import os import torch import gradio as gr import spaces import random import numpy as np from diffusers.utils import logging from PIL import Image from diffusers import OvisImagePipeline logging.set_verbosity_error() # DEVICE = "cuda" if torch.cuda.is_available() else "cpu" MAX_SEED = np.iinfo(np.int32).max device = "cuda" _dtype = torch.bfloat16 hf_token = os.getenv("HF_TOKEN") pipe = OvisImagePipeline.from_pretrained( "AIDC-AI/Ovis-Image-7B", token=hf_token, torch_dtype=torch.bfloat16 ) pipe.to("cuda") @spaces.GPU(duration=75) def generate(prompt, img_height=1024, img_width=1024, seed=42, steps=50, guidance_scale=5.0): print(f'inference with prompt : {prompt}, size: {img_height}x{img_width}, seed : {seed}, step : {steps}, cfg : {guidance_scale}') generator = torch.Generator().manual_seed(seed) image = pipe( prompt, negative_prompt="", height=img_height, width=img_width, num_inference_steps=steps, true_cfg_scale=guidance_scale, generator=generator, ).images[0] return image examples = [ "Child lying on bed with balloons, streamers, and plush toys, surreal dreamlike scene. Close-up, centered on the child and surrounding objects. Soft, diffused lighting.", "A trendy, playful 3D render of the text \"OVIS-IMAGE\" designed as glossy, inflated balloon letters. The typography is bubbly and rounded. The material is a shiny, reflective plastic in vibrant Alibaba Orange. The text is floating in a bright, clean white studio space with soft pastel lighting. There are subtle reflections of the studio softboxes on the curves of the balloons. High-fashion retail aesthetic, pop art style, C4D render, cute and energetic.", "一张写实风格的现代化教室场景摄影图。画面焦点集中在前方墙壁正中央的一块洁白明亮的白板上,白板上用清晰、工整的黑色马克笔手写体写着多行文字:最上方是巨大的英文标题“OVIS-IMAGE”,紧接着下方依次分行写着中文说明:“7B文生图模型”、“无需专有模型即可实现双语渲染”、“可在消费级显卡部署”。白板下方的铝合金笔槽内摆放着几支直立或横躺的彩色白板笔(蓝、红、黄、绿)。前景是两位背对镜头的学生(呈虚化状态,营造景深感),坐在木质课桌前,右侧课桌上还放着一块折叠的棕色毛巾。左侧隐约可见部分绿色黑板,顶部有一盏明亮的长条日光灯提供照明。整体光线柔和自然,构图对称,对焦精准在白板文字上,营造出真实的教育和技术演示氛围。", "微距摄影,一只鲜艳的红色瓢虫停留在翠绿的叶子上,特写镜头。叶子表面分布着晶莹剔透的水珠(晨露),瓢虫红色的甲壳光滑如镜,反射着柔和的自然光,能够清晰看到瓢虫腿部和触角的细微纹理。背景是梦幻的绿色虚化(散景),突显主体,极度逼真,8k分辨率,高清晰度,电影级质感。", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# Ovis-Image Built upon [Ovis-U1](https://huggingface.co/spaces/AIDC-AI/Ovis-U1-3B), Ovis-Image is a 7B text-to-image model specifically optimized for high-quality text rendering under stringent computational constraints. [[code](https://github.com/AIDC-AI/Ovis-Image)] [[model](https://huggingface.co/AIDC-AI/Ovis-Image-7B)] """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt here", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): with gr.Row(): img_height = gr.Slider( label="Image Height", minimum=256, maximum=2048, step=32, value=1024, ) img_width = gr.Slider( label="Image Width", minimum=256, maximum=2048, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=14, step=0.1, value=5.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=100, step=1, value=50, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) gr.Examples( examples = examples, fn = generate, inputs = [prompt], outputs = [result], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn = generate, inputs = [prompt, img_height, img_width, seed, num_inference_steps, guidance_scale], outputs = [result] ) if __name__ == '__main__': demo.launch()