Spaces:
Sleeping
Sleeping
Create audio_onnx.py
Browse files- tasks/audio_onnx.py +118 -0
tasks/audio_onnx.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import APIRouter
|
| 2 |
+
from datetime import datetime
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from sklearn.metrics import accuracy_score
|
| 5 |
+
import os
|
| 6 |
+
import torch
|
| 7 |
+
from torch.utils.data import DataLoader, TensorDataset
|
| 8 |
+
from torchaudio import transforms
|
| 9 |
+
from torchvision import models
|
| 10 |
+
import onnxruntime as ort # Add ONNX Runtime
|
| 11 |
+
from .utils.evaluation import AudioEvaluationRequest
|
| 12 |
+
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
| 13 |
+
|
| 14 |
+
from dotenv import load_dotenv
|
| 15 |
+
load_dotenv()
|
| 16 |
+
|
| 17 |
+
router = APIRouter()
|
| 18 |
+
|
| 19 |
+
DESCRIPTION = "Tiny_DNN"
|
| 20 |
+
ROUTE = "/audio"
|
| 21 |
+
|
| 22 |
+
torch.set_num_threads(4)
|
| 23 |
+
torch.set_num_interop_threads(2)
|
| 24 |
+
|
| 25 |
+
@router.post(ROUTE, tags=["Audio Task"], description=DESCRIPTION)
|
| 26 |
+
async def evaluate_audio(request: AudioEvaluationRequest):
|
| 27 |
+
# Get space info
|
| 28 |
+
username, space_url = get_space_info()
|
| 29 |
+
|
| 30 |
+
# Define the label mapping
|
| 31 |
+
LABEL_MAPPING = {
|
| 32 |
+
"chainsaw": 0,
|
| 33 |
+
"environment": 1
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
# Load and prepare the dataset
|
| 37 |
+
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
|
| 38 |
+
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
| 39 |
+
test_dataset = train_test["test"]
|
| 40 |
+
true_labels = test_dataset["label"]
|
| 41 |
+
|
| 42 |
+
resampler = transforms.Resample(orig_freq=12000, new_freq=16000)
|
| 43 |
+
mel_transform = transforms.MelSpectrogram(sample_rate=16000, n_mels=64)
|
| 44 |
+
amplitude_to_db = transforms.AmplitudeToDB()
|
| 45 |
+
|
| 46 |
+
def resize_audio(_waveform, target_length):
|
| 47 |
+
num_frames = _waveform.shape[-1]
|
| 48 |
+
if num_frames != target_length:
|
| 49 |
+
_resampler = transforms.Resample(orig_freq=num_frames, new_freq=target_length)
|
| 50 |
+
_waveform = _resampler(_waveform)
|
| 51 |
+
return _waveform
|
| 52 |
+
|
| 53 |
+
resized_waveforms = [
|
| 54 |
+
resize_audio(torch.tensor(sample['audio']['array'], dtype=torch.float32).unsqueeze(0), target_length=72000)
|
| 55 |
+
for sample in test_dataset
|
| 56 |
+
]
|
| 57 |
+
|
| 58 |
+
waveforms, labels = [], []
|
| 59 |
+
for waveform, label in zip(resized_waveforms, true_labels):
|
| 60 |
+
waveforms.append(amplitude_to_db(mel_transform(resampler(waveform))))
|
| 61 |
+
labels.append(label)
|
| 62 |
+
|
| 63 |
+
waveforms = torch.stack(waveforms)
|
| 64 |
+
labels = torch.tensor(labels)
|
| 65 |
+
|
| 66 |
+
test_loader = DataLoader(
|
| 67 |
+
TensorDataset(waveforms, labels),
|
| 68 |
+
batch_size=128,
|
| 69 |
+
shuffle=False,
|
| 70 |
+
pin_memory=True,
|
| 71 |
+
num_workers=4
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# Load ONNX model
|
| 75 |
+
onnx_model_path = "./output_model.onnx"
|
| 76 |
+
session_options = ort.SessionOptions()
|
| 77 |
+
session_options.intra_op_num_threads = 4
|
| 78 |
+
session_options.inter_op_num_threads = 2
|
| 79 |
+
ort_session = ort.InferenceSession(onnx_model_path, session_options)
|
| 80 |
+
|
| 81 |
+
# Start tracking emissions
|
| 82 |
+
tracker.start()
|
| 83 |
+
tracker.start_task("inference")
|
| 84 |
+
|
| 85 |
+
# ONNX inference
|
| 86 |
+
predictions = []
|
| 87 |
+
for data, target in test_loader:
|
| 88 |
+
inputs = data.numpy() # Convert tensor to numpy
|
| 89 |
+
ort_inputs = {'input': inputs}
|
| 90 |
+
ort_outputs = ort_session.run(None, ort_inputs)
|
| 91 |
+
predicted = ort_outputs[0].argmax(axis=1) # Assuming output shape is [batch_size, num_classes]
|
| 92 |
+
predictions.extend(predicted.tolist())
|
| 93 |
+
|
| 94 |
+
# Stop tracking emissions
|
| 95 |
+
emissions_data = tracker.stop_task()
|
| 96 |
+
|
| 97 |
+
# Calculate accuracy
|
| 98 |
+
accuracy = accuracy_score(true_labels, predictions)
|
| 99 |
+
|
| 100 |
+
# Prepare results dictionary
|
| 101 |
+
results = {
|
| 102 |
+
"username": username,
|
| 103 |
+
"space_url": space_url,
|
| 104 |
+
"submission_timestamp": datetime.now().isoformat(),
|
| 105 |
+
"model_description": DESCRIPTION,
|
| 106 |
+
"accuracy": float(accuracy),
|
| 107 |
+
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
| 108 |
+
"emissions_gco2eq": emissions_data.emissions * 1000,
|
| 109 |
+
"emissions_data": clean_emissions_data(emissions_data),
|
| 110 |
+
"api_route": ROUTE,
|
| 111 |
+
"dataset_config": {
|
| 112 |
+
"dataset_name": request.dataset_name,
|
| 113 |
+
"test_size": request.test_size,
|
| 114 |
+
"test_seed": request.test_seed
|
| 115 |
+
}
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
+
return results
|