Update README.md
Browse files
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
title: AI Image Detector
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
|
@@ -10,4 +10,50 @@ pinned: false
|
|
| 10 |
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
title: AI Image Detector
|
| 3 |
+
emoji: π
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
|
|
|
| 10 |
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# AI Image Detector
|
| 14 |
+
|
| 15 |
+
Detect whether an image is **AI-generated** or a **real photograph** using deep learning.
|
| 16 |
+
|
| 17 |
+
## Model Architecture
|
| 18 |
+
|
| 19 |
+
- **Base Model:** MobileNetV2 (pretrained on ImageNet)
|
| 20 |
+
- **Transfer Learning:** Custom classification head with:
|
| 21 |
+
- Global Average Pooling
|
| 22 |
+
- Batch Normalization
|
| 23 |
+
- Dense layer (256 units) with L2 regularization
|
| 24 |
+
- Dropout (0.7)
|
| 25 |
+
- Sigmoid output for binary classification
|
| 26 |
+
|
| 27 |
+
## Training Data
|
| 28 |
+
|
| 29 |
+
The model was trained on a combined dataset of ~128,000 images:
|
| 30 |
+
- **CIFAKE Dataset:** 100,000 images (50k real, 50k AI-generated)
|
| 31 |
+
- **Tiny GenImage Dataset:** 28,000 additional images from various AI generators including:
|
| 32 |
+
- Midjourney
|
| 33 |
+
- Stable Diffusion
|
| 34 |
+
- BigGAN
|
| 35 |
+
- ADM
|
| 36 |
+
- GLIDE
|
| 37 |
+
- VQDM
|
| 38 |
+
- Wukong
|
| 39 |
+
|
| 40 |
+
## Usage
|
| 41 |
+
|
| 42 |
+
Upload any image to the interface, and the model will predict whether it's:
|
| 43 |
+
- **Real Image:** A genuine photograph
|
| 44 |
+
- **AI-Generated:** Created by an AI model
|
| 45 |
+
|
| 46 |
+
## Files
|
| 47 |
+
|
| 48 |
+
- `app.py` - Main Gradio application
|
| 49 |
+
- `requirements.txt` - Python dependencies
|
| 50 |
+
- `transfer_model.keras` - Trained model weights
|
| 51 |
+
|
| 52 |
+
## License
|
| 53 |
+
|
| 54 |
+
MIT License
|
| 55 |
+
|
| 56 |
+
## Acknowledgments
|
| 57 |
+
|
| 58 |
+
- CIFAKE Dataset: https://www.kaggle.com/datasets/birdy654/cifake-real-and-ai-generated-synthetic-images
|
| 59 |
+
- Tiny GenImage Dataset: https://www.kaggle.com/datasets/yangsangtai/tiny-genimage
|