Spaces:
Runtime error
Runtime error
File size: 10,161 Bytes
42f2c22 0ea462c 42f2c22 0ea462c 09b1b8e f85ca57 4f657cb 0ea462c bc06273 4f657cb bc06273 4f657cb bc06273 b685d92 0ea462c b685d92 0ea462c 4891df0 0ea462c b685d92 bc06273 b685d92 6237836 746b66d 4891df0 746b66d bc06273 746b66d bc06273 746b66d d01b67f bc06273 746b66d 6c1128d 8959bc7 6c1128d 746b66d bc06273 4f657cb bc06273 4f657cb 4891df0 4f657cb 746b66d 42f2c22 4f657cb 0ea462c 4f657cb bc06273 a116766 42f2c22 4891df0 1fd3071 a116766 42f2c22 4891df0 42f2c22 bc06273 0ea462c 42f2c22 0ea462c 42f2c22 bc06273 42f2c22 4f657cb bc06273 42f2c22 bc06273 42f2c22 4891df0 3092733 bc06273 3092733 4891df0 0ea462c 42f2c22 bc06273 4f657cb 0ea462c 4891df0 0ea462c bc06273 0ea462c bc06273 4891df0 bc06273 0ea462c 4891df0 bc06273 4891df0 bc06273 0ea462c bc06273 4891df0 5fad6fa bc06273 5fad6fa bc06273 ea7dfbd bc06273 5fad6fa 6c1128d bc06273 5fad6fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# // http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.
import spaces
import subprocess
import os
import sys
# --- ETAPA 1: Clonar o Repositório do GitHub ---
repo_name = "SeedVR"
if not os.path.exists(repo_name):
print(f"Clonando o repositório {repo_name} do GitHub...")
subprocess.run(f"git clone https://github.com/ByteDance-Seed/{repo_name}.git", shell=True, check=True)
# --- ETAPA 2: Mudar para o Diretório e Configurar o Ambiente ---
os.chdir(repo_name)
print(f"Diretório de trabalho alterado para: {os.getcwd()}")
sys.path.insert(0, os.path.abspath('.'))
print(f"Diretório atual adicionado ao sys.path.")
# --- ETAPA 3: Instalar Dependências Corretamente ---
python_executable = sys.executable
print("Instalando NumPy compatível...")
subprocess.run([python_executable, "-m", "pip", "install", "numpy<2.0"], check=True)
print("Filtrando requirements.txt para evitar conflitos de versão...")
with open("requirements.txt", "r") as f_in, open("filtered_requirements.txt", "w") as f_out:
for line in f_in:
if not line.strip().startswith(('torch', 'torchvision')):
f_out.write(line)
print("Instalando dependências filtradas...")
subprocess.run([python_executable, "-m", "pip", "install", "-r", "filtered_requirements.txt"], check=True)
print("Instalando flash-attn...")
subprocess.run([python_executable, "-m", "pip", "install", "flash-attn==2.5.9.post1", "--no-build-isolation"], check=True)
from pathlib import Path
from urllib.parse import urlparse
from torch.hub import download_url_to_file, get_dir
import torch
def load_file_from_url(url, model_dir='.', progress=True, file_name=None):
os.makedirs(model_dir, exist_ok=True)
if not file_name:
parts = urlparse(url)
file_name = os.path.basename(parts.path)
cached_file = os.path.join(model_dir, file_name)
if not os.path.exists(cached_file):
print(f'Baixando: "{url}" para {cached_file}\n')
download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
return cached_file
apex_url = 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/apex-0.1-cp310-cp310-linux_x86_64.whl'
apex_wheel_path = load_file_from_url(url=apex_url)
print("Instalando Apex a partir do wheel baixado...")
subprocess.run([python_executable, "-m", "pip", "install", "--force-reinstall", "--no-cache-dir", apex_wheel_path], check=True)
print("✅ Configuração do Apex concluída.")
# --- ETAPA 4: Baixar os Modelos Pré-treinados ---
print("Baixando modelos pré-treinados...")
pretrain_model_url = {
'vae': 'https://huggingface.co/ByteDance-Seed/SeedVR-7B/resolve/main/ema_vae.pth',
'dit': 'https://huggingface.co/ByteDance-Seed/SeedVR-7B/resolve/main/seedvr_ema_7b.pth',
'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt',
#'apex': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/apex-0.1-cp39-cp39-linux_x86_64.whl'
}
Path('./ckpts').mkdir(exist_ok=True)
for key, url in pretrain_model_url.items():
model_dir = './ckpts' if key in ['vae', 'dit'] else '.'
load_file_from_url(url=url, model_dir=model_dir)
# --- ETAPA 5: Inicialização Global do Modelo (FEITA APENAS UMA VEZ) ---
print("Inicializando o modelo e o ambiente distribuído (uma única vez)...")
import mediapy
from einops import rearrange
from omegaconf import OmegaConf
import datetime
from tqdm import tqdm
import gc
from PIL import Image
import gradio as gr
import uuid
import mimetypes
import torchvision.transforms as T
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video
from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
from common.config import load_config
from common.distributed import init_torch
from common.seed import set_seed
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.distributed.ops import sync_data
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "12355"
os.environ["RANK"] = str(0)
os.environ["WORLD_SIZE"] = str(1)
use_colorfix = os.path.exists("projects/video_diffusion_sr/color_fix.py")
if use_colorfix:
from projects.video_diffusion_sr.color_fix import wavelet_reconstruction
def configure_runner():
config = load_config('configs_7b/main.yaml')
runner = VideoDiffusionInfer(config)
OmegaConf.set_readonly(runner.config, False)
# A chamada de inicialização crítica é feita aqui
init_torch(cudnn_benchmark=False, timeout=datetime.timedelta(seconds=3600))
runner.configure_dit_model(device="cuda", checkpoint='ckpts/seedvr2_ema_7b.pth')
runner.configure_vae_model()
if hasattr(runner.vae, "set_memory_limit"):
runner.vae.set_memory_limit(**runner.config.vae.memory_limit)
return runner
# Criamos o runner globalmente, UMA ÚNICA VEZ
GLOBAL_RUNNER = configure_runner()
print("✅ Setup completo. Aplicação pronta para receber requisições.")
# --- ETAPA 6: Funções de Inferência e UI do Gradio ---
def generation_step(runner, text_embeds_dict, cond_latents):
def _move_to_cuda(x): return [i.to("cuda") for i in x]
noises, aug_noises = [torch.randn_like(l) for l in cond_latents], [torch.randn_like(l) for l in cond_latents]
noises, aug_noises, cond_latents = sync_data((noises, aug_noises, cond_latents), 0)
noises, aug_noises, cond_latents = map(_move_to_cuda, (noises, aug_noises, cond_latents))
def _add_noise(x, aug_noise):
t = torch.tensor([100.0], device="cuda")
shape = torch.tensor(x.shape[1:], device="cuda")[None]
t = runner.timestep_transform(t, shape)
return runner.schedule.forward(x, aug_noise, t)
conditions = [runner.get_condition(n, task="sr", latent_blur=_add_noise(l, an)) for n, an, l in zip(noises, aug_noises, cond_latents)]
with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
video_tensors = runner.inference(noises=noises, conditions=conditions, **text_embeds_dict)
return [rearrange(v, "c t h w -> t c h w") for v in video_tensors]
def cut_videos(videos, sp_size=1):
t = videos.size(1)
if t > 121:
videos = videos[:, :121]
t = 121
if (t - 1) % (4 * sp_size) == 0:
return videos
else:
padding_needed = 4 * sp_size - ((t - 1) % (4 * sp_size))
last_frame = videos[:, -1].unsqueeze(1)
padding = last_frame.repeat(1, padding_needed, 1, 1)
videos = torch.cat([videos, padding], dim=1)
assert (videos.size(1) - 1) % (4 * sp_size) == 0
return videos
@spaces.GPU
def generation_loop(video_path, seed=666, fps_out=24):
if video_path is None: return None, None, None
# CORREÇÃO: Usamos o runner global em vez de criar um novo
runner = GLOBAL_RUNNER
text_embeds = {
"texts_pos": [torch.load('pos_emb.pt', weights_only=True).to("cuda")],
"texts_neg": [torch.load('neg_emb.pt', weights_only=True).to("cuda")]
}
runner.configure_diffusion()
set_seed(int(seed))
os.makedirs("output", exist_ok=True)
res_h, res_w = 1280, 720
transform = Compose([
NaResize(resolution=(res_h * res_w)**0.5, mode="area", downsample_only=False),
Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
DivisibleCrop((16, 16)), Normalize(0.5, 0.5), Rearrange("t c h w -> c t h w")
])
media_type, _ = mimetypes.guess_type(video_path)
is_video = media_type and media_type.startswith("video")
if is_video:
video, _, _ = read_video(video_path, output_format="TCHW", pts_unit="sec")
video = video / 255.0
output_path = os.path.join("output", f"{uuid.uuid4()}.mp4")
else:
video = T.ToTensor()(Image.open(video_path).convert("RGB")).unsqueeze(0)
output_path = os.path.join("output", f"{uuid.uuid4()}.png")
transformed_video = transform(video.to("cuda"))
ori_length = transformed_video.size(1)
if is_video:
padded_video = cut_videos(transformed_video)
cond_latents = [padded_video]
else:
cond_latents = [transformed_video]
cond_latents = runner.vae_encode(cond_latents)
samples = generation_step(runner, text_embeds, cond_latents)
sample = samples[0][:ori_length].cpu()
sample = rearrange(sample, "t c h w -> t h w c").clip(-1, 1).add(1).mul(127.5).byte().numpy()
if is_video:
mediapy.write_video(output_path, sample, fps=fps_out)
return None, output_path, output_path
else:
mediapy.write_image(output_path, sample[0])
return output_path, None, output_path
with gr.Blocks(title="SeedVR") as demo:
gr.HTML(f"""<div style='text-align:center; margin-bottom: 10px;'><img src='file/{os.path.abspath("assets/seedvr_logo.png")}' style='height:40px;'/></div>...""")
with gr.Row():
input_file = gr.File(label="Carregar Imagem ou Vídeo")
with gr.Column():
seed = gr.Number(label="Seed", value=42)
fps = gr.Number(label="FPS de Saída", value=24)
run_button = gr.Button("Executar")
output_image = gr.Image(label="Imagem de Saída")
output_video = gr.Video(label="Vídeo de Saída")
download_link = gr.File(label="Baixar Resultado")
run_button.click(fn=generation_loop, inputs=[input_file, seed, fps], outputs=[output_image, output_video, download_link])
demo.queue().launch(share=True) |