Update app.py
Browse files
app.py
CHANGED
|
@@ -205,6 +205,7 @@ def create_strategic_masks(text, tokenizer, strategy="content_words"):
|
|
| 205 |
def symbolic_classification_analysis(text, selected_roles, masking_strategy="content_words", num_predictions=5):
|
| 206 |
"""
|
| 207 |
Perform symbolic classification analysis using MLM prediction
|
|
|
|
| 208 |
"""
|
| 209 |
if not selected_roles:
|
| 210 |
selected_roles = list(symbolic_token_ids.keys())
|
|
@@ -213,86 +214,192 @@ def symbolic_classification_analysis(text, selected_roles, masking_strategy="con
|
|
| 213 |
return "Please enter some text to analyze.", "", 0
|
| 214 |
|
| 215 |
try:
|
| 216 |
-
#
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
return
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
)
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
max_prob = 0
|
| 268 |
-
best_prediction = None
|
| 269 |
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
top_pred = result["top_predictions"][0] if result["top_predictions"] else None
|
| 274 |
-
|
| 275 |
-
if top_pred:
|
| 276 |
-
prob = float(top_pred["probability"])
|
| 277 |
-
role = top_pred["symbolic_role"]
|
| 278 |
-
summary_lines.append(
|
| 279 |
-
f"Position {pos:2d}: '{orig}' → {role} ({top_pred['probability']}, {top_pred['confidence']})"
|
| 280 |
-
)
|
| 281 |
-
|
| 282 |
-
if prob > max_prob:
|
| 283 |
-
max_prob = prob
|
| 284 |
-
best_prediction = f"{role} (confidence: {top_pred['confidence']})"
|
| 285 |
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
|
| 290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
|
| 297 |
|
| 298 |
def create_manual_mask_analysis(text, mask_positions_str, selected_roles):
|
|
@@ -361,7 +468,7 @@ def build_interface():
|
|
| 361 |
txt_input = gr.Textbox(
|
| 362 |
label="Input Text",
|
| 363 |
lines=4,
|
| 364 |
-
placeholder="
|
| 365 |
)
|
| 366 |
|
| 367 |
with gr.Row():
|
|
@@ -450,23 +557,31 @@ def build_interface():
|
|
| 450 |
)
|
| 451 |
|
| 452 |
with gr.Tab("Caption Examples"):
|
| 453 |
-
gr.Markdown("### 🖼️ Test with
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 454 |
|
| 455 |
example_captions = [
|
| 456 |
-
"a young woman wearing a blue dress",
|
| 457 |
-
"
|
| 458 |
-
"
|
| 459 |
-
"
|
| 460 |
-
"
|
| 461 |
-
"
|
| 462 |
-
"
|
| 463 |
-
"
|
| 464 |
]
|
| 465 |
|
| 466 |
for caption in example_captions:
|
| 467 |
with gr.Row():
|
| 468 |
-
gr.Textbox(value=caption, label="Example
|
| 469 |
-
copy_btn = gr.Button("📋
|
| 470 |
|
| 471 |
# Event handlers
|
| 472 |
analyze_btn.click(
|
|
|
|
| 205 |
def symbolic_classification_analysis(text, selected_roles, masking_strategy="content_words", num_predictions=5):
|
| 206 |
"""
|
| 207 |
Perform symbolic classification analysis using MLM prediction
|
| 208 |
+
FIXED: Now tests what the model actually learned
|
| 209 |
"""
|
| 210 |
if not selected_roles:
|
| 211 |
selected_roles = list(symbolic_token_ids.keys())
|
|
|
|
| 214 |
return "Please enter some text to analyze.", "", 0
|
| 215 |
|
| 216 |
try:
|
| 217 |
+
# DETECT if input follows training pattern vs needs conversion
|
| 218 |
+
if any(role in text for role in symbolic_token_ids.keys()):
|
| 219 |
+
# Input already has symbolic tokens - test descriptive prediction
|
| 220 |
+
return test_descriptive_prediction(text, selected_roles, num_predictions)
|
| 221 |
+
else:
|
| 222 |
+
# Convert input to training-style format and test
|
| 223 |
+
return test_with_context_injection(text, selected_roles, num_predictions)
|
| 224 |
|
| 225 |
+
except Exception as e:
|
| 226 |
+
error_msg = f"Error during analysis: {str(e)}"
|
| 227 |
+
print(error_msg)
|
| 228 |
+
return error_msg, "", 0
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def test_descriptive_prediction(text, selected_roles, num_predictions):
|
| 232 |
+
"""
|
| 233 |
+
Test what descriptive words the model predicts after symbolic tokens
|
| 234 |
+
This matches the actual training objective
|
| 235 |
+
"""
|
| 236 |
+
# Find positions after symbolic tokens
|
| 237 |
+
tokens = tokenizer.tokenize(text, add_special_tokens=True)
|
| 238 |
+
token_ids = tokenizer.convert_tokens_to_ids(tokens)
|
| 239 |
+
|
| 240 |
+
# Find symbolic token positions
|
| 241 |
+
symbolic_positions = []
|
| 242 |
+
for i, token in enumerate(tokens):
|
| 243 |
+
if token in symbolic_token_ids:
|
| 244 |
+
# Mask the next 1-3 positions after symbolic token
|
| 245 |
+
for offset in range(1, min(4, len(tokens) - i)):
|
| 246 |
+
if i + offset < len(tokens) and tokens[i + offset] not in ['[SEP]', '[PAD]']:
|
| 247 |
+
symbolic_positions.append({
|
| 248 |
+
'mask_pos': i + offset,
|
| 249 |
+
'symbolic_token': token,
|
| 250 |
+
'original_token': tokens[i + offset]
|
| 251 |
+
})
|
| 252 |
+
|
| 253 |
+
if not symbolic_positions:
|
| 254 |
+
return "No symbolic tokens found in input. Try format like: '<subject> a young woman'", "", 0
|
| 255 |
+
|
| 256 |
+
# Create masked versions and get predictions
|
| 257 |
+
results = []
|
| 258 |
+
for pos_info in symbolic_positions[:5]: # Limit to 5 positions
|
| 259 |
+
masked_ids = token_ids.copy()
|
| 260 |
+
masked_ids[pos_info['mask_pos']] = MASK_ID
|
| 261 |
+
|
| 262 |
+
# Get MLM predictions
|
| 263 |
+
masked_input = torch.tensor([masked_ids]).to("cuda")
|
| 264 |
+
attention_mask = torch.ones_like(masked_input)
|
| 265 |
+
|
| 266 |
+
with torch.no_grad():
|
| 267 |
+
outputs = full_model(input_ids=masked_input, attention_mask=attention_mask)
|
| 268 |
+
logits = outputs.logits[0, pos_info['mask_pos']] # Logits for masked position
|
| 269 |
+
|
| 270 |
+
# Get top 10 predictions from full vocabulary
|
| 271 |
+
probs = F.softmax(logits, dim=-1)
|
| 272 |
+
top_indices = torch.argsort(probs, descending=True)[:num_predictions]
|
| 273 |
+
|
| 274 |
+
predictions = []
|
| 275 |
+
for idx in top_indices:
|
| 276 |
+
token_text = tokenizer.convert_ids_to_tokens([idx.item()])[0]
|
| 277 |
+
prob = probs[idx].item()
|
| 278 |
+
predictions.append({
|
| 279 |
+
"token": token_text,
|
| 280 |
+
"probability": prob
|
| 281 |
+
})
|
| 282 |
|
| 283 |
+
results.append({
|
| 284 |
+
"symbolic_context": pos_info['symbolic_token'],
|
| 285 |
+
"position": pos_info['mask_pos'],
|
| 286 |
+
"original_token": pos_info['original_token'],
|
| 287 |
+
"predictions": predictions
|
| 288 |
+
})
|
| 289 |
+
|
| 290 |
+
# Format results
|
| 291 |
+
analysis = {
|
| 292 |
+
"input_text": text,
|
| 293 |
+
"test_type": "descriptive_prediction",
|
| 294 |
+
"explanation": "Testing what descriptive words model predicts after symbolic tokens",
|
| 295 |
+
"results": results
|
| 296 |
+
}
|
| 297 |
+
|
| 298 |
+
summary_lines = [f"🎯 Testing Descriptive Prediction (what model actually learned)\n"]
|
| 299 |
+
for result in results:
|
| 300 |
+
ctx = result["symbolic_context"]
|
| 301 |
+
orig = result["original_token"]
|
| 302 |
+
top_pred = result["predictions"][0]
|
| 303 |
+
|
| 304 |
+
summary_lines.append(
|
| 305 |
+
f"After {ctx}: '{orig}' → '{top_pred['token']}' ({top_pred['probability']:.4f})"
|
| 306 |
)
|
| 307 |
+
|
| 308 |
+
summary = "\n".join(summary_lines)
|
| 309 |
+
return json.dumps(analysis, indent=2), summary, len(results)
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
def test_with_context_injection(text, selected_roles, num_predictions):
|
| 313 |
+
"""
|
| 314 |
+
Inject symbolic context and test what descriptive words are predicted
|
| 315 |
+
"""
|
| 316 |
+
results = []
|
| 317 |
+
|
| 318 |
+
# Test each selected symbolic role as context
|
| 319 |
+
for role in selected_roles[:3]: # Limit to 3 roles for speed
|
| 320 |
+
# Create training-style context
|
| 321 |
+
context_text = f"{role} {text}"
|
| 322 |
+
|
| 323 |
+
# Tokenize and find good positions to mask
|
| 324 |
+
tokens = tokenizer.tokenize(context_text, add_special_tokens=True)
|
| 325 |
+
token_ids = tokenizer.convert_tokens_to_ids(tokens)
|
| 326 |
+
|
| 327 |
+
# Find role position and mask next content word
|
| 328 |
+
role_pos = None
|
| 329 |
+
for i, token in enumerate(tokens):
|
| 330 |
+
if token == role:
|
| 331 |
+
role_pos = i
|
| 332 |
+
break
|
| 333 |
+
|
| 334 |
+
if role_pos is None or role_pos + 2 >= len(tokens):
|
| 335 |
+
continue
|
| 336 |
|
| 337 |
+
# Mask position after role (skip articles like "a", "the")
|
| 338 |
+
mask_pos = role_pos + 1
|
| 339 |
+
skip_words = {'a', 'an', 'the', 'some', 'this', 'that'}
|
| 340 |
+
while mask_pos < len(tokens) - 1:
|
| 341 |
+
current_token = tokens[mask_pos].lower()
|
| 342 |
+
if current_token not in skip_words and len(current_token) > 2:
|
| 343 |
+
break
|
| 344 |
+
mask_pos += 1
|
| 345 |
+
|
| 346 |
+
if mask_pos >= len(tokens):
|
| 347 |
+
continue
|
| 348 |
|
| 349 |
+
# Create masked input
|
| 350 |
+
masked_ids = token_ids.copy()
|
| 351 |
+
original_token = tokens[mask_pos]
|
| 352 |
+
masked_ids[mask_pos] = MASK_ID
|
|
|
|
|
|
|
| 353 |
|
| 354 |
+
# Get predictions
|
| 355 |
+
masked_input = torch.tensor([masked_ids]).to("cuda")
|
| 356 |
+
attention_mask = torch.ones_like(masked_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
|
| 358 |
+
with torch.no_grad():
|
| 359 |
+
outputs = full_model(input_ids=masked_input, attention_mask=attention_mask)
|
| 360 |
+
logits = outputs.logits[0, mask_pos]
|
| 361 |
|
| 362 |
+
# Get top predictions
|
| 363 |
+
probs = F.softmax(logits, dim=-1)
|
| 364 |
+
top_indices = torch.argsort(probs, descending=True)[:num_predictions]
|
| 365 |
+
|
| 366 |
+
predictions = []
|
| 367 |
+
for idx in top_indices:
|
| 368 |
+
token_text = tokenizer.convert_ids_to_tokens([idx.item()])[0]
|
| 369 |
+
prob = probs[idx].item()
|
| 370 |
+
predictions.append({
|
| 371 |
+
"token": token_text,
|
| 372 |
+
"probability": prob
|
| 373 |
+
})
|
| 374 |
|
| 375 |
+
results.append({
|
| 376 |
+
"symbolic_context": role,
|
| 377 |
+
"position": mask_pos,
|
| 378 |
+
"original_token": original_token,
|
| 379 |
+
"context_text": context_text,
|
| 380 |
+
"predictions": predictions
|
| 381 |
+
})
|
| 382 |
+
|
| 383 |
+
# Format results
|
| 384 |
+
analysis = {
|
| 385 |
+
"input_text": text,
|
| 386 |
+
"test_type": "context_injection",
|
| 387 |
+
"explanation": "Injected symbolic tokens and tested descriptive predictions",
|
| 388 |
+
"results": results
|
| 389 |
+
}
|
| 390 |
+
|
| 391 |
+
summary_lines = [f"🎯 Testing with Symbolic Context Injection\n"]
|
| 392 |
+
for result in results:
|
| 393 |
+
role = result["symbolic_context"]
|
| 394 |
+
orig = result["original_token"]
|
| 395 |
+
top_pred = result["predictions"][0]
|
| 396 |
+
|
| 397 |
+
summary_lines.append(
|
| 398 |
+
f"{role} context: '{orig}' → '{top_pred['token']}' ({top_pred['probability']:.4f})"
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
summary = "\n".join(summary_lines)
|
| 402 |
+
return json.dumps(analysis, indent=2), summary, len(results)
|
| 403 |
|
| 404 |
|
| 405 |
def create_manual_mask_analysis(text, mask_positions_str, selected_roles):
|
|
|
|
| 468 |
txt_input = gr.Textbox(
|
| 469 |
label="Input Text",
|
| 470 |
lines=4,
|
| 471 |
+
placeholder="Try: '<subject> a young woman wearing elegant dress' or just 'young woman wearing dress'"
|
| 472 |
)
|
| 473 |
|
| 474 |
with gr.Row():
|
|
|
|
| 557 |
)
|
| 558 |
|
| 559 |
with gr.Tab("Caption Examples"):
|
| 560 |
+
gr.Markdown("### 🖼️ Test with Training-Style Patterns")
|
| 561 |
+
gr.Markdown("""
|
| 562 |
+
**The model was trained to predict descriptive words AFTER symbolic tokens.**
|
| 563 |
+
|
| 564 |
+
Test with patterns like:
|
| 565 |
+
- `<subject> a young woman wearing elegant dress`
|
| 566 |
+
- `<lighting> soft natural illumination on the scene`
|
| 567 |
+
- `<emotion> happy expression while posing confidently`
|
| 568 |
+
""")
|
| 569 |
|
| 570 |
example_captions = [
|
| 571 |
+
"<subject> a young woman wearing a blue dress",
|
| 572 |
+
"<lighting> soft natural illumination in the scene",
|
| 573 |
+
"<emotion> happy expression while posing confidently",
|
| 574 |
+
"<pose> standing gracefully near the window",
|
| 575 |
+
"<upper_body_clothing> elegant silk blouse with intricate patterns",
|
| 576 |
+
"<material> luxurious velvet fabric with rich texture",
|
| 577 |
+
"<accessory> delicate silver jewelry catching the light",
|
| 578 |
+
"<surface> polished marble floor reflecting ambient glow"
|
| 579 |
]
|
| 580 |
|
| 581 |
for caption in example_captions:
|
| 582 |
with gr.Row():
|
| 583 |
+
gr.Textbox(value=caption, label="Training-Style Example", interactive=False, scale=3)
|
| 584 |
+
copy_btn = gr.Button("📋 Test This", scale=1)
|
| 585 |
|
| 586 |
# Event handlers
|
| 587 |
analyze_btn.click(
|