--- title: AI Image Detector emoji: 🔍 colorFrom: green colorTo: red sdk: gradio sdk_version: 6.0.2 app_file: app.py pinned: false license: mit --- # AI Image Detector Detect whether an image is **AI-generated** or a **real photograph** using deep learning. ## Model Architecture - **Base Model:** MobileNetV2 (pretrained on ImageNet) - **Transfer Learning:** Custom classification head with: - Global Average Pooling - Batch Normalization - Dense layer (256 units) with L2 regularization - Dropout (0.7) - Sigmoid output for binary classification ## Training Data The model was trained on a combined dataset of ~128,000 images: - **CIFAKE Dataset:** 100,000 images (50k real, 50k AI-generated) - **Tiny GenImage Dataset:** 28,000 additional images from various AI generators including: - Midjourney - Stable Diffusion - BigGAN - ADM - GLIDE - VQDM - Wukong ## Usage Upload any image to the interface, and the model will predict whether it's: - **Real Image:** A genuine photograph - **AI-Generated:** Created by an AI model ## Files - `app.py` - Main Gradio application - `requirements.txt` - Python dependencies - `transfer_model.keras` - Trained model weights ## License MIT License ## Acknowledgments - CIFAKE Dataset: https://www.kaggle.com/datasets/birdy654/cifake-real-and-ai-generated-synthetic-images - Tiny GenImage Dataset: https://www.kaggle.com/datasets/yangsangtai/tiny-genimage