submission / tasks /audio.py
Anas Benalla
Update tasks/audio.py
8f88f60 verified
raw
history blame
4.36 kB
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import os
import tensorflow as tf
import numpy as np
from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from dotenv import load_dotenv
load_dotenv()
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/audio"
@router.post(ROUTE, tags=["Audio Task"],
description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
"""
Evaluate audio classification for rainforest sound detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-1)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"chainsaw": 0,
"environment": 1
}
# Load and prepare the dataset
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
def compute_spectrogram(audio_array, sample_rate=16000, frame_length=256, frame_step=128):
spectrogram = tf.signal.stft(audio_array, frame_length=frame_length, frame_step=frame_step)
spectrogram = tf.abs(spectrogram)
return tf.expand_dims(spectrogram, axis=-1)
def preprocess(item, max_length=16000):
audio_array = item["audio"]["array"]
audio_array = tf.convert_to_tensor(audio_array, dtype=tf.float32)
if len(audio_array) < max_length:
pad_size = max_length - len(audio_array)
audio_array = tf.concat([audio_array, tf.zeros(pad_size)], axis=0)
else:
audio_array = audio_array[:max_length]
spectrogram = compute_spectrogram(audio_array)
return spectrogram
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
MODEL_PATH = './model'
model = tf.keras.models.load_model(MODEL_PATH)
true_labels = test_dataset["label"]
predictions = []
for item in test_dataset:
spectrogram = preprocess(item)
spectrogram = tf.expand_dims(spectrogram, axis=0) # Add batch dimension
pred_probs = model.predict(spectrogram, verbose=0)
predicted_label = np.argmax(pred_probs)
predictions.append(predicted_label)
# Make random predictions (placeholder for actual model inference)
#true_labels = test_dataset["label"]
#predictions = [random.randint(0, 1) for _ in range(len(true_labels))]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results