Spaces:
Sleeping
Sleeping
Create audio.py
Browse files- tasks/audio.py +255 -0
tasks/audio.py
ADDED
|
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import APIRouter
|
| 2 |
+
from datetime import datetime
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from sklearn.metrics import accuracy_score
|
| 5 |
+
import os
|
| 6 |
+
import torch
|
| 7 |
+
from torch import nn
|
| 8 |
+
from torch.utils.data import DataLoader, TensorDataset
|
| 9 |
+
from torchaudio import transforms
|
| 10 |
+
from torchvision import models
|
| 11 |
+
|
| 12 |
+
from .utils.evaluation import AudioEvaluationRequest
|
| 13 |
+
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
| 14 |
+
|
| 15 |
+
from dotenv import load_dotenv
|
| 16 |
+
load_dotenv()
|
| 17 |
+
|
| 18 |
+
router = APIRouter()
|
| 19 |
+
|
| 20 |
+
DESCRIPTION = "ResNet18 Model"
|
| 21 |
+
ROUTE = "/audio"
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
@router.post(ROUTE, tags=["Audio Task"],
|
| 26 |
+
description=DESCRIPTION)
|
| 27 |
+
async def evaluate_audio(request: AudioEvaluationRequest):
|
| 28 |
+
"""
|
| 29 |
+
Evaluate audio classification for rainforest sound detection.
|
| 30 |
+
|
| 31 |
+
Current Model: Random Baseline
|
| 32 |
+
- Makes random predictions from the label space (0-1)
|
| 33 |
+
- Used as a baseline for comparison
|
| 34 |
+
"""
|
| 35 |
+
# Get space info
|
| 36 |
+
username, space_url = get_space_info()
|
| 37 |
+
|
| 38 |
+
# Define the label mapping
|
| 39 |
+
LABEL_MAPPING = {
|
| 40 |
+
"chainsaw": 0,
|
| 41 |
+
"environment": 1
|
| 42 |
+
}
|
| 43 |
+
# Load and prepare the dataset
|
| 44 |
+
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
|
| 45 |
+
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
|
| 46 |
+
|
| 47 |
+
# Split dataset
|
| 48 |
+
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
| 49 |
+
test_dataset = train_test["test"]
|
| 50 |
+
|
| 51 |
+
# Start tracking emissions
|
| 52 |
+
tracker.start()
|
| 53 |
+
tracker.start_task("inference")
|
| 54 |
+
|
| 55 |
+
#--------------------------------------------------------------------------------------------
|
| 56 |
+
# YOUR MODEL INFERENCE CODE HERE
|
| 57 |
+
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
| 58 |
+
#--------------------------------------------------------------------------------------------
|
| 59 |
+
|
| 60 |
+
# Make predictions using M5 Model
|
| 61 |
+
true_labels = test_dataset["label"]
|
| 62 |
+
|
| 63 |
+
resampler = transforms.Resample(orig_freq=12000, new_freq=16000)
|
| 64 |
+
mel_transform = transforms.MelSpectrogram(sample_rate=16000, n_mels=64)
|
| 65 |
+
amplitude_to_db = transforms.AmplitudeToDB()
|
| 66 |
+
|
| 67 |
+
def resize_audio(_waveform, target_length):
|
| 68 |
+
"""Resizes the audio waveform to the target length using resampling"""
|
| 69 |
+
num_frames = _waveform.shape[-1]
|
| 70 |
+
if num_frames != target_length:
|
| 71 |
+
_resampler = transforms.Resample(orig_freq=num_frames, new_freq=target_length)
|
| 72 |
+
_waveform = _resampler(_waveform)
|
| 73 |
+
return _waveform
|
| 74 |
+
|
| 75 |
+
resized_waveforms = [
|
| 76 |
+
resize_audio(torch.tensor(sample['audio']['array'], dtype=torch.float32).unsqueeze(0), target_length=72000)
|
| 77 |
+
for sample in test_dataset
|
| 78 |
+
]
|
| 79 |
+
|
| 80 |
+
waveforms, labels = [], []
|
| 81 |
+
for waveform, label in zip(resized_waveforms, true_labels):
|
| 82 |
+
waveforms.append(amplitude_to_db(mel_transform(resampler(waveform))))
|
| 83 |
+
labels.append(label)
|
| 84 |
+
|
| 85 |
+
waveforms = torch.stack(waveforms)
|
| 86 |
+
labels = torch.tensor(labels)
|
| 87 |
+
|
| 88 |
+
test_loader = DataLoader(
|
| 89 |
+
TensorDataset(waveforms, labels),
|
| 90 |
+
batch_size=32,
|
| 91 |
+
shuffle=False
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
class ResNetForAudio(nn.Module):
|
| 95 |
+
def __init__(self, num_classes=10):
|
| 96 |
+
super(ResNetForAudio, self).__init__()
|
| 97 |
+
self.resnet = models.resnet18(pretrained=False)
|
| 98 |
+
self.resnet.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
| 99 |
+
self.resnet.fc = nn.Linear(self.resnet.fc.in_features, num_classes)
|
| 100 |
+
|
| 101 |
+
def forward(self, x):
|
| 102 |
+
return self.resnet(x)
|
| 103 |
+
|
| 104 |
+
#model = ResNetForAudio(num_classes=2)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class BlazeFace(nn.Module):
|
| 109 |
+
def __init__(self, input_channels=1, use_double_block=False, activation="relu", use_optional_block=True):
|
| 110 |
+
super(BlazeFace, self).__init__()
|
| 111 |
+
self.activation = activation
|
| 112 |
+
self.use_double_block = use_double_block
|
| 113 |
+
self.use_optional_block = use_optional_block
|
| 114 |
+
|
| 115 |
+
def conv_block(in_channels, out_channels, kernel_size, stride, padding):
|
| 116 |
+
return nn.Sequential(
|
| 117 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding),
|
| 118 |
+
nn.BatchNorm2d(out_channels),
|
| 119 |
+
nn.ReLU() if activation == "relu" else nn.Sigmoid() # Apply ReLU activation (default) or Sigmoid
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
def depthwise_separable_block(in_channels, out_channels, stride):
|
| 123 |
+
return nn.Sequential(
|
| 124 |
+
nn.Conv2d(in_channels, in_channels, kernel_size=5, stride=stride, padding=2, groups=in_channels, bias=False),
|
| 125 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0),
|
| 126 |
+
nn.BatchNorm2d(out_channels),
|
| 127 |
+
nn.ReLU() if activation == "relu" else nn.Sigmoid()
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
def double_block(in_channels, filters_1, filters_2, stride):
|
| 131 |
+
return nn.Sequential(
|
| 132 |
+
depthwise_separable_block(in_channels, filters_1, stride),
|
| 133 |
+
depthwise_separable_block(filters_1, filters_2, 1)
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
# Define layers (first part: conv layers)
|
| 137 |
+
self.conv1 = conv_block(input_channels, 24, kernel_size=5, stride=2, padding=2)
|
| 138 |
+
|
| 139 |
+
# Define single blocks (subsequent conv blocks)
|
| 140 |
+
self.single_blocks = nn.ModuleList([
|
| 141 |
+
depthwise_separable_block(24, 24, stride=1),
|
| 142 |
+
depthwise_separable_block(24, 24, stride=1),
|
| 143 |
+
depthwise_separable_block(24, 48, stride=2),
|
| 144 |
+
depthwise_separable_block(48, 48, stride=1),
|
| 145 |
+
depthwise_separable_block(48, 48, stride=1)
|
| 146 |
+
])
|
| 147 |
+
|
| 148 |
+
# Define double blocks if `use_double_block` is True
|
| 149 |
+
if self.use_double_block:
|
| 150 |
+
self.double_blocks = nn.ModuleList([
|
| 151 |
+
double_block(48, 24, 96, stride=2),
|
| 152 |
+
double_block(96, 24, 96, stride=1),
|
| 153 |
+
double_block(96, 24, 96, stride=2),
|
| 154 |
+
double_block(96, 24, 96, stride=1),
|
| 155 |
+
double_block(96, 24, 96, stride=2)
|
| 156 |
+
])
|
| 157 |
+
else:
|
| 158 |
+
self.double_blocks = nn.ModuleList([
|
| 159 |
+
depthwise_separable_block(48, 96, stride=2),
|
| 160 |
+
depthwise_separable_block(96, 96, stride=1),
|
| 161 |
+
depthwise_separable_block(96, 96, stride=2),
|
| 162 |
+
depthwise_separable_block(96, 96, stride=1),
|
| 163 |
+
depthwise_separable_block(96, 96, stride=2)
|
| 164 |
+
])
|
| 165 |
+
|
| 166 |
+
# Final convolutional head
|
| 167 |
+
self.conv_head = nn.Conv2d(96, 64, kernel_size=1, stride=1)
|
| 168 |
+
self.bn_head = nn.BatchNorm2d(64)
|
| 169 |
+
|
| 170 |
+
# Global Average Pooling
|
| 171 |
+
self.global_avg_pooling = nn.AdaptiveAvgPool2d(1)
|
| 172 |
+
|
| 173 |
+
def forward(self, x):
|
| 174 |
+
# First conv layer
|
| 175 |
+
x = self.conv1(x)
|
| 176 |
+
|
| 177 |
+
# Apply single blocks
|
| 178 |
+
for block in self.single_blocks:
|
| 179 |
+
x = block(x)
|
| 180 |
+
|
| 181 |
+
# Apply double blocks
|
| 182 |
+
for block in self.double_blocks:
|
| 183 |
+
x = block(x)
|
| 184 |
+
|
| 185 |
+
# Final head
|
| 186 |
+
x = self.conv_head(x)
|
| 187 |
+
x = self.bn_head(x)
|
| 188 |
+
x = F.relu(x)
|
| 189 |
+
|
| 190 |
+
# Global Average Pooling and Flatten
|
| 191 |
+
x = self.global_avg_pooling(x)
|
| 192 |
+
x = torch.flatten(x, 1)
|
| 193 |
+
|
| 194 |
+
return x
|
| 195 |
+
|
| 196 |
+
class BlazeFaceModel(nn.Module):
|
| 197 |
+
def __init__(self, input_channels, label_count, use_double_block=False, activation="relu", use_optional_block=True):
|
| 198 |
+
super(BlazeFaceModel, self).__init__()
|
| 199 |
+
self.blazeface_backbone = BlazeFace(input_channels=input_channels, use_double_block=use_double_block, activation=activation, use_optional_block=use_optional_block)
|
| 200 |
+
self.fc = nn.Linear(64, label_count) # 64 is the output feature size after pooling
|
| 201 |
+
|
| 202 |
+
def forward(self, x):
|
| 203 |
+
features = self.blazeface_backbone(x)
|
| 204 |
+
output = self.fc(features)
|
| 205 |
+
return output
|
| 206 |
+
|
| 207 |
+
# Example Usage
|
| 208 |
+
model_settings = {
|
| 209 |
+
'spectrogram_length': 64,
|
| 210 |
+
'dct_coefficient_count': 481,
|
| 211 |
+
'label_count': 2
|
| 212 |
+
}
|
| 213 |
+
|
| 214 |
+
# Create model
|
| 215 |
+
model = BlazeFaceModel(input_channels=1, label_count=model_settings['label_count'], use_double_block=False, activation='relu', use_optional_block=False)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
model.load_state_dict(torch.load("./best_blazeface_model.pth", map_location=torch.device('cpu')))
|
| 219 |
+
|
| 220 |
+
predictions = []
|
| 221 |
+
with torch.inference_mode():
|
| 222 |
+
for data, target in test_loader:
|
| 223 |
+
output = model(data).squeeze()
|
| 224 |
+
pred = torch.argmax(output, dim=-1)
|
| 225 |
+
predictions.extend(pred.tolist())
|
| 226 |
+
|
| 227 |
+
#--------------------------------------------------------------------------------------------
|
| 228 |
+
# YOUR MODEL INFERENCE STOPS HERE
|
| 229 |
+
#--------------------------------------------------------------------------------------------
|
| 230 |
+
|
| 231 |
+
# Stop tracking emissions
|
| 232 |
+
emissions_data = tracker.stop_task()
|
| 233 |
+
|
| 234 |
+
# Calculate accuracy
|
| 235 |
+
accuracy = accuracy_score(true_labels, predictions)
|
| 236 |
+
|
| 237 |
+
# Prepare results dictionary
|
| 238 |
+
results = {
|
| 239 |
+
"username": username,
|
| 240 |
+
"space_url": space_url,
|
| 241 |
+
"submission_timestamp": datetime.now().isoformat(),
|
| 242 |
+
"model_description": DESCRIPTION,
|
| 243 |
+
"accuracy": float(accuracy),
|
| 244 |
+
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
| 245 |
+
"emissions_gco2eq": emissions_data.emissions * 1000,
|
| 246 |
+
"emissions_data": clean_emissions_data(emissions_data),
|
| 247 |
+
"api_route": ROUTE,
|
| 248 |
+
"dataset_config": {
|
| 249 |
+
"dataset_name": request.dataset_name,
|
| 250 |
+
"test_size": request.test_size,
|
| 251 |
+
"test_seed": request.test_seed
|
| 252 |
+
}
|
| 253 |
+
}
|
| 254 |
+
|
| 255 |
+
return results
|