model faithfulness by comparing over-translation and miss-translation results with the correct translation. We apply our methods to two main-stream open-source LLMs, BLOOM and LLaMA. The experimental results demonstrate significant improvements in translation performance with SWIE based on BLOOMZ-3b, particularly in zero-shot and long text translations due to reduced instruction forgetting risk. Additionally, OVERMISS outperforms the baseline in translation performance (e.g. an increase in BLEU scores from 0.69 to 3.12 and an average improvement of 0.48 percentage comet scores for LLaMA-7b) with further enhancements seen in models combining OVERMISS and SWIE (e.g. the BLUE scores increase up to 0.56 from English to German across three different backbones), and both exhibit improvements in the faithfulness metric based on word alignment.

  • 6 authors
·
Aug 24, 2023

Biomedical Language Models are Robust to Sub-optimal Tokenization

As opposed to general English, many concepts in biomedical terminology have been designed in recent history by biomedical professionals with the goal of being precise and concise. This is often achieved by concatenating meaningful biomedical morphemes to create new semantic units. Nevertheless, most modern biomedical language models (LMs) are pre-trained using standard domain-specific tokenizers derived from large scale biomedical corpus statistics without explicitly leveraging the agglutinating nature of biomedical language. In this work, we first find that standard open-domain and biomedical tokenizers are largely unable to segment biomedical terms into meaningful components. Therefore, we hypothesize that using a tokenizer which segments biomedical terminology more accurately would enable biomedical LMs to improve their performance on downstream biomedical NLP tasks, especially ones which involve biomedical terms directly such as named entity recognition (NER) and entity linking. Surprisingly, we find that pre-training a biomedical LM using a more accurate biomedical tokenizer does not improve the entity representation quality of a language model as measured by several intrinsic and extrinsic measures such as masked language modeling prediction (MLM) accuracy as well as NER and entity linking performance. These quantitative findings, along with a case study which explores entity representation quality more directly, suggest that the biomedical pre-training process is quite robust to instances of sub-optimal tokenization.

  • 3 authors
·
Jun 30, 2023

Leveraging Large Language Models for Bengali Math Word Problem Solving with Chain of Thought Reasoning

Solving Bengali Math Word Problems (MWPs) remains a major challenge in natural language processing (NLP) due to the language's low-resource status and the multi-step reasoning required. Existing models struggle with complex Bengali MWPs, largely because no human-annotated Bengali dataset has previously addressed this task. This gap has limited progress in Bengali mathematical reasoning. To address this, we created SOMADHAN, a dataset of 8792 complex Bengali MWPs with manually written, step-by-step solutions. We designed this dataset to support reasoning-focused evaluation and model development in a linguistically underrepresented context. Using SOMADHAN, we evaluated a range of large language models (LLMs) - including GPT-4o, GPT-3.5 Turbo, LLaMA series models, Deepseek, and Qwen - through both zero-shot and few-shot prompting with and without Chain of Thought (CoT) reasoning. CoT prompting consistently improved performance over standard prompting, especially in tasks requiring multi-step logic. LLaMA-3.3 70B achieved the highest accuracy of 88% with few-shot CoT prompting. We also applied Low-Rank Adaptation (LoRA) to fine-tune models efficiently, enabling them to adapt to Bengali MWPs with minimal computational cost. Our work fills a critical gap in Bengali NLP by providing a high-quality reasoning dataset and a scalable framework for solving complex MWPs. We aim to advance equitable research in low-resource languages and enhance reasoning capabilities in educational and language technologies.

  • 5 authors
·
May 27

Analyzing Semantic Faithfulness of Language Models via Input Intervention on Conversational Question Answering

Transformer-based language models have been shown to be highly effective for several NLP tasks. In this paper, we consider three transformer models, BERT, RoBERTa, and XLNet, in both small and large version, and investigate how faithful their representations are with respect to the semantic content of texts. We formalize a notion of semantic faithfulness, in which the semantic content of a text should causally figure in a model's inferences in question answering. We then test this notion by observing a model's behavior on answering questions about a story after performing two novel semantic interventions -- deletion intervention and negation intervention. While transformer models achieve high performance on standard question answering tasks, we show that they fail to be semantically faithful once we perform these interventions for a significant number of cases (~50% for deletion intervention, and ~20% drop in accuracy for negation intervention). We then propose an intervention-based training regime that can mitigate the undesirable effects for deletion intervention by a significant margin (from ~50% to ~6%). We analyze the inner-workings of the models to better understand the effectiveness of intervention-based training for deletion intervention. But we show that this training does not attenuate other aspects of semantic unfaithfulness such as the models' inability to deal with negation intervention or to capture the predicate-argument structure of texts. We also test InstructGPT, via prompting, for its ability to handle the two interventions and to capture predicate-argument structure. While InstructGPT models do achieve very high performance on predicate-argument structure task, they fail to respond adequately to our deletion and negation interventions.

  • 5 authors
·
Dec 20, 2022

Large Language Models Can Be Strong Differentially Private Learners

Differentially Private (DP) learning has seen limited success for building large deep learning models of text, and straightforward attempts at applying Differentially Private Stochastic Gradient Descent (DP-SGD) to NLP tasks have resulted in large performance drops and high computational overhead. We show that this performance drop can be mitigated with (1) the use of large pretrained language models; (2) non-standard hyperparameters that suit DP optimization; and (3) fine-tuning objectives which are aligned with the pretraining procedure. With the above, we obtain NLP models that outperform state-of-the-art DP-trained models under the same privacy budget and strong non-private baselines -- by directly fine-tuning pretrained models with DP optimization on moderately-sized corpora. To address the computational challenge of running DP-SGD with large Transformers, we propose a memory saving technique that allows clipping in DP-SGD to run without instantiating per-example gradients for any linear layer in the model. The technique enables privately training Transformers with almost the same memory cost as non-private training at a modest run-time overhead. Contrary to conventional wisdom that DP optimization fails at learning high-dimensional models (due to noise that scales with dimension) empirical results reveal that private learning with pretrained language models doesn't tend to suffer from dimension-dependent performance degradation. Code to reproduce results can be found at https://github.com/lxuechen/private-transformers.

  • 4 authors
·
Oct 11, 2021