File size: 3,042 Bytes
1cbe9b6
4ee0d45
 
 
 
1cbe9b6
aafd275
1cbe9b6
 
 
 
 
ee3a404
4ee0d45
ee3a404
 
 
4ee0d45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee3a404
 
4ee0d45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aafd275
 
 
 
 
 
4ee0d45
 
 
 
 
ee3a404
4ee0d45
 
 
 
 
 
 
 
ee3a404
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
title: MAPSS Multi Source Audio Perceptual Separation Scores
emoji: 🎡
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.45.0
app_file: app.py
pinned: false
license: mit
---

# MAPSS: Manifold-based Assessment of Perceptual Source Separation

Granular evaluation of speech and music source separation with the MAPSS measures:
- **Perceptual Matching (PM)**: Measures how closely an output perceptually aligns with its reference. Range: 0-1, higher is better.
- **Perceptual Similarity (PS)**: Measures how well an output is separated from its interfering references. Range: 0-1, higher is better.

## Input Format

Upload a ZIP file containing:
```
your_mixture.zip
β”œβ”€β”€ references/       # Original clean sources
β”‚   β”œβ”€β”€ speaker1.wav
β”‚   β”œβ”€β”€ speaker2.wav
β”‚   └── ...
└── outputs/         # Separated outputs from your algorithm
    β”œβ”€β”€ separated1.wav
    β”œβ”€β”€ separated2.wav
    └── ...
```

### Audio Requirements
- Format: WAV files
- Sample rate: Any (automatically resampled to 16kHz)
- Channels: Mono or stereo (converted to mono)
- Number of files: Equal number of references and outputs

## Output Format

The tool generates a ZIP file containing:
- `ps_scores_{model}.csv`: PS scores for each speaker/source
- `pm_scores_{model}.csv`: PM scores for each speaker/source
- `params.json`: Experiment parameters used
- `manifest_canonical.json`: File mapping and processing details

## Available Models

| Model | Description | Default Layer | Use Case |
|-------|-------------|---------------|----------|
| `raw` | Raw waveform features | N/A | Baseline comparison |
| `wavlm` | WavLM Large | 24 | Best overall performance |
| `wav2vec2` | Wav2Vec2 Large | 24 | Strong performance |
| `hubert` | HuBERT Large | 24 | Good for speech |
| `wavlm_base` | WavLM Base | 12 | Faster, good quality |
| `wav2vec2_base` | Wav2Vec2 Base | 12 | Faster processing |
| `hubert_base` | HuBERT Base | 12 | Faster for speech |
| `wav2vec2_xlsr` | Wav2Vec2 XLSR-53 | 24 | Multilingual |
| `ast` | Audio Spectrogram Transformer | 12 | General audio |

## Parameters

- **Model**: Select the embedding model for feature extraction
- **Layer**: Which transformer layer to use (auto-selected by default)
- **Alpha**: Diffusion maps parameter (0.0-1.0, default: 1.0)
  - 0.0 = No normalization
  - 1.0 = Full normalization (recommended)

## Citation

If you use MAPSS in your research, please cite:

```bibtex
@article{Ivry2025MAPSS,
  title     = {MAPSS: Manifold-based Assessment of Perceptual Source Separation},
  author    = {Ivry, Amir and Cornell, Samuele and Watanabe, Shinji},
  journal   = {arXiv preprint arXiv:2509.09212},
  year      = {2025},
  url       = {https://arxiv.org/abs/2509.09212}
}
```

## Limitations

- Processing time scales with number of sources, audio length and model size

## License

Code: MIT License  
Paper: CC-BY-4.0

## Support

For issues, questions, or contributions, please visit the [GitHub repository](https://github.com/amir-ivry/MAPSS-measures).