Carlexx commited on
Commit
ce1257b
·
verified ·
1 Parent(s): 0caa017

Upload ai_studio_code (71).py

Browse files
Files changed (1) hide show
  1. ai_studio_code (71).py +446 -0
ai_studio_code (71).py ADDED
@@ -0,0 +1,446 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Euia-AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR para geração de vídeo coerente.
2
+ # Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
3
+ #
4
+ # Contato:
5
+ # Carlos Rodrigues dos Santos
6
7
+ # Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025
8
+ #
9
+ # Repositórios e Projetos Relacionados:
10
+ # GitHub: https://github.com/carlex22/Aduc-sdr
11
+ # Hugging Face: https://huggingface.co/spaces/Carlexx/Ltx-SuperTime-60Secondos/
12
+ # Hugging Face: https://huggingface.co/spaces/Carlexxx/Novinho/
13
+ #
14
+ # Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo
15
+ # sob os termos da Licença Pública Geral Affero da GNU como publicada pela
16
+ # Free Software Foundation, seja a versão 3 da Licença, ou
17
+ # (a seu critério) qualquer versão posterior.
18
+ #
19
+ # Este programa é distribuído na esperança de que seja útil,
20
+ # mas SEM QUALQUER GARANTIA; sem mesmo a garantia implícita de
21
+ # COMERCIALIZAÇÃO ou ADEQUAÇÃO A UM DETERMINADO FIM. Consulte a
22
+ # Licença Pública Geral Affero da GNU para mais detalhes.
23
+ #
24
+ # Você deve ter recebido uma cópia da Licença Pública Geral Affero da GNU
25
+ # junto com este programa. Se não, veja <https://www.gnu.org/licenses/>.
26
+
27
+ # --- app.py (NOVINHO-5.4.1: Correção do Wrapper de Geração) ---
28
+
29
+ # --- Ato 1: A Convocação da Orquestra (Importações) ---
30
+ import gradio as gr
31
+ import torch
32
+ import os
33
+ import yaml
34
+ from PIL import Image, ImageOps, ExifTags
35
+ import shutil
36
+ import gc
37
+ import subprocess
38
+ import google.generativeai as genai
39
+ import numpy as np
40
+ import imageio
41
+ from pathlib import Path
42
+ import huggingface_hub
43
+ import json
44
+ import time
45
+
46
+ from inference import create_ltx_video_pipeline, load_image_to_tensor_with_resize_and_crop, ConditioningItem, calculate_padding
47
+ from dreamo_helpers import dreamo_generator_singleton
48
+
49
+ # --- Ato 2: A Preparação do Palco (Configurações) ---
50
+ config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
51
+ with open(config_file_path, "r") as file: PIPELINE_CONFIG_YAML = yaml.safe_load(file)
52
+
53
+ LTX_REPO = "Lightricks/LTX-Video"
54
+ models_dir = "downloaded_models_gradio"
55
+ Path(models_dir).mkdir(parents=True, exist_ok=True)
56
+ WORKSPACE_DIR = "aduc_workspace"
57
+ GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
58
+
59
+ VIDEO_FPS = 30
60
+ TARGET_RESOLUTION = 420
61
+
62
+ print("Criando pipelines LTX na CPU (estado de repouso)...")
63
+ distilled_model_actual_path = huggingface_hub.hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False)
64
+ pipeline_instance = create_ltx_video_pipeline(
65
+ ckpt_path=distilled_model_actual_path,
66
+ precision=PIPELINE_CONFIG_YAML["precision"],
67
+ text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
68
+ sampler=PIPELINE_CONFIG_YAML["sampler"],
69
+ device='cpu'
70
+ )
71
+ print("Modelos LTX prontos (na CPU).")
72
+
73
+
74
+ # --- Ato 3: As Partituras dos Músicos (Funções de Geração e Análise) ---
75
+
76
+ # --- Funções da ETAPA 1 (Roteiro) ---
77
+ def robust_json_parser(raw_text: str) -> dict:
78
+ try:
79
+ start_index = raw_text.find('{'); end_index = raw_text.rfind('}')
80
+ if start_index != -1 and end_index != -1 and end_index > start_index:
81
+ json_str = raw_text[start_index : end_index + 1]; return json.loads(json_str)
82
+ else: raise ValueError("Nenhum objeto JSON válido encontrado na resposta da IA.")
83
+ except json.JSONDecodeError as e: raise ValueError(f"Falha ao decodificar JSON: {e}")
84
+
85
+ def extract_image_exif(image_path: str) -> str:
86
+ try:
87
+ img = Image.open(image_path); exif_data = img._getexif()
88
+ if not exif_data: return "No EXIF metadata found."
89
+ exif = { ExifTags.TAGS[k]: v for k, v in exif_data.items() if k in ExifTags.TAGS }
90
+ relevant_tags = ['DateTimeOriginal', 'Model', 'LensModel', 'FNumber', 'ExposureTime', 'ISOSpeedRatings', 'FocalLength']
91
+ metadata_str = ", ".join(f"{key}: {exif[key]}" for key in relevant_tags if key in exif)
92
+ return metadata_str if metadata_str else "No relevant EXIF metadata found."
93
+ except Exception: return "Could not read EXIF data."
94
+
95
+ def run_storyboard_generation(num_fragments: int, prompt: str, initial_image_path: str):
96
+ if not initial_image_path: raise gr.Error("Por favor, forneça uma imagem de referência inicial.")
97
+ if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
98
+ exif_metadata = extract_image_exif(initial_image_path)
99
+ prompt_file = "prompts/unified_storyboard_prompt.txt"
100
+ with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
101
+ director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments), image_metadata=exif_metadata)
102
+ genai.configure(api_key=GEMINI_API_KEY)
103
+ model = genai.GenerativeModel('gemini-2.0-flash'); img = Image.open(initial_image_path)
104
+ print("Gerando roteiro com análise de visão integrada...")
105
+ response = model.generate_content([director_prompt, img])
106
+ try:
107
+ storyboard_data = robust_json_parser(response.text)
108
+ storyboard = storyboard_data.get("scene_storyboard", [])
109
+ if not storyboard or len(storyboard) != int(num_fragments): raise ValueError(f"A IA não gerou o número correto de cenas. Esperado: {num_fragments}, Recebido: {len(storyboard)}")
110
+ return storyboard
111
+ except Exception as e: raise gr.Error(f"O Roteirista (Gemini) falhou ao criar o roteiro: {e}. Resposta recebida: {response.text}")
112
+
113
+
114
+ # --- Funções da ETAPA 2 (Keyframes) ---
115
+ def get_dreamo_prompt_for_transition(previous_image_path: str, target_scene_description: str) -> str:
116
+ genai.configure(api_key=GEMINI_API_KEY)
117
+ prompt_file = "prompts/img2img_evolution_prompt.txt"
118
+ with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
119
+ director_prompt = template.format(target_scene_description=target_scene_description)
120
+ model = genai.GenerativeModel('gemini-2.0-flash'); img = Image.open(previous_image_path)
121
+ response = model.generate_content([director_prompt, "Previous Image:", img])
122
+ return response.text.strip().replace("\"", "")
123
+
124
+ def run_keyframe_generation(storyboard, ref_images_tasks, progress=gr.Progress()):
125
+ if not storyboard: raise gr.Error("Nenhum roteiro para gerar keyframes.")
126
+ initial_ref_image_path = ref_images_tasks[0]['image']
127
+ if not initial_ref_image_path or not os.path.exists(initial_ref_image_path): raise gr.Error("A imagem de referência principal (à esquerda) é obrigatória.")
128
+
129
+ log_history = ""; generated_images_for_gallery = []
130
+ try:
131
+ pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache()
132
+ dreamo_generator_singleton.to_gpu()
133
+ with Image.open(initial_ref_image_path) as img: width, height = (img.width // 32) * 32, (img.height // 32) * 32
134
+
135
+ keyframe_paths, current_ref_image_path = [initial_ref_image_path], initial_ref_image_path
136
+
137
+ for i, scene_description in enumerate(storyboard):
138
+ progress(i / len(storyboard), desc=f"Pintando Keyframe {i+1}/{len(storyboard)}")
139
+ log_history += f"\n--- PINTANDO KEYFRAME {i+1}/{len(storyboard)} ---\n"
140
+ dreamo_prompt = get_dreamo_prompt_for_transition(current_ref_image_path, scene_description)
141
+
142
+ reference_items = []
143
+ fixed_references_basenames = [os.path.basename(item['image']) for item in ref_images_tasks if item['image']]
144
+
145
+ for item in ref_images_tasks:
146
+ if item['image']:
147
+ reference_items.append({'image_np': np.array(Image.open(item['image']).convert("RGB")), 'task': item['task']})
148
+
149
+ dynamic_references_paths = keyframe_paths[-3:]
150
+ for ref_path in dynamic_references_paths:
151
+ if os.path.basename(ref_path) not in fixed_references_basenames:
152
+ reference_items.append({'image_np': np.array(Image.open(ref_path).convert("RGB")), 'task': 'ip'})
153
+
154
+ log_history += f" - Roteiro: '{scene_description}'\n - Usando {len(reference_items)} referências visuais.\n - Prompt do D.A.: \"{dreamo_prompt}\"\n"
155
+ yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery)}
156
+
157
+ output_path = os.path.join(WORKSPACE_DIR, f"keyframe_{i+1}.png")
158
+ image = dreamo_generator_singleton.generate_image_with_gpu_management(reference_items=reference_items, prompt=dreamo_prompt, width=width, height=height)
159
+ image.save(output_path)
160
+
161
+ keyframe_paths.append(output_path); generated_images_for_gallery.append(output_path); current_ref_image_path = output_path
162
+ yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery)}
163
+
164
+ except Exception as e: raise gr.Error(f"O Pintor (DreamO) ou Diretor de Arte (Gemini) falhou: {e}")
165
+ finally: dreamo_generator_singleton.to_cpu(); gc.collect(); torch.cuda.empty_cache()
166
+ log_history += "\nPintura de todos os keyframes concluída.\n"
167
+ yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery), keyframe_images_state: keyframe_paths}
168
+
169
+
170
+ # --- Funções da ETAPA 3 (Produção de Vídeo) ---
171
+ def get_initial_motion_prompt(user_prompt: str, start_image_path: str, destination_image_path: str, dest_scene_desc: str):
172
+ if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
173
+ try:
174
+ genai.configure(api_key=GEMINI_API_KEY); model = genai.GenerativeModel('gemini-2.0-flash'); prompt_file = "prompts/initial_motion_prompt.txt"
175
+ with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
176
+ cinematographer_prompt = template.format(user_prompt=user_prompt, destination_scene_description=dest_scene_desc)
177
+ start_img, dest_img = Image.open(start_image_path), Image.open(destination_image_path)
178
+ model_contents = ["START Image:", start_img, "DESTINATION Image:", dest_img, cinematographer_prompt]
179
+ response = model.generate_content(model_contents)
180
+ return response.text.strip()
181
+ except Exception as e: raise gr.Error(f"O Cineasta de IA (Inicial) falhou: {e}. Resposta: {getattr(e, 'text', 'No text available.')}")
182
+
183
+ def get_dynamic_motion_prompt(user_prompt, story_history, memory_image_path, path_image_path, destination_image_path, path_scene_desc, dest_scene_desc):
184
+ if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
185
+ try:
186
+ genai.configure(api_key=GEMINI_API_KEY); model = genai.GenerativeModel('gemini-2.0-flash'); prompt_file = "prompts/dynamic_motion_prompt.txt"
187
+ with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
188
+ cinematographer_prompt = template.format(user_prompt=user_prompt, story_history=story_history, midpoint_scene_description=path_scene_desc, destination_scene_description=dest_scene_desc)
189
+ mem_img, path_img, dest_img = Image.open(memory_image_path), Image.open(path_image_path), Image.open(destination_image_path)
190
+ model_contents = ["START Image (Memory):", mem_img, "MIDPOINT Image (Path):", path_img, "DESTINATION Image (Destination):", dest_img, cinematographer_prompt]
191
+ response = model.generate_content(model_contents)
192
+ return response.text.strip()
193
+ except Exception as e: raise gr.Error(f"O Cineasta de IA (Dinâmico) falhou: {e}. Resposta: {getattr(e, 'text', 'No text available.')}")
194
+
195
+ def run_video_production(
196
+ video_duration_seconds, video_fps, cut_frames_value, use_attention_slicing,
197
+ mid_cond_frame, mid_cond_strength, end_cond_frame_offset, num_inference_steps,
198
+ prompt_geral, keyframe_images_state, scene_storyboard, cfg,
199
+ progress=gr.Progress()
200
+ ):
201
+ video_total_frames = int(video_duration_seconds * video_fps)
202
+ if not keyframe_images_state or len(keyframe_images_state) < 3: raise gr.Error("Pinte pelo menos 2 keyframes para produzir uma transição.")
203
+ log_history = "\n--- FASE 3/4: Iniciando Produção com Controles Manuais...\n"
204
+ yield {production_log_output: log_history, video_gallery_glitch: []}
205
+
206
+ end_cond_frame = video_total_frames - end_cond_frame_offset
207
+ seed = int(time.time())
208
+ target_device = 'cuda' if torch.cuda.is_available() else 'cpu'
209
+ try:
210
+ pipeline_instance.to(target_device)
211
+ video_fragments, story_history = [], ""; kinetic_memory_path = None
212
+ with Image.open(keyframe_images_state[1]) as img: width, height = img.size
213
+
214
+ num_transitions = len(keyframe_images_state) - 2
215
+ for i in range(num_transitions):
216
+ fragment_num = i + 1
217
+ progress(i / num_transitions, desc=f"Filmando Fragmento {fragment_num}/{num_transitions}")
218
+ log_history += f"\n--- FRAGMENTO {fragment_num} ---\n"
219
+
220
+ if i == 0:
221
+ start_path, destination_path = keyframe_images_state[1], keyframe_images_state[2]
222
+ dest_scene_desc = scene_storyboard[1]
223
+ log_history += f" - Início (Big Bang): {os.path.basename(start_path)}\n - Destino: {os.path.basename(destination_path)}\n"
224
+ current_motion_prompt = get_initial_motion_prompt(prompt_geral, start_path, destination_path, dest_scene_desc)
225
+ conditioning_items_data = [(start_path, int(0), 1.0), (destination_path, int(end_cond_frame), 1.0)]
226
+ else:
227
+ memory_path, path_path, destination_path = kinetic_memory_path, keyframe_images_state[i+1], keyframe_images_state[i+2]
228
+ path_scene_desc, dest_scene_desc = scene_storyboard[i], scene_storyboard[i+1]
229
+ log_history += f" - Memória Cinética: {os.path.basename(memory_path)}\n - Caminho: {os.path.basename(path_path)}\n - Destino: {os.path.basename(destination_path)}\n"
230
+ current_motion_prompt = get_dynamic_motion_prompt(prompt_geral, story_history, memory_path, path_path, destination_path, path_scene_desc, dest_scene_desc)
231
+ conditioning_items_data = [(memory_path, int(0), 1.0), (path_path, int(mid_cond_frame), mid_cond_strength), (destination_path, int(end_cond_frame), 1.0)]
232
+
233
+ story_history += f"\n- Ato {fragment_num + 1}: {current_motion_prompt}"
234
+ log_history += f" - Instrução do Cineasta: '{current_motion_prompt}'\n"; yield {production_log_output: log_history}
235
+ full_fragment_path, _ = run_ltx_animation(
236
+ current_fragment_index=fragment_num, motion_prompt=current_motion_prompt,
237
+ conditioning_items_data=conditioning_items_data, width=width, height=height,
238
+ seed=seed, cfg=cfg, progress=progress,
239
+ video_total_frames=video_total_frames, video_fps=video_fps,
240
+ use_attention_slicing=use_attention_slicing, num_inference_steps=num_inference_steps
241
+ )
242
+
243
+ is_last_fragment = (i == num_transitions - 1)
244
+ if is_last_fragment:
245
+ final_fragment_path = full_fragment_path
246
+ log_history += " - Último fragmento gerado, mantendo a duração total para um final limpo.\n"
247
+ else:
248
+ final_fragment_path = os.path.join(WORKSPACE_DIR, f"fragment_{fragment_num}_trimmed.mp4")
249
+ trim_video_to_frames(full_fragment_path, final_fragment_path, int(cut_frames_value))
250
+ eco_output_path = os.path.join(WORKSPACE_DIR, f"eco_from_frag_{fragment_num}.png")
251
+ kinetic_memory_path = extract_last_frame_as_image(final_fragment_path, eco_output_path)
252
+ log_history += f" - Gerado e cortado. Novo Eco Dinâmico criado: {os.path.basename(kinetic_memory_path)}\n"
253
+
254
+ video_fragments.append(final_fragment_path)
255
+ yield {production_log_output: log_history, video_gallery_glitch: video_fragments}
256
+
257
+ progress(1.0, desc="Produção Concluída.")
258
+ yield {production_log_output: log_history, video_gallery_glitch: video_fragments, fragment_list_state: video_fragments}
259
+ finally:
260
+ pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache()
261
+
262
+
263
+ # --- Funções Utilitárias e de Pós-Produção ---
264
+ def process_image_to_square(image_path: str, size: int = TARGET_RESOLUTION) -> str:
265
+ if not image_path: return None
266
+ try:
267
+ img = Image.open(image_path).convert("RGB"); img_square = ImageOps.fit(img, (size, size), Image.Resampling.LANCZOS)
268
+ output_path = os.path.join(WORKSPACE_DIR, f"initial_ref_{size}x{size}.png"); img_square.save(output_path)
269
+ return output_path
270
+ except Exception as e: raise gr.Error(f"Falha ao processar a imagem de referência: {e}")
271
+
272
+ def load_conditioning_tensor(media_path: str, height: int, width: int) -> torch.Tensor:
273
+ return load_image_to_tensor_with_resize_and_crop(media_path, height, width)
274
+
275
+ def run_ltx_animation(
276
+ current_fragment_index, motion_prompt, conditioning_items_data,
277
+ width, height, seed, cfg, progress,
278
+ video_total_frames, video_fps, use_attention_slicing, num_inference_steps
279
+ ):
280
+ progress(0, desc=f"[Câmera LTX] Filmando Cena {current_fragment_index}...");
281
+ output_path = os.path.join(WORKSPACE_DIR, f"fragment_{current_fragment_index}_full.mp4"); target_device = pipeline_instance.device
282
+ try:
283
+ if use_attention_slicing: pipeline_instance.enable_attention_slicing()
284
+ conditioning_items = [ConditioningItem(load_conditioning_tensor(p, height, width).to(target_device), s, t) for p, s, t in conditioning_items_data]
285
+ actual_num_frames = int(round((float(video_total_frames) - 1.0) / 8.0) * 8 + 1)
286
+ padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32
287
+ padding_vals = calculate_padding(height, width, padded_h, padded_w)
288
+ for item in conditioning_items: item.media_item = torch.nn.functional.pad(item.media_item, padding_vals)
289
+
290
+ first_pass_config = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
291
+ first_pass_config['num_inference_steps'] = int(num_inference_steps)
292
+
293
+ kwargs = {"prompt": motion_prompt, "negative_prompt": "blurry, distorted, bad quality, artifacts", "height": padded_h, "width": padded_w, "num_frames": actual_num_frames, "frame_rate": video_fps, "generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index), "output_type": "pt", "guidance_scale": float(cfg), "timesteps": first_pass_config.get("timesteps"), "conditioning_items": conditioning_items, "decode_timestep": PIPELINE_CONFIG_YAML.get("decode_timestep"), "decode_noise_scale": PIPELINE_CONFIG_YAML.get("decode_noise_scale"), "stochastic_sampling": PIPELINE_CONFIG_YAML.get("stochastic_sampling"), "image_cond_noise_scale": 0.15, "is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (PIPELINE_CONFIG_YAML.get("precision") == "mixed_precision"), "enhance_prompt": False, "decode_every": 4, "num_inference_steps": int(num_inference_steps)}
294
+
295
+ result_tensor = pipeline_instance(**kwargs).images
296
+
297
+ pad_l, pad_r, pad_t, pad_b = map(int, padding_vals); slice_h = -pad_b if pad_b > 0 else None; slice_w = -pad_r if pad_r > 0 else None
298
+ cropped_tensor = result_tensor[:, :, :video_total_frames, pad_t:slice_h, pad_l:slice_w]; video_np = (cropped_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
299
+ with imageio.get_writer(output_path, fps=video_fps, codec='libx264', quality=8) as writer:
300
+ for i, frame in enumerate(video_np): writer.append_data(frame)
301
+ return output_path, actual_num_frames
302
+ finally:
303
+ if use_attention_slicing: pipeline_instance.disable_attention_slicing()
304
+
305
+ def trim_video_to_frames(input_path: str, output_path: str, frames_to_keep: int) -> str:
306
+ try:
307
+ subprocess.run(f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='lt(n,{frames_to_keep})'\" -an \"{output_path}\"", shell=True, check=True, text=True)
308
+ return output_path
309
+ except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao cortar vídeo: {e.stderr}")
310
+
311
+ def extract_last_frame_as_image(video_path: str, output_image_path: str) -> str:
312
+ try:
313
+ subprocess.run(f"ffmpeg -y -v error -sseof -1 -i \"{video_path}\" -update 1 -q:v 1 \"{output_image_path}\"", shell=True, check=True, text=True)
314
+ return output_image_path
315
+ except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao extrair último frame: {e.stderr}")
316
+
317
+ def concatenate_and_trim_masterpiece(fragment_paths: list, progress=gr.Progress()):
318
+ if not fragment_paths: raise gr.Error("Nenhum fragmento de vídeo para concatenar.")
319
+ progress(0.5, desc="Montando a obra-prima final...");
320
+ try:
321
+ list_file_path = os.path.join(WORKSPACE_DIR, "concat_list.txt"); final_output_path = os.path.join(WORKSPACE_DIR, "masterpiece_final.mp4")
322
+ with open(list_file_path, "w") as f:
323
+ for p in fragment_paths: f.write(f"file '{os.path.abspath(p)}'\n")
324
+ subprocess.run(f"ffmpeg -y -v error -f concat -safe 0 -i \"{list_file_path}\" -c copy \"{final_output_path}\"", shell=True, check=True, text=True)
325
+ progress(1.0, desc="Montagem concluída!")
326
+ return final_output_path
327
+ except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou na concatenação final: {e.stderr}")
328
+
329
+ # --- Ato 5: A Interface com o Mundo (UI) ---
330
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
331
+ gr.Markdown("# NOVIM-5.4 (Painel de Controle do Diretor)\n*By Carlex & Gemini & DreamO*")
332
+ if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR)
333
+ os.makedirs(WORKSPACE_DIR); Path("prompts").mkdir(exist_ok=True)
334
+
335
+ scene_storyboard_state, keyframe_images_state, fragment_list_state = gr.State([]), gr.State([]), gr.State([])
336
+ prompt_geral_state, processed_ref_path_state = gr.State(""), gr.State("")
337
+
338
+ gr.Markdown("--- \n ## ETAPA 1: O ROTEIRO (IA Roteirista)")
339
+ with gr.Row():
340
+ with gr.Column(scale=1):
341
+ prompt_input = gr.Textbox(label="Ideia Geral (Prompt)")
342
+ num_fragments_input = gr.Slider(2, 10, 4, step=1, label="Número de Atos (Keyframes)")
343
+ image_input = gr.Image(type="filepath", label=f"Imagem de Referência Principal (será {TARGET_RESOLUTION}x{TARGET_RESOLUTION})")
344
+ director_button = gr.Button("▶️ 1. Gerar Roteiro", variant="primary")
345
+ with gr.Column(scale=2): storyboard_to_show = gr.JSON(label="Roteiro de Cenas Gerado (em Inglês)")
346
+
347
+ gr.Markdown("--- \n ## ETAPA 2: OS KEYFRAMES (IA Pintor & Diretor de Arte)")
348
+ with gr.Row():
349
+ with gr.Column(scale=2):
350
+ gr.Markdown("Forneça referências para guiar a IA. A Principal é obrigatória. A Secundária é opcional (ex: para estilo ou uma segunda pessoa).")
351
+ with gr.Row():
352
+ with gr.Column():
353
+ ref1_image = gr.Image(label="Referência Principal (Conteúdo/ID)", type="filepath")
354
+ ref1_task = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Tarefa da Ref. Principal")
355
+ with gr.Column():
356
+ ref2_image = gr.Image(label="Referência Secundária (Opcional)", type="filepath")
357
+ ref2_task = gr.Dropdown(choices=["ip", "id", "style"], value="style", label="Tarefa da Ref. Secundária")
358
+ photographer_button = gr.Button("▶️ 2. Pintar Imagens-Chave em Cadeia", variant="primary")
359
+ with gr.Column(scale=1):
360
+ keyframe_log_output = gr.Textbox(label="Diário de Bordo do Pintor", lines=15, interactive=False)
361
+ keyframe_gallery_output = gr.Gallery(label="Imagens-Chave Pintadas", object_fit="contain", height="auto", type="filepath")
362
+
363
+ gr.Markdown("--- \n ## ETAPA 3: A PRODUÇÃO (IA Cineasta & Câmera)")
364
+ with gr.Row():
365
+ with gr.Column(scale=1):
366
+ cfg_slider = gr.Slider(1.0, 10.0, 2.5, step=0.1, label="CFG")
367
+ with gr.Accordion("Controles Avançados de Timing e Performance", open=False):
368
+ video_duration_slider = gr.Slider(label="Duração da Cena (segundos)", minimum=2.0, maximum=10.0, value=6.0, step=0.5)
369
+ video_fps_slider = gr.Slider(label="FPS do Vídeo", minimum=12, maximum=30, value=30, step=1)
370
+ num_inference_steps_slider = gr.Slider(label="Etapas de Inferência", minimum=10, maximum=50, value=30, step=1)
371
+ cut_frames_slider = gr.Slider(label="Ponto de Corte do Eco (Frames)", minimum=30, maximum=300, value=150, step=1)
372
+ slicing_checkbox = gr.Checkbox(label="Usar Attention Slicing (Economiza VRAM)", value=True)
373
+ gr.Markdown("---"); gr.Markdown("#### Controles de Condicionamento")
374
+ mid_cond_frame_slider = gr.Slider(label="Frame do 'Caminho'", minimum=1, maximum=300, value=54, step=1)
375
+ mid_cond_strength_slider = gr.Slider(label="Força do 'Caminho'", minimum=0.1, maximum=1.0, value=0.5, step=0.05)
376
+ end_cond_offset_slider = gr.Slider(label="Offset de Convergência do 'Destino' (frames do fim)", minimum=1, maximum=48, value=8, step=1)
377
+ gr.Markdown(
378
+ """
379
+ **Instruções:**
380
+ - **Etapas de Inferência:** Menos etapas = mais rápido, mas pode ter menos detalhes. Mais etapas = mais lento, mas com maior refinamento. O padrão (30) é um bom equilíbrio.
381
+ - **Attention Slicing:** **Mantenha ativado** para evitar erros de memória, especialmente com cenas longas. Desative apenas se tiver muita VRAM e quiser a máxima "aderência" visual.
382
+ """
383
+ )
384
+ animator_button = gr.Button("▶️ 3. Produzir Cenas (Handoff Cinético)", variant="primary")
385
+ production_log_output = gr.Textbox(label="Diário de Bordo da Produção", lines=15, interactive=False)
386
+ with gr.Column(scale=1): video_gallery_glitch = gr.Gallery(label="Fragmentos Gerados", object_fit="contain", height="auto", type="video")
387
+
388
+ gr.Markdown(f"--- \n ## ETAPA 4: PÓS-PRODUÇÃO (Editor)")
389
+ editor_button = gr.Button("▶️ 4. Montar Vídeo Final", variant="primary")
390
+ final_video_output = gr.Video(label="A Obra-Prima Final", width=TARGET_RESOLUTION)
391
+
392
+ gr.Markdown(
393
+ """
394
+ ---
395
+ ### A Arquitetura: Handoff Cinético & Big Bang
396
+ A geração começa com um "Big Bang": a primeira transição de vídeo é entre o **Keyframe 1 e o Keyframe 2**. A imagem de referência original é usada apenas para criar o primeiro keyframe e depois é descartada do processo de vídeo.
397
+ * **O Bastão (O `Eco`):** Após a primeira transição, o último frame do clipe cortado (`Eco`) carrega a "energia cinética" da cena.
398
+ * **O Handoff (A Geração):** Os fragmentos seguintes começam a partir deste `Eco` dinâmico, herdando a "física" do movimento e da iluminação.
399
+ * **A Sincronização (Cineasta de IA):** Para cada Handoff, o Cineasta de IA (`Γ`) analisa o (`Eco`), o (`Keyframe` do caminho) e o (`Keyframe` do destino) para criar uma instrução de movimento precisa.
400
+ """
401
+ )
402
+
403
+ # --- Ato 6: A Regência (Lógica de Conexão dos Botões) ---
404
+ def process_and_update_storyboard(num_fragments, prompt, image_path):
405
+ processed_path = process_image_to_square(image_path)
406
+ if not processed_path: raise gr.Error("A imagem de referência é inválida ou não foi fornecida.")
407
+ storyboard = run_storyboard_generation(num_fragments, prompt, processed_path)
408
+ return storyboard, prompt, processed_path
409
+
410
+ director_button.click(
411
+ fn=process_and_update_storyboard,
412
+ inputs=[num_fragments_input, prompt_input, image_input],
413
+ outputs=[scene_storyboard_state, prompt_geral_state, processed_ref_path_state]
414
+ ).success(
415
+ fn=lambda s, p: (s, p),
416
+ inputs=[scene_storyboard_state, processed_ref_path_state],
417
+ outputs=[storyboard_to_show, ref1_image]
418
+ )
419
+
420
+ @photographer_button.click(
421
+ inputs=[scene_storyboard_state, ref1_image, ref1_task, ref2_image, ref2_task],
422
+ outputs=[keyframe_log_output, keyframe_gallery_output, keyframe_images_state]
423
+ )
424
+ def run_keyframe_generation_wrapper(storyboard, ref1_img, ref1_tsk, ref2_img, ref2_tsk, progress=gr.Progress()):
425
+ ref_data = [{'image': ref1_img, 'task': ref1_tsk}, {'image': ref2_img, 'task': ref2_tsk}]
426
+ yield from run_keyframe_generation(storyboard, ref_data, progress)
427
+
428
+ animator_button.click(
429
+ fn=run_video_production,
430
+ inputs=[
431
+ video_duration_slider, video_fps_slider, cut_frames_slider, slicing_checkbox,
432
+ mid_cond_frame_slider, mid_cond_strength_slider, end_cond_offset_slider,
433
+ num_inference_steps_slider,
434
+ prompt_geral_state, keyframe_images_state, scene_storyboard_state, cfg_slider
435
+ ],
436
+ outputs=[production_log_output, video_gallery_glitch, fragment_list_state]
437
+ )
438
+
439
+ editor_button.click(
440
+ fn=concatenate_and_trim_masterpiece,
441
+ inputs=[fragment_list_state],
442
+ outputs=[final_video_output]
443
+ )
444
+
445
+ if __name__ == "__main__":
446
+ demo.queue().launch(server_name="0.0.0.0", share=True)