Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTextSETTR: Few-Shot Text Style Extraction and Tunable Targeted Restyling
We present a novel approach to the problem of text style transfer. Unlike previous approaches requiring style-labeled training data, our method makes use of readily-available unlabeled text by relying on the implicit connection in style between adjacent sentences, and uses labeled data only at inference time. We adapt T5 (Raffel et al., 2020), a strong pretrained text-to-text model, to extract a style vector from text and use it to condition the decoder to perform style transfer. As our label-free training results in a style vector space encoding many facets of style, we recast transfers as "targeted restyling" vector operations that adjust specific attributes of the input while preserving others. We demonstrate that training on unlabeled Amazon reviews data results in a model that is competitive on sentiment transfer, even compared to models trained fully on labeled data. Furthermore, applying our novel method to a diverse corpus of unlabeled web text results in a single model capable of transferring along multiple dimensions of style (dialect, emotiveness, formality, politeness, sentiment) despite no additional training and using only a handful of exemplars at inference time.
Learning Interpretable Style Embeddings via Prompting LLMs
Style representation learning builds content-independent representations of author style in text. Stylometry, the analysis of style in text, is often performed by expert forensic linguists and no large dataset of stylometric annotations exists for training. Current style representation learning uses neural methods to disentangle style from content to create style vectors, however, these approaches result in uninterpretable representations, complicating their usage in downstream applications like authorship attribution where auditing and explainability is critical. In this work, we use prompting to perform stylometry on a large number of texts to create a synthetic dataset and train human-interpretable style representations we call LISA embeddings. We release our synthetic stylometry dataset and our interpretable style models as resources.
Navigating the Synchrony-Stability Frontier in Adaptive Chatbots
Adaptive chatbots that mimic a user's linguistic style can build rapport and engagement, yet unconstrained mimicry risks an agent that feels unstable or sycophantic. We present a computational evaluation framework that makes the core design tension explicit: balancing moment-to-moment linguistic synchrony against long-term persona stability. Using an 8-dimensional style vector and a closed-loop "base+delta" prompting architecture, we simulate and compare explicit adaptation policies - Uncapped, Cap, Exponential Moving Average (EMA), Dead-Band, and Hybrids - on a human-log dataset. Our analysis maps a clear Pareto frontier: bounded policies achieve substantial gains in stability at a modest cost to synchrony. For example, a Hybrid (EMA+Cap) raises stability from 0.542 to 0.878 (+62%) while reducing synchrony by only 17%. We confirm this trade-off through large-scale replications on three public corpora (DailyDialog, Persona-Chat, EmpatheticDialogues) and LLM-in-the-loop validation across two model families. Furthermore, we quantify "prompt legibility," showing that frontier policies reduce instruction churn and cut jarring register flips (major tone changes) from 0.254 to 0.092, yielding systems that are easier to reason about and maintain. Taken together, our framework provides a general evaluation harness for style adaptation; a systematic ablation that identifies Pareto-efficient policies; robust validation across diverse datasets and models; and novel legibility metrics linking policy choices to system maintainability.
DMM: Building a Versatile Image Generation Model via Distillation-Based Model Merging
The success of text-to-image (T2I) generation models has spurred a proliferation of numerous model checkpoints fine-tuned from the same base model on various specialized datasets. This overwhelming specialized model production introduces new challenges for high parameter redundancy and huge storage cost, thereby necessitating the development of effective methods to consolidate and unify the capabilities of diverse powerful models into a single one. A common practice in model merging adopts static linear interpolation in the parameter space to achieve the goal of style mixing. However, it neglects the features of T2I generation task that numerous distinct models cover sundry styles which may lead to incompatibility and confusion in the merged model. To address this issue, we introduce a style-promptable image generation pipeline which can accurately generate arbitrary-style images under the control of style vectors. Based on this design, we propose the score distillation based model merging paradigm (DMM), compressing multiple models into a single versatile T2I model. Moreover, we rethink and reformulate the model merging task in the context of T2I generation, by presenting new merging goals and evaluation protocols. Our experiments demonstrate that DMM can compactly reorganize the knowledge from multiple teacher models and achieve controllable arbitrary-style generation.
Facial-Sketch Synthesis: A New Challenge
This paper aims to conduct a comprehensive study on facial-sketch synthesis (FSS). However, due to the high costs of obtaining hand-drawn sketch datasets, there lacks a complete benchmark for assessing the development of FSS algorithms over the last decade. We first introduce a high-quality dataset for FSS, named FS2K, which consists of 2,104 image-sketch pairs spanning three types of sketch styles, image backgrounds, lighting conditions, skin colors, and facial attributes. FS2K differs from previous FSS datasets in difficulty, diversity, and scalability and should thus facilitate the progress of FSS research. Second, we present the largest-scale FSS investigation by reviewing 89 classical methods, including 25 handcrafted feature-based facial-sketch synthesis approaches, 29 general translation methods, and 35 image-to-sketch approaches. Besides, we elaborate comprehensive experiments on the existing 19 cutting-edge models. Third, we present a simple baseline for FSS, named FSGAN. With only two straightforward components, i.e., facial-aware masking and style-vector expansion, FSGAN surpasses the performance of all previous state-of-the-art models on the proposed FS2K dataset by a large margin. Finally, we conclude with lessons learned over the past years and point out several unsolved challenges. Our code is available at https://github.com/DengPingFan/FSGAN.
SPG: Style-Prompting Guidance for Style-Specific Content Creation
Although recent text-to-image (T2I) diffusion models excel at aligning generated images with textual prompts, controlling the visual style of the output remains a challenging task. In this work, we propose Style-Prompting Guidance (SPG), a novel sampling strategy for style-specific image generation. SPG constructs a style noise vector and leverages its directional deviation from unconditional noise to guide the diffusion process toward the target style distribution. By integrating SPG with Classifier-Free Guidance (CFG), our method achieves both semantic fidelity and style consistency. SPG is simple, robust, and compatible with controllable frameworks like ControlNet and IPAdapter, making it practical and widely applicable. Extensive experiments demonstrate the effectiveness and generality of our approach compared to state-of-the-art methods. Code is available at https://github.com/Rumbling281441/SPG.
PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization
In a joint vision-language space, a text feature (e.g., from "a photo of a dog") could effectively represent its relevant image features (e.g., from dog photos). Inspired by this, we propose PromptStyler which simulates various distribution shifts in the joint space by synthesizing diverse styles via prompts without using any images to deal with source-free domain generalization. Our method learns to generate a variety of style features (from "a S* style of a") via learnable style word vectors for pseudo-words S*. To ensure that learned styles do not distort content information, we force style-content features (from "a S* style of a [class]") to be located nearby their corresponding content features (from "[class]") in the joint vision-language space. After learning style word vectors, we train a linear classifier using synthesized style-content features. PromptStyler achieves the state of the art on PACS, VLCS, OfficeHome and DomainNet, although it does not require any images and takes just ~30 minutes for training using a single GPU.
Deep Line Art Video Colorization with a Few References
Coloring line art images based on the colors of reference images is an important stage in animation production, which is time-consuming and tedious. In this paper, we propose a deep architecture to automatically color line art videos with the same color style as the given reference images. Our framework consists of a color transform network and a temporal constraint network. The color transform network takes the target line art images as well as the line art and color images of one or more reference images as input, and generates corresponding target color images. To cope with larger differences between the target line art image and reference color images, our architecture utilizes non-local similarity matching to determine the region correspondences between the target image and the reference images, which are used to transform the local color information from the references to the target. To ensure global color style consistency, we further incorporate Adaptive Instance Normalization (AdaIN) with the transformation parameters obtained from a style embedding vector that describes the global color style of the references, extracted by an embedder. The temporal constraint network takes the reference images and the target image together in chronological order, and learns the spatiotemporal features through 3D convolution to ensure the temporal consistency of the target image and the reference image. Our model can achieve even better coloring results by fine-tuning the parameters with only a small amount of samples when dealing with an animation of a new style. To evaluate our method, we build a line art coloring dataset. Experiments show that our method achieves the best performance on line art video coloring compared to the state-of-the-art methods and other baselines.
Scaling up GANs for Text-to-Image Synthesis
The recent success of text-to-image synthesis has taken the world by storm and captured the general public's imagination. From a technical standpoint, it also marked a drastic change in the favored architecture to design generative image models. GANs used to be the de facto choice, with techniques like StyleGAN. With DALL-E 2, auto-regressive and diffusion models became the new standard for large-scale generative models overnight. This rapid shift raises a fundamental question: can we scale up GANs to benefit from large datasets like LAION? We find that na\"Ively increasing the capacity of the StyleGAN architecture quickly becomes unstable. We introduce GigaGAN, a new GAN architecture that far exceeds this limit, demonstrating GANs as a viable option for text-to-image synthesis. GigaGAN offers three major advantages. First, it is orders of magnitude faster at inference time, taking only 0.13 seconds to synthesize a 512px image. Second, it can synthesize high-resolution images, for example, 16-megapixel pixels in 3.66 seconds. Finally, GigaGAN supports various latent space editing applications such as latent interpolation, style mixing, and vector arithmetic operations.
Style Customization of Text-to-Vector Generation with Image Diffusion Priors
Scalable Vector Graphics (SVGs) are highly favored by designers due to their resolution independence and well-organized layer structure. Although existing text-to-vector (T2V) generation methods can create SVGs from text prompts, they often overlook an important need in practical applications: style customization, which is vital for producing a collection of vector graphics with consistent visual appearance and coherent aesthetics. Extending existing T2V methods for style customization poses certain challenges. Optimization-based T2V models can utilize the priors of text-to-image (T2I) models for customization, but struggle with maintaining structural regularity. On the other hand, feed-forward T2V models can ensure structural regularity, yet they encounter difficulties in disentangling content and style due to limited SVG training data. To address these challenges, we propose a novel two-stage style customization pipeline for SVG generation, making use of the advantages of both feed-forward T2V models and T2I image priors. In the first stage, we train a T2V diffusion model with a path-level representation to ensure the structural regularity of SVGs while preserving diverse expressive capabilities. In the second stage, we customize the T2V diffusion model to different styles by distilling customized T2I models. By integrating these techniques, our pipeline can generate high-quality and diverse SVGs in custom styles based on text prompts in an efficient feed-forward manner. The effectiveness of our method has been validated through extensive experiments. The project page is https://customsvg.github.io.
Composer Style-specific Symbolic Music Generation Using Vector Quantized Discrete Diffusion Models
Emerging Denoising Diffusion Probabilistic Models (DDPM) have become increasingly utilised because of promising results they have achieved in diverse generative tasks with continuous data, such as image and sound synthesis. Nonetheless, the success of diffusion models has not been fully extended to discrete symbolic music. We propose to combine a vector quantized variational autoencoder (VQ-VAE) and discrete diffusion models for the generation of symbolic music with desired composer styles. The trained VQ-VAE can represent symbolic music as a sequence of indexes that correspond to specific entries in a learned codebook. Subsequently, a discrete diffusion model is used to model the VQ-VAE's discrete latent space. The diffusion model is trained to generate intermediate music sequences consisting of codebook indexes, which are then decoded to symbolic music using the VQ-VAE's decoder. The results demonstrate our model can generate symbolic music with target composer styles that meet the given conditions with a high accuracy of 72.36%.
VectorPainter: Advanced Stylized Vector Graphics Synthesis Using Stroke-Style Priors
We introduce VectorPainter, a novel framework designed for reference-guided text-to-vector-graphics synthesis. Based on our observation that the style of strokes can be an important aspect to distinguish different artists, our method reforms the task into synthesize a desired vector graphics by rearranging stylized strokes, which are vectorized from the reference images. Specifically, our method first converts the pixels of the reference image into a series of vector strokes, and then generates a vector graphic based on the input text description by optimizing the positions and colors of these vector strokes. To precisely capture the style of the reference image in the vectorized strokes, we propose an innovative vectorization method that employs an imitation learning strategy. To preserve the style of the strokes throughout the generation process, we introduce a style-preserving loss function. Extensive experiments have been conducted to demonstrate the superiority of our approach over existing works in stylized vector graphics synthesis, as well as the effectiveness of the various components of our method.
StylerDALLE: Language-Guided Style Transfer Using a Vector-Quantized Tokenizer of a Large-Scale Generative Model
Despite the progress made in the style transfer task, most previous work focus on transferring only relatively simple features like color or texture, while missing more abstract concepts such as overall art expression or painter-specific traits. However, these abstract semantics can be captured by models like DALL-E or CLIP, which have been trained using huge datasets of images and textual documents. In this paper, we propose StylerDALLE, a style transfer method that exploits both of these models and uses natural language to describe abstract art styles. Specifically, we formulate the language-guided style transfer task as a non-autoregressive token sequence translation, i.e., from input content image to output stylized image, in the discrete latent space of a large-scale pretrained vector-quantized tokenizer. To incorporate style information, we propose a Reinforcement Learning strategy with CLIP-based language supervision that ensures stylization and content preservation simultaneously. Experimental results demonstrate the superiority of our method, which can effectively transfer art styles using language instructions at different granularities. Code is available at https://github.com/zipengxuc/StylerDALLE.
Is Style All You Need? Dependencies Between Emotion and GST-based Speaker Recognition
In this work, we study the hypothesis that speaker identity embeddings extracted from speech samples may be used for detection and classification of emotion. In particular, we show that emotions can be effectively identified by learning speaker identities by use of a 1-D Triplet Convolutional Neural Network (CNN) & Global Style Token (GST) scheme (e.g., DeepTalk Network) and reusing the trained speaker recognition model weights to generate features in the emotion classification domain. The automatic speaker recognition (ASR) network is trained with VoxCeleb1, VoxCeleb2, and Librispeech datasets with a triplet training loss function using speaker identity labels. Using an Support Vector Machine (SVM) classifier, we map speaker identity embeddings into discrete emotion categories from the CREMA-D, IEMOCAP, and MSP-Podcast datasets. On the task of speech emotion detection, we obtain 80.8% ACC with acted emotion samples from CREMA-D, 81.2% ACC with semi-natural emotion samples in IEMOCAP, and 66.9% ACC with natural emotion samples in MSP-Podcast. We also propose a novel two-stage hierarchical classifier (HC) approach which demonstrates +2% ACC improvement on CREMA-D emotion samples. Through this work, we seek to convey the importance of holistically modeling intra-user variation within audio samples
AUV: Teaching Audio Universal Vector Quantization with Single Nested Codebook
We propose AUV, a unified neural audio codec with a single codebook, which enables a favourable reconstruction of speech and further extends to general audio, including vocal, music, and sound. AUV is capable of tackling any 16 kHz mixed-domain audio segment at bit rates around 700 bps. To accomplish this, we guide the matryoshka codebook with nested domain-specific partitions, assigned with corresponding teacher models to perform distillation, all in a single-stage training. A conformer-style encoder-decoder architecture with STFT features as audio representation is employed, yielding better audio quality. Comprehensive evaluations demonstrate that AUV exhibits comparable audio reconstruction ability to state-of-the-art domain-specific single-layer quantizer codecs, showcasing the potential of audio universal vector quantization with a single codebook. The pre-trained model and demo samples are available at https://swivid.github.io/AUV/.
Controllable Segmentation-Based Text-Guided Style Editing
We present a novel approach for controllable, region-specific style editing driven by textual prompts. Building upon the state-space style alignment framework introduced by StyleMamba, our method integrates a semantic segmentation model into the style transfer pipeline. This allows users to selectively apply text-driven style changes to specific segments (e.g., ``turn the building into a cyberpunk tower'') while leaving other regions (e.g., ``people'' or ``trees'') unchanged. By incorporating region-wise condition vectors and a region-specific directional loss, our method achieves high-fidelity transformations that respect both semantic boundaries and user-driven style descriptions. Extensive experiments demonstrate that our approach can flexibly handle complex scene stylizations in real-world scenarios, improving control and quality over purely global style transfer methods.
MARVEL: Raster Manga Vectorization via Primitive-wise Deep Reinforcement Learning
Manga is a fashionable Japanese-style comic form that is composed of black-and-white strokes and is generally displayed as raster images on digital devices. Typical mangas have simple textures, wide lines, and few color gradients, which are vectorizable natures to enjoy the merits of vector graphics, e.g., adaptive resolutions and small file sizes. In this paper, we propose MARVEL (MAnga's Raster to VEctor Learning), a primitive-wise approach for vectorizing raster mangas by Deep Reinforcement Learning (DRL). Unlike previous learning-based methods which predict vector parameters for an entire image, MARVEL introduces a new perspective that regards an entire manga as a collection of basic primitives\textemdash stroke lines, and designs a DRL model to decompose the target image into a primitive sequence for achieving accurate vectorization. To improve vectorization accuracies and decrease file sizes, we further propose a stroke accuracy reward to predict accurate stroke lines, and a pruning mechanism to avoid generating erroneous and repeated strokes. Extensive subjective and objective experiments show that our MARVEL can generate impressive results and reaches the state-of-the-art level. Our code is open-source at: https://github.com/SwordHolderSH/Mang2Vec.
VecFusion: Vector Font Generation with Diffusion
We present VecFusion, a new neural architecture that can generate vector fonts with varying topological structures and precise control point positions. Our approach is a cascaded diffusion model which consists of a raster diffusion model followed by a vector diffusion model. The raster model generates low-resolution, rasterized fonts with auxiliary control point information, capturing the global style and shape of the font, while the vector model synthesizes vector fonts conditioned on the low-resolution raster fonts from the first stage. To synthesize long and complex curves, our vector diffusion model uses a transformer architecture and a novel vector representation that enables the modeling of diverse vector geometry and the precise prediction of control points. Our experiments show that, in contrast to previous generative models for vector graphics, our new cascaded vector diffusion model generates higher quality vector fonts, with complex structures and diverse styles.
ToonAging: Face Re-Aging upon Artistic Portrait Style Transfer
Face re-aging is a prominent field in computer vision and graphics, with significant applications in photorealistic domains such as movies, advertising, and live streaming. Recently, the need to apply face re-aging to non-photorealistic images, like comics, illustrations, and animations, has emerged as an extension in various entertainment sectors. However, the absence of a network capable of seamlessly editing the apparent age on NPR images means that these tasks have been confined to a naive approach, applying each task sequentially. This often results in unpleasant artifacts and a loss of facial attributes due to domain discrepancies. In this paper, we introduce a novel one-stage method for face re-aging combined with portrait style transfer, executed in a single generative step. We leverage existing face re-aging and style transfer networks, both trained within the same PR domain. Our method uniquely fuses distinct latent vectors, each responsible for managing aging-related attributes and NPR appearance. Adopting an exemplar-based approach, our method offers greater flexibility than domain-level fine-tuning approaches, which typically require separate training or fine-tuning for each domain. This effectively addresses the limitation of requiring paired datasets for re-aging and domain-level, data-driven approaches for stylization. Our experiments show that our model can effortlessly generate re-aged images while simultaneously transferring the style of examples, maintaining both natural appearance and controllability.
TCSinger: Zero-Shot Singing Voice Synthesis with Style Transfer and Multi-Level Style Control
Zero-shot singing voice synthesis (SVS) with style transfer and style control aims to generate high-quality singing voices with unseen timbres and styles (including singing method, emotion, rhythm, technique, and pronunciation) from audio and text prompts. However, the multifaceted nature of singing styles poses a significant challenge for effective modeling, transfer, and control. Furthermore, current SVS models often fail to generate singing voices rich in stylistic nuances for unseen singers. To address these challenges, we introduce TCSinger, the first zero-shot SVS model for style transfer across cross-lingual speech and singing styles, along with multi-level style control. Specifically, TCSinger proposes three primary modules: 1) the clustering style encoder employs a clustering vector quantization model to stably condense style information into a compact latent space; 2) the Style and Duration Language Model (S\&D-LM) concurrently predicts style information and phoneme duration, which benefits both; 3) the style adaptive decoder uses a novel mel-style adaptive normalization method to generate singing voices with enhanced details. Experimental results show that TCSinger outperforms all baseline models in synthesis quality, singer similarity, and style controllability across various tasks, including zero-shot style transfer, multi-level style control, cross-lingual style transfer, and speech-to-singing style transfer. Singing voice samples can be accessed at https://tcsinger.github.io/.
In-context Vectors: Making In Context Learning More Effective and Controllable Through Latent Space Steering
Large language models (LLMs) demonstrate emergent in-context learning capabilities, where they adapt to new tasks based on example demonstrations. However, in-context learning has seen limited effectiveness in many settings, is difficult to quantitatively control and takes up context window space. To overcome these limitations, we propose an alternative approach that recasts in-context learning as in-context vectors (ICV). Using ICV has two steps. We first use a forward pass on demonstration examples to create the in-context vector from the latent embedding of the LLM. This vector captures essential information about the intended task. On a new query, instead of adding demonstrations to the prompt, we shift the latent states of the LLM using the ICV. The ICV approach has several benefits: 1) it enables the LLM to more effectively follow the demonstration examples; 2) it's easy to control by adjusting the magnitude of the ICV; 3) it reduces the length of the prompt by removing the in-context demonstrations; 4) ICV is computationally much more efficient than fine-tuning. We demonstrate that ICV achieves better performance compared to standard in-context learning and fine-tuning on diverse tasks including safety, style transfer, role-playing and formatting. Moreover, we show that we can flexibly teach LLM to simultaneously follow different types of instructions by simple vector arithmetics on the corresponding ICVs.
Autoregressive Video Generation without Vector Quantization
This paper presents a novel approach that enables autoregressive video generation with high efficiency. We propose to reformulate the video generation problem as a non-quantized autoregressive modeling of temporal frame-by-frame prediction and spatial set-by-set prediction. Unlike raster-scan prediction in prior autoregressive models or joint distribution modeling of fixed-length tokens in diffusion models, our approach maintains the causal property of GPT-style models for flexible in-context capabilities, while leveraging bidirectional modeling within individual frames for efficiency. With the proposed approach, we train a novel video autoregressive model without vector quantization, termed NOVA. Our results demonstrate that NOVA surpasses prior autoregressive video models in data efficiency, inference speed, visual fidelity, and video fluency, even with a much smaller model capacity, i.e., 0.6B parameters. NOVA also outperforms state-of-the-art image diffusion models in text-to-image generation tasks, with a significantly lower training cost. Additionally, NOVA generalizes well across extended video durations and enables diverse zero-shot applications in one unified model. Code and models are publicly available at https://github.com/baaivision/NOVA.
EmoReg: Directional Latent Vector Modeling for Emotional Intensity Regularization in Diffusion-based Voice Conversion
The Emotional Voice Conversion (EVC) aims to convert the discrete emotional state from the source emotion to the target for a given speech utterance while preserving linguistic content. In this paper, we propose regularizing emotion intensity in the diffusion-based EVC framework to generate precise speech of the target emotion. Traditional approaches control the intensity of an emotional state in the utterance via emotion class probabilities or intensity labels that often lead to inept style manipulations and degradations in quality. On the contrary, we aim to regulate emotion intensity using self-supervised learning-based feature representations and unsupervised directional latent vector modeling (DVM) in the emotional embedding space within a diffusion-based framework. These emotion embeddings can be modified based on the given target emotion intensity and the corresponding direction vector. Furthermore, the updated embeddings can be fused in the reverse diffusion process to generate the speech with the desired emotion and intensity. In summary, this paper aims to achieve high-quality emotional intensity regularization in the diffusion-based EVC framework, which is the first of its kind work. The effectiveness of the proposed method has been shown across state-of-the-art (SOTA) baselines in terms of subjective and objective evaluations for the English and Hindi languages Demo samples are available at the following URL: \url{https://nirmesh-sony.github.io/EmoReg/}.
Vec-Tok Speech: speech vectorization and tokenization for neural speech generation
Language models (LMs) have recently flourished in natural language processing and computer vision, generating high-fidelity texts or images in various tasks. In contrast, the current speech generative models are still struggling regarding speech quality and task generalization. This paper presents Vec-Tok Speech, an extensible framework that resembles multiple speech generation tasks, generating expressive and high-fidelity speech. Specifically, we propose a novel speech codec based on speech vectors and semantic tokens. Speech vectors contain acoustic details contributing to high-fidelity speech reconstruction, while semantic tokens focus on the linguistic content of speech, facilitating language modeling. Based on the proposed speech codec, Vec-Tok Speech leverages an LM to undertake the core of speech generation. Moreover, Byte-Pair Encoding (BPE) is introduced to reduce the token length and bit rate for lower exposure bias and longer context coverage, improving the performance of LMs. Vec-Tok Speech can be used for intra- and cross-lingual zero-shot voice conversion (VC), zero-shot speaking style transfer text-to-speech (TTS), speech-to-speech translation (S2ST), speech denoising, and speaker de-identification and anonymization. Experiments show that Vec-Tok Speech, built on 50k hours of speech, performs better than other SOTA models. Code will be available at https://github.com/BakerBunker/VecTok .
REFLEX: Self-Refining Explainable Fact-Checking via Disentangling Truth into Style and Substance
The prevalence of misinformation on social media threatens public trust, demanding automated fact-checking systems that provide accurate verdicts with interpretable explanations. However, existing large language model-based (LLM-based) approaches often rely heavily on external knowledge sources, introducing substantial latency and even hallucinations that undermine reliability, interpretability, and responsiveness, which is crucial for real-time use. To address these challenges, we propose REason-guided Fact-checking with Latent EXplanations REFLEX paradigm, a plug-and-play, self-refining paradigm that leverages the internal knowledge in backbone model to improve both verdict accuracy and explanation quality. REFLEX reformulates fact-checking as a role-play dialogue and jointly trains verdict prediction and explanation generation. It adaptively extracts contrastive activation pairs between the backbone model and its fine-tuned variant to construct steering vectors that disentangle truth into style and substance naturally. These activation-level signals guide inference and suppress noisy explanations, enabling more faithful and efficient reasoning. Experiments on real-world datasets show that REFLEX outperforms previous methods that steer toward a single truth direction and underscores the challenge traditional approaches face when handling the subtle, human-unknown truth in fact-checking tasks. Remarkably, with only 465 self-refined training samples, RELFEX achieves state-of-the-art performance. Furthermore, models trained with explanatory objectives can effectively guide those without them, yielding up to a 7.57% improvement, highlighting that internal explanation signals play a dual role in both interpreting and enhancing factual reasoning.
Controlling Large Language Models Through Concept Activation Vectors
As large language models (LLMs) are widely deployed across various domains, the ability to control their generated outputs has become more critical. This control involves aligning LLMs outputs with human values and ethical principles or customizing LLMs on specific topics or styles for individual users. Existing controlled generation methods either require significant computational resources and extensive trial-and-error or provide coarse-grained control. In this paper, we propose Generation with Concept Activation Vector (GCAV), a lightweight model control framework that ensures accurate control without requiring resource-extensive fine-tuning. Specifically, GCAV first trains a concept activation vector for specified concepts to be controlled, such as toxicity. During inference, GCAV steers the concept vector in LLMs, for example, by removing the toxicity concept vector from the activation layers. Control experiments from different perspectives, including toxicity reduction, sentiment control, linguistic style, and topic control, demonstrate that our framework achieves state-of-the-art performance with granular control, allowing for fine-grained adjustments of both the steering layers and the steering magnitudes for individual samples.
Learning Layout and Style Reconfigurable GANs for Controllable Image Synthesis
With the remarkable recent progress on learning deep generative models, it becomes increasingly interesting to develop models for controllable image synthesis from reconfigurable inputs. This paper focuses on a recent emerged task, layout-to-image, to learn generative models that are capable of synthesizing photo-realistic images from spatial layout (i.e., object bounding boxes configured in an image lattice) and style (i.e., structural and appearance variations encoded by latent vectors). This paper first proposes an intuitive paradigm for the task, layout-to-mask-to-image, to learn to unfold object masks of given bounding boxes in an input layout to bridge the gap between the input layout and synthesized images. Then, this paper presents a method built on Generative Adversarial Networks for the proposed layout-to-mask-to-image with style control at both image and mask levels. Object masks are learned from the input layout and iteratively refined along stages in the generator network. Style control at the image level is the same as in vanilla GANs, while style control at the object mask level is realized by a proposed novel feature normalization scheme, Instance-Sensitive and Layout-Aware Normalization. In experiments, the proposed method is tested in the COCO-Stuff dataset and the Visual Genome dataset with state-of-the-art performance obtained.
Few shot font generation via transferring similarity guided global style and quantization local style
Automatic few-shot font generation (AFFG), aiming at generating new fonts with only a few glyph references, reduces the labor cost of manually designing fonts. However, the traditional AFFG paradigm of style-content disentanglement cannot capture the diverse local details of different fonts. So, many component-based approaches are proposed to tackle this problem. The issue with component-based approaches is that they usually require special pre-defined glyph components, e.g., strokes and radicals, which is infeasible for AFFG of different languages. In this paper, we present a novel font generation approach by aggregating styles from character similarity-guided global features and stylized component-level representations. We calculate the similarity scores of the target character and the referenced samples by measuring the distance along the corresponding channels from the content features, and assigning them as the weights for aggregating the global style features. To better capture the local styles, a cross-attention-based style transfer module is adopted to transfer the styles of reference glyphs to the components, where the components are self-learned discrete latent codes through vector quantization without manual definition. With these designs, our AFFG method could obtain a complete set of component-level style representations, and also control the global glyph characteristics. The experimental results reflect the effectiveness and generalization of the proposed method on different linguistic scripts, and also show its superiority when compared with other state-of-the-art methods. The source code can be found at https://github.com/awei669/VQ-Font.
ZDySS -- Zero-Shot Dynamic Scene Stylization using Gaussian Splatting
Stylizing a dynamic scene based on an exemplar image is critical for various real-world applications, including gaming, filmmaking, and augmented and virtual reality. However, achieving consistent stylization across both spatial and temporal dimensions remains a significant challenge. Most existing methods are designed for static scenes and often require an optimization process for each style image, limiting their adaptability. We introduce ZDySS, a zero-shot stylization framework for dynamic scenes, allowing our model to generalize to previously unseen style images at inference. Our approach employs Gaussian splatting for scene representation, linking each Gaussian to a learned feature vector that renders a feature map for any given view and timestamp. By applying style transfer on the learned feature vectors instead of the rendered feature map, we enhance spatio-temporal consistency across frames. Our method demonstrates superior performance and coherence over state-of-the-art baselines in tests on real-world dynamic scenes, making it a robust solution for practical applications.
M3DR: Towards Universal Multilingual Multimodal Document Retrieval
Multimodal document retrieval systems have shown strong progress in aligning visual and textual content for semantic search. However, most existing approaches remain heavily English-centric, limiting their effectiveness in multilingual contexts. In this work, we present M3DR (Multilingual Multimodal Document Retrieval), a framework designed to bridge this gap across languages, enabling applicability across diverse linguistic and cultural contexts. M3DR leverages synthetic multilingual document data and generalizes across different vision-language architectures and model sizes, enabling robust cross-lingual and cross-modal alignment. Using contrastive training, our models learn unified representations for text and document images that transfer effectively across languages. We validate this capability on 22 typologically diverse languages, demonstrating consistent performance and adaptability across linguistic and script variations. We further introduce a comprehensive benchmark that captures real-world multilingual scenarios, evaluating models under monolingual, multilingual, and mixed-language settings. M3DR generalizes across both single dense vector and ColBERT-style token-level multi-vector retrieval paradigms. Our models, NetraEmbed and ColNetraEmbed achieve state-of-the-art performance with ~150% relative improvements on cross-lingual retrieval.
Benchmarking the Myopic Trap: Positional Bias in Information Retrieval
This study investigates a specific form of positional bias, termed the Myopic Trap, where retrieval models disproportionately attend to the early parts of documents while overlooking relevant information that appears later. To systematically quantify this phenomenon, we propose a semantics-preserving evaluation framework that repurposes the existing NLP datasets into position-aware retrieval benchmarks. By evaluating the SOTA models of full retrieval pipeline, including BM25, embedding models, ColBERT-style late-interaction models, and reranker models, we offer a broader empirical perspective on positional bias than prior work. Experimental results show that embedding models and ColBERT-style models exhibit significant performance degradation when query-related content is shifted toward later positions, indicating a pronounced head bias. Notably, under the same training configuration, ColBERT-style approach show greater potential for mitigating positional bias compared to the traditional single-vector approach. In contrast, BM25 and reranker models remain largely unaffected by such perturbations, underscoring their robustness to positional bias. Code and data are publicly available at: www.github.com/NovaSearch-Team/RAG-Retrieval.
Enhanced Generative Structure Prior for Chinese Text Image Super-resolution
Faithful text image super-resolution (SR) is challenging because each character has a unique structure and usually exhibits diverse font styles and layouts. While existing methods primarily focus on English text, less attention has been paid to more complex scripts like Chinese. In this paper, we introduce a high-quality text image SR framework designed to restore the precise strokes of low-resolution (LR) Chinese characters. Unlike methods that rely on character recognition priors to regularize the SR task, we propose a novel structure prior that offers structure-level guidance to enhance visual quality. Our framework incorporates this structure prior within a StyleGAN model, leveraging its generative capabilities for restoration. To maintain the integrity of character structures while accommodating various font styles and layouts, we implement a codebook-based mechanism that restricts the generative space of StyleGAN. Each code in the codebook represents the structure of a specific character, while the vector w in StyleGAN controls the character's style, including typeface, orientation, and location. Through the collaborative interaction between the codebook and style, we generate a high-resolution structure prior that aligns with LR characters both spatially and structurally. Experiments demonstrate that this structure prior provides robust, character-specific guidance, enabling the accurate restoration of clear strokes in degraded characters, even for real-world LR Chinese text with irregular layouts. Our code and pre-trained models will be available at https://github.com/csxmli2016/MARCONetPlusPlus
Educating Text Autoencoders: Latent Representation Guidance via Denoising
Generative autoencoders offer a promising approach for controllable text generation by leveraging their latent sentence representations. However, current models struggle to maintain coherent latent spaces required to perform meaningful text manipulations via latent vector operations. Specifically, we demonstrate by example that neural encoders do not necessarily map similar sentences to nearby latent vectors. A theoretical explanation for this phenomenon establishes that high capacity autoencoders can learn an arbitrary mapping between sequences and associated latent representations. To remedy this issue, we augment adversarial autoencoders with a denoising objective where original sentences are reconstructed from perturbed versions (referred to as DAAE). We prove that this simple modification guides the latent space geometry of the resulting model by encouraging the encoder to map similar texts to similar latent representations. In empirical comparisons with various types of autoencoders, our model provides the best trade-off between generation quality and reconstruction capacity. Moreover, the improved geometry of the DAAE latent space enables zero-shot text style transfer via simple latent vector arithmetic.
Rethinking Inter-LoRA Orthogonality in Adapter Merging: Insights from Orthogonal Monte Carlo Dropout
We propose Orthogonal Monte Carlo Dropout, a mechanism that enforces strict orthogonality when combining sparse semantic vectors without extra time complexity. Low-Rank Adaptation (LoRA), a popular fine-tuning method for large models, typically trains a module to represent a specific concept such as an object or a style. When multiple LoRA modules are merged, for example to generate an object in a particular style, their outputs (semantic vectors) may interfere with each other. Our method guarantees that merged LoRA modules remain orthogonal and thus free from direct interference. However, empirical analysis reveals that such orthogonality does not lead to the semantic disentanglement highlighted in prior work on compositional adaptation. This finding suggests that inter-LoRA orthogonality alone may be insufficient for achieving true semantic compositionality, prompting a re-examination of its role in adapter merging.
ConceptNet 5.5: An Open Multilingual Graph of General Knowledge
Machine learning about language can be improved by supplying it with specific knowledge and sources of external information. We present here a new version of the linked open data resource ConceptNet that is particularly well suited to be used with modern NLP techniques such as word embeddings. ConceptNet is a knowledge graph that connects words and phrases of natural language with labeled edges. Its knowledge is collected from many sources that include expert-created resources, crowd-sourcing, and games with a purpose. It is designed to represent the general knowledge involved in understanding language, improving natural language applications by allowing the application to better understand the meanings behind the words people use. When ConceptNet is combined with word embeddings acquired from distributional semantics (such as word2vec), it provides applications with understanding that they would not acquire from distributional semantics alone, nor from narrower resources such as WordNet or DBPedia. We demonstrate this with state-of-the-art results on intrinsic evaluations of word relatedness that translate into improvements on applications of word vectors, including solving SAT-style analogies.
