submission / tasks /audio_onnx.py
AB739's picture
Rename tasks/audio.py to tasks/audio_onnx.py
76677b5 verified
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import os
import torch
from torch.utils.data import DataLoader, TensorDataset
from torchaudio import transforms
#from torchvision import models
import onnxruntime as ort # Add ONNX Runtime
from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from dotenv import load_dotenv
load_dotenv()
router = APIRouter()
DESCRIPTION = "Tiny_DNN"
ROUTE = "/audio"
torch.set_num_threads(4)
torch.set_num_interop_threads(2)
@router.post(ROUTE, tags=["Audio Task"], description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"chainsaw": 0,
"environment": 1
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
true_labels = test_dataset["label"]
resampler = transforms.Resample(orig_freq=12000, new_freq=16000)
mel_transform = transforms.MelSpectrogram(sample_rate=16000, n_mels=64)
amplitude_to_db = transforms.AmplitudeToDB()
def resize_audio(_waveform, target_length):
num_frames = _waveform.shape[-1]
if num_frames != target_length:
_resampler = transforms.Resample(orig_freq=num_frames, new_freq=target_length)
_waveform = _resampler(_waveform)
return _waveform
resized_waveforms = [
resize_audio(torch.tensor(sample['audio']['array'], dtype=torch.float32).unsqueeze(0), target_length=72000)
for sample in test_dataset
]
waveforms, labels = [], []
for waveform, label in zip(resized_waveforms, true_labels):
waveforms.append(amplitude_to_db(mel_transform(resampler(waveform))))
labels.append(label)
waveforms = torch.stack(waveforms)
labels = torch.tensor(labels)
test_loader = DataLoader(
TensorDataset(waveforms, labels),
batch_size=128,
shuffle=False,
pin_memory=True,
num_workers=4
)
# Load ONNX model
onnx_model_path = "./output_model.onnx"
session_options = ort.SessionOptions()
session_options.intra_op_num_threads = 4
session_options.inter_op_num_threads = 2
ort_session = ort.InferenceSession(onnx_model_path, session_options)
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
# ONNX inference
predictions = []
for data, target in test_loader:
inputs = data.numpy() # Convert tensor to numpy
ort_inputs = {'input': inputs}
ort_outputs = ort_session.run(None, ort_inputs)
predicted = ort_outputs[0].argmax(axis=1) # Assuming output shape is [batch_size, num_classes]
predictions.extend(predicted.tolist())
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results