Spaces:
Sleeping
Sleeping
| from transformers import pipeline | |
| from PIL import Image | |
| import gradio as gr | |
| # Sentiment / text classification | |
| text_classifier = pipeline( | |
| "text-classification", | |
| model="distilbert-base-uncased-finetuned-sst-2-english" | |
| ) | |
| # Fake news detection | |
| fake_detector = pipeline( | |
| "text-classification", | |
| model="mrm8488/bert-tiny-finetuned-fake-news-detection" # public | |
| ) | |
| image_classifier = pipeline( | |
| "image-classification", | |
| model="microsoft/resnet-50" # public | |
| ) | |
| leaf_classifier = pipeline( | |
| "image-classification", | |
| model="linkanjarad/mobilenet_v2_1.0_224-plant-disease-identification" # public | |
| ) | |
| fruitveg_classifier = pipeline( | |
| "image-classification", | |
| model="Schram03/fruits-classification" # public | |
| ) | |
| def classify_text(text): | |
| result = text_classifier(text)[0] | |
| return {result['label']: float(result['score'])} | |
| def detect_fake(text): | |
| result = fake_detector(text)[0] | |
| return {result['label']: float(result['score'])} | |
| def classify_image(image): | |
| result = image_classifier(image)[0] | |
| return {result['label']: float(result['score'])} | |
| def detect_leaf_disease(image): | |
| result = leaf_classifier(image)[0] | |
| return {result['label']: float(result['score'])} | |
| def detect_fruitveg(image): | |
| result = fruitveg_classifier(image)[0] | |
| return {result['label']: float(result['score'])} | |
| with gr.Blocks() as demo: | |
| with gr.Tab("Text Classification"): | |
| gr.Interface(fn=classify_text, inputs="text", outputs="label") | |
| with gr.Tab("Fake News Detection"): | |
| gr.Interface(fn=detect_fake, inputs="text", outputs="label") | |
| with gr.Tab("General Image Classification"): | |
| gr.Interface(fn=classify_image, inputs=gr.Image(type="pil"), outputs="label") | |
| with gr.Tab("Leaf Disease Detection"): | |
| gr.Interface(fn=detect_leaf_disease, inputs=gr.Image(type="pil"), outputs="label") | |
| with gr.Tab("Fruit/Veg Detection"): | |
| gr.Interface(fn=detect_fruitveg, inputs=gr.Image(type="pil"), outputs="label") | |
| # def my_function(text): | |
| # return "You entered: " + text | |
| # demo = gr.Interface(fn=my_function, inputs="text", outputs="text") | |
| # demo = gr.Interface(fn=classify_image, inputs=gr.Image(type="pil"), outputs="label") | |
| demo.launch() | |
| def classify_and_detect(text): | |
| t_result = classify_text(text) | |
| f_result = detect_fake(text) | |
| return t_result, f_result | |
| gr.Interface(fn=classify_and_detect, inputs="text", outputs=["label", "label"]) | |