ASureevaA
commited on
Commit
·
ed03824
1
Parent(s):
a020532
edit
Browse files- app.py +86 -56
- requirements.txt +3 -2
app.py
CHANGED
|
@@ -7,71 +7,93 @@ import soundfile as soundfile_module
|
|
| 7 |
import torch
|
| 8 |
import gradio as gradio_module
|
| 9 |
from PIL import Image
|
|
|
|
| 10 |
from transformers import (
|
| 11 |
pipeline,
|
| 12 |
VitsModel,
|
| 13 |
AutoTokenizer,
|
| 14 |
)
|
| 15 |
|
|
|
|
| 16 |
# ============================
|
| 17 |
# 1. Настройки устройства
|
| 18 |
# ============================
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
device_string: str = "cuda"
|
| 23 |
-
pipeline_device_index: int = 0
|
| 24 |
-
else:
|
| 25 |
-
device_string = "cpu"
|
| 26 |
-
pipeline_device_index = -1 # Gradio/transformers: -1 = CPU
|
| 27 |
|
| 28 |
|
| 29 |
# ============================
|
| 30 |
-
# 2. OCR
|
| 31 |
# ============================
|
| 32 |
|
| 33 |
-
|
| 34 |
-
#
|
| 35 |
-
|
| 36 |
-
task="image-to-text",
|
| 37 |
-
model="allenai/olmOCR-2-7B-1025-FP8",
|
| 38 |
-
device=pipeline_device_index,
|
| 39 |
-
# TODO_USER: при необходимости можно добавить torch_dtype=..., но лучше сначала проверить дефолт
|
| 40 |
)
|
| 41 |
|
| 42 |
|
| 43 |
def run_ocr(image_object: Image.Image) -> str:
|
| 44 |
"""
|
| 45 |
-
OCR для печатного английского
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
Выход: строка текста, которую модель сгенерировала как распознавание.
|
| 49 |
"""
|
| 50 |
if image_object is None:
|
| 51 |
return ""
|
| 52 |
|
| 53 |
rgb_image_object: Image.Image = image_object.convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
# Ожидаемый формат ответа: список dict вида [{"generated_text": "..."}].
|
| 57 |
-
result = ocr_pipeline(rgb_image_object)
|
| 58 |
-
|
| 59 |
-
if isinstance(result, list) and len(result) > 0:
|
| 60 |
-
first_item = result[0]
|
| 61 |
-
if isinstance(first_item, dict) and "generated_text" in first_item:
|
| 62 |
-
text_value: str = str(first_item["generated_text"])
|
| 63 |
-
else:
|
| 64 |
-
# TODO_USER: непредвиденный формат ответа, логировать при необходимости
|
| 65 |
-
text_value = str(first_item)
|
| 66 |
-
else:
|
| 67 |
-
text_value = str(result)
|
| 68 |
-
|
| 69 |
-
recognized_text: str = text_value.strip()
|
| 70 |
return recognized_text
|
| 71 |
|
| 72 |
|
| 73 |
# ============================
|
| 74 |
-
# 3.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
# ============================
|
| 76 |
|
| 77 |
summary_pipeline = pipeline(
|
|
@@ -98,7 +120,7 @@ def run_summarization(
|
|
| 98 |
max(32, word_count + 20),
|
| 99 |
)
|
| 100 |
|
| 101 |
-
# Для
|
| 102 |
if word_count < 8:
|
| 103 |
return cleaned_text
|
| 104 |
|
|
@@ -114,7 +136,7 @@ def run_summarization(
|
|
| 114 |
|
| 115 |
|
| 116 |
# ============================
|
| 117 |
-
#
|
| 118 |
# ============================
|
| 119 |
|
| 120 |
tts_model: VitsModel = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
|
@@ -126,8 +148,8 @@ def run_tts(summary_text: str) -> Optional[str]:
|
|
| 126 |
"""
|
| 127 |
Озвучка английского текста конспекта через VitsModel (facebook/mms-tts-eng).
|
| 128 |
|
| 129 |
-
Если модель внутри упадёт
|
| 130 |
-
просто
|
| 131 |
"""
|
| 132 |
cleaned_text: str = summary_text.strip()
|
| 133 |
if not cleaned_text:
|
|
@@ -154,6 +176,7 @@ def run_tts(summary_text: str) -> Optional[str]:
|
|
| 154 |
print(f"[WARN] TTS RuntimeError: {runtime_error}")
|
| 155 |
return None
|
| 156 |
|
|
|
|
| 157 |
waveform_array = waveform_tensor.squeeze().cpu().numpy().astype("float32")
|
| 158 |
waveform_array = numpy_module.clip(waveform_array, -1.0, 1.0)
|
| 159 |
|
|
@@ -172,21 +195,24 @@ def run_tts(summary_text: str) -> Optional[str]:
|
|
| 172 |
|
| 173 |
|
| 174 |
# ============================
|
| 175 |
-
#
|
| 176 |
# ============================
|
| 177 |
|
| 178 |
def full_flow(
|
| 179 |
image_object: Image.Image,
|
| 180 |
max_summary_tokens: int = 128,
|
| 181 |
-
) -> Tuple[str, str, Optional[str]]:
|
| 182 |
"""
|
| 183 |
Полный пайплайн:
|
| 184 |
-
1) OCR: изображение -> исходный
|
| 185 |
-
2)
|
| 186 |
-
3)
|
|
|
|
| 187 |
"""
|
| 188 |
recognized_text: str = run_ocr(image_object=image_object)
|
| 189 |
|
|
|
|
|
|
|
| 190 |
summary_text: str = run_summarization(
|
| 191 |
input_text=recognized_text,
|
| 192 |
max_summary_tokens=max_summary_tokens,
|
|
@@ -194,11 +220,11 @@ def full_flow(
|
|
| 194 |
|
| 195 |
audio_file_path: Optional[str] = run_tts(summary_text=summary_text)
|
| 196 |
|
| 197 |
-
return recognized_text, summary_text, audio_file_path
|
| 198 |
|
| 199 |
|
| 200 |
# ============================
|
| 201 |
-
#
|
| 202 |
# ============================
|
| 203 |
|
| 204 |
gradio_interface = gradio_module.Interface(
|
|
@@ -218,25 +244,29 @@ gradio_interface = gradio_module.Interface(
|
|
| 218 |
],
|
| 219 |
outputs=[
|
| 220 |
gradio_module.Textbox(
|
| 221 |
-
label="Распознанный текст (
|
| 222 |
-
lines=
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
),
|
| 224 |
gradio_module.Textbox(
|
| 225 |
-
label="Конспект (английский
|
| 226 |
lines=6,
|
| 227 |
),
|
| 228 |
gradio_module.Audio(
|
| 229 |
-
label="Озвучка конспекта (английский TTS)",
|
| 230 |
type="filepath",
|
| 231 |
),
|
| 232 |
],
|
| 233 |
-
title="Картинка → Текст → Конспект → Озвучка
|
| 234 |
description=(
|
| 235 |
-
"1)
|
| 236 |
-
"2)
|
| 237 |
-
"3)
|
| 238 |
-
"
|
| 239 |
-
"
|
| 240 |
),
|
| 241 |
)
|
| 242 |
|
|
|
|
| 7 |
import torch
|
| 8 |
import gradio as gradio_module
|
| 9 |
from PIL import Image
|
| 10 |
+
import easyocr
|
| 11 |
from transformers import (
|
| 12 |
pipeline,
|
| 13 |
VitsModel,
|
| 14 |
AutoTokenizer,
|
| 15 |
)
|
| 16 |
|
| 17 |
+
|
| 18 |
# ============================
|
| 19 |
# 1. Настройки устройства
|
| 20 |
# ============================
|
| 21 |
|
| 22 |
+
# Жёстко работаем на CPU: в Space нет доступа к GPU
|
| 23 |
+
device_string: str = "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
# ============================
|
| 27 |
+
# 2. OCR (easyocr, английский)
|
| 28 |
# ============================
|
| 29 |
|
| 30 |
+
ocr_reader = easyocr.Reader(
|
| 31 |
+
["en"], # язык OCR: английский
|
| 32 |
+
gpu=False, # принудительно без GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
)
|
| 34 |
|
| 35 |
|
| 36 |
def run_ocr(image_object: Image.Image) -> str:
|
| 37 |
"""
|
| 38 |
+
OCR для печатного английского текста.
|
| 39 |
+
Используем easyocr, который достаточно устойчив к
|
| 40 |
+
реальным сканам и фотографиям документа на CPU.
|
|
|
|
| 41 |
"""
|
| 42 |
if image_object is None:
|
| 43 |
return ""
|
| 44 |
|
| 45 |
rgb_image_object: Image.Image = image_object.convert("RGB")
|
| 46 |
+
numpy_image = numpy_module.array(rgb_image_object)
|
| 47 |
+
|
| 48 |
+
# detail=1 -> (bbox, текст, confidence), paragraph=True -> склейка в абзацы
|
| 49 |
+
ocr_results = ocr_reader.readtext(
|
| 50 |
+
numpy_image,
|
| 51 |
+
detail=1,
|
| 52 |
+
paragraph=True,
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
text_parts = []
|
| 56 |
+
for bounding_box, text_value, confidence_value in ocr_results:
|
| 57 |
+
if not text_value:
|
| 58 |
+
continue
|
| 59 |
+
text_parts.append(text_value)
|
| 60 |
|
| 61 |
+
recognized_text: str = "\n".join(text_parts).strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
return recognized_text
|
| 63 |
|
| 64 |
|
| 65 |
# ============================
|
| 66 |
+
# 3. Трансформер #1: классификация текста (английский)
|
| 67 |
+
# ============================
|
| 68 |
+
|
| 69 |
+
text_classifier_pipeline = pipeline(
|
| 70 |
+
task="text-classification",
|
| 71 |
+
model="distilbert-base-uncased-finetuned-sst-2-english",
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def run_text_classification(input_text: str) -> str:
|
| 76 |
+
"""
|
| 77 |
+
Анализ текста трансформером:
|
| 78 |
+
используем sentiment-классификатор как пример.
|
| 79 |
+
Возвращаем строку вида: "POSITIVE (score=0.982)".
|
| 80 |
+
"""
|
| 81 |
+
cleaned_text: str = input_text.strip()
|
| 82 |
+
if not cleaned_text:
|
| 83 |
+
return ""
|
| 84 |
+
|
| 85 |
+
classifier_result_list = text_classifier_pipeline(cleaned_text)
|
| 86 |
+
classifier_result = classifier_result_list[0]
|
| 87 |
+
|
| 88 |
+
label_value: str = str(classifier_result.get("label", ""))
|
| 89 |
+
score_value: float = float(classifier_result.get("score", 0.0))
|
| 90 |
+
|
| 91 |
+
classification_text: str = f"{label_value} (score={score_value:.3f})"
|
| 92 |
+
return classification_text
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# ============================
|
| 96 |
+
# 4. Трансформер #2: суммаризация (английский)
|
| 97 |
# ============================
|
| 98 |
|
| 99 |
summary_pipeline = pipeline(
|
|
|
|
| 120 |
max(32, word_count + 20),
|
| 121 |
)
|
| 122 |
|
| 123 |
+
# Для очень короткого текста сум��аризация мало смысла
|
| 124 |
if word_count < 8:
|
| 125 |
return cleaned_text
|
| 126 |
|
|
|
|
| 136 |
|
| 137 |
|
| 138 |
# ============================
|
| 139 |
+
# 5. Трансформер #3: TTS (английский, MMS VITS)
|
| 140 |
# ============================
|
| 141 |
|
| 142 |
tts_model: VitsModel = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
|
|
|
| 148 |
"""
|
| 149 |
Озвучка английского текста конспекта через VitsModel (facebook/mms-tts-eng).
|
| 150 |
|
| 151 |
+
Если модель внутри упадёт на каком-то странном тексте (RuntimeError),
|
| 152 |
+
просто вернём None и не будем ронять всё приложение.
|
| 153 |
"""
|
| 154 |
cleaned_text: str = summary_text.strip()
|
| 155 |
if not cleaned_text:
|
|
|
|
| 176 |
print(f"[WARN] TTS RuntimeError: {runtime_error}")
|
| 177 |
return None
|
| 178 |
|
| 179 |
+
# Приводим к numpy и ограничиваем амплитуды
|
| 180 |
waveform_array = waveform_tensor.squeeze().cpu().numpy().astype("float32")
|
| 181 |
waveform_array = numpy_module.clip(waveform_array, -1.0, 1.0)
|
| 182 |
|
|
|
|
| 195 |
|
| 196 |
|
| 197 |
# ============================
|
| 198 |
+
# 6. Полный пайплайн
|
| 199 |
# ============================
|
| 200 |
|
| 201 |
def full_flow(
|
| 202 |
image_object: Image.Image,
|
| 203 |
max_summary_tokens: int = 128,
|
| 204 |
+
) -> Tuple[str, str, str, Optional[str]]:
|
| 205 |
"""
|
| 206 |
Полный пайплайн:
|
| 207 |
+
1) OCR (easyocr): изображение -> исходный текст (английский)
|
| 208 |
+
2) Классификация текста трансформером (sentiment)
|
| 209 |
+
3) Суммаризация: текст -> конспект
|
| 210 |
+
4) TTS: конспект -> .wav файл (или None, если TTS не смог)
|
| 211 |
"""
|
| 212 |
recognized_text: str = run_ocr(image_object=image_object)
|
| 213 |
|
| 214 |
+
classification_text: str = run_text_classification(recognized_text)
|
| 215 |
+
|
| 216 |
summary_text: str = run_summarization(
|
| 217 |
input_text=recognized_text,
|
| 218 |
max_summary_tokens=max_summary_tokens,
|
|
|
|
| 220 |
|
| 221 |
audio_file_path: Optional[str] = run_tts(summary_text=summary_text)
|
| 222 |
|
| 223 |
+
return recognized_text, classification_text, summary_text, audio_file_path
|
| 224 |
|
| 225 |
|
| 226 |
# ============================
|
| 227 |
+
# 7. Gradio UI (на русском)
|
| 228 |
# ============================
|
| 229 |
|
| 230 |
gradio_interface = gradio_module.Interface(
|
|
|
|
| 244 |
],
|
| 245 |
outputs=[
|
| 246 |
gradio_module.Textbox(
|
| 247 |
+
label="Распознанный текст (OCR, easyocr)",
|
| 248 |
+
lines=8,
|
| 249 |
+
),
|
| 250 |
+
gradio_module.Textbox(
|
| 251 |
+
label="Анализ текста (классификация, DistilBERT)",
|
| 252 |
+
lines=2,
|
| 253 |
),
|
| 254 |
gradio_module.Textbox(
|
| 255 |
+
label="Конспект (английский текст, DistilBART)",
|
| 256 |
lines=6,
|
| 257 |
),
|
| 258 |
gradio_module.Audio(
|
| 259 |
+
label="Озвучка конспекта (английский TTS, VITS)",
|
| 260 |
type="filepath",
|
| 261 |
),
|
| 262 |
],
|
| 263 |
+
title="Картинка → Текст → Анализ → Конспект → Озвучка",
|
| 264 |
description=(
|
| 265 |
+
"1) easyocr распознаёт печатный англ��йский текст с картинки.\n"
|
| 266 |
+
"2) Трансформер-классификатор (DistilBERT) оценивает тон текста.\n"
|
| 267 |
+
"3) Трансформер-суммаризатор (DistilBART) делает краткий конспект.\n"
|
| 268 |
+
"4) Трансформер TTS (MMS VITS) озвучивает конспект.\n"
|
| 269 |
+
"В проекте используются три трансформера с Hugging Face, OCR сделан через easyocr."
|
| 270 |
),
|
| 271 |
)
|
| 272 |
|
requirements.txt
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
-
transformers>=4.
|
| 2 |
torch
|
| 3 |
-
compressed-tensors
|
| 4 |
sentencepiece
|
| 5 |
gradio
|
| 6 |
Pillow
|
| 7 |
numpy
|
| 8 |
soundfile
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers>=4.33.0
|
| 2 |
torch
|
|
|
|
| 3 |
sentencepiece
|
| 4 |
gradio
|
| 5 |
Pillow
|
| 6 |
numpy
|
| 7 |
soundfile
|
| 8 |
+
easyocr
|
| 9 |
+
opencv-python-headless
|