Spaces:
Build error
Build error
| from transformers import pipeline | |
| import gradio as gr | |
| from pyctcdecode import BeamSearchDecoderCTC | |
| import os | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torchaudio | |
| from transformers import AutoConfig, AutoModel, Wav2Vec2FeatureExtractor | |
| import librosa | |
| import numpy as np | |
| import subprocess | |
| import time | |
| TRUST = True | |
| SR = 16000 | |
| def resample(speech_array, sampling_rate): | |
| speech = torch.from_numpy(speech_array) | |
| print(speech, speech.shape, sampling_rate) | |
| resampler = torchaudio.transforms.Resample(sampling_rate) | |
| speech = resampler(speech).squeeze().numpy() | |
| return speech | |
| def predict(speech_array, sampling_rate): | |
| speech = resample(speech_array, sampling_rate) | |
| print(speech, speech.shape) | |
| inputs = feature_extractor(speech, sampling_rate=SR, return_tensors="pt", padding=True) | |
| inputs = {key: inputs[key].to(device) for key in inputs} | |
| with torch.no_grad(): | |
| logits = model.to(device)(**inputs).logits | |
| scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] | |
| outputs = {config.id2label[i]: round(float(score), 3) for i, score in enumerate(scores)} | |
| return outputs | |
| config = AutoConfig.from_pretrained('Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition', trust_remote_code=TRUST) | |
| model = AutoModel.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition", trust_remote_code=TRUST) | |
| feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition") | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| print(device) | |
| def recognize(audio): | |
| sr, audio_array = audio | |
| audio_array = audio_array.astype(np.float32) | |
| state = predict(audio_array, sr) | |
| return state | |
| def test_some(audio): | |
| sr, audio_array = audio | |
| audio_array = audio_array.astype(np.float32) | |
| return (sr, audio_array) | |
| interface = gr.Interface( | |
| fn=recognize, | |
| inputs=[ | |
| gr.Audio(source="microphone", label="Скажите что-нибудь...") | |
| ], | |
| outputs=[ | |
| gr.Label(num_top_classes=7) | |
| ], | |
| live=False | |
| ) | |
| gr.TabbedInterface([interface], ["Russian Emotion Recognition"]).launch(debug=True) |