File size: 28,292 Bytes
2a9b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b744
2a9b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b744
 
 
2a9b280
 
 
b54b744
 
 
 
 
 
 
 
2a9b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b744
 
2a9b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b744
 
 
2a9b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b744
 
 
2a9b280
 
 
 
b54b744
 
 
2a9b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b744
 
 
2a9b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b744
 
 
2a9b280
 
 
 
 
 
 
b54b744
 
 
2a9b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b744
 
 
2a9b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b744
 
 
2a9b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b744
 
 
2a9b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b744
 
 
2a9b280
 
 
 
 
 
b54b744
 
 
2a9b280
 
 
b54b744
 
 
2a9b280
 
 
 
 
 
 
 
 
 
 
b54b744
 
 
 
2a9b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b744
 
 
2a9b280
 
 
 
 
 
 
 
 
 
b54b744
 
 
 
 
 
2a9b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b744
 
 
2a9b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b744
 
 
2a9b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a9b280
 
 
 
 
 
b54b744
 
 
 
2a9b280
 
 
 
 
 
 
b54b744
 
 
 
 
2a9b280
 
 
 
 
 
 
 
 
b54b744
 
 
2a9b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b744
 
 
2a9b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b744
2a9b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b744
 
 
2a9b280
b54b744
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
import json
import logging
import os
import random
import re
import string
import time
import traceback

import torch
import torch.nn as nn
from funasr import AutoModel
from funasr.metrics.compute_acc import compute_accuracy
from funasr.register import tables
from funasr.train_utils.device_funcs import force_gatherable, to_device
from funasr.utils.datadir_writer import DatadirWriter
from funasr.utils.load_utils import extract_fbank, load_audio_text_image_video
from transformers import AutoConfig, AutoModelForCausalLM

dtype_map = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}


@tables.register("model_classes", "FunASRNano")
class FunASRNano(nn.Module):
    def __init__(
        self,
        audio_encoder: str = None,
        audio_encoder_conf: dict = None,
        audio_adaptor: str = None,
        audio_adaptor_conf: dict = None,
        llm: str = None,
        llm_conf: dict = None,
        input_size: int = 80,
        length_normalized_loss: bool = False,
        **kwargs,
    ):
        super().__init__()

        # audio encoder
        hub = audio_encoder_conf.get("hub", None)
        self.audio_encoder_activation_checkpoint = audio_encoder_conf.get(
            "activation_checkpoint", False
        )
        if hub == "ms":
            model = AutoModel(model=audio_encoder, model_revision="master")
            audio_encoder_output_size = (
                model.model.encoder_output_size
                if hasattr(model.model, "encoder_output_size")
                else -1
            )
            audio_encoder = (
                model.model.model.encoder
                if hasattr(model.model, "model")
                else model.model.encoder
            )
        else:
            encoder_class = tables.encoder_classes.get(audio_encoder)
            audio_encoder = encoder_class(input_size=input_size, **audio_encoder_conf)
            audio_encoder_output_size = audio_encoder.output_size()
        freeze = audio_encoder_conf.get("freeze", True)
        freeze_layer_num = int(audio_encoder_conf.get("freeze_layer_num", -1))

        if freeze:
            for name, param in audio_encoder.named_parameters():
                param.requires_grad = False
            audio_encoder.eval()
        self.audio_encoder = audio_encoder
        # llm
        self.llm = None
        init_param_path = llm_conf.get("init_param_path", None)
        llm_dim = None

        llm_load_kwargs = llm_conf.get("load_kwargs", {})
        config = AutoConfig.from_pretrained(init_param_path)
        model = AutoModelForCausalLM.from_config(config, **llm_load_kwargs)

        freeze = llm_conf.get("freeze", True)
        if freeze:
            for name, param in model.named_parameters():
                param.requires_grad = False
            model.eval()
        logging.info(f"use_lora: {llm_conf.get('use_lora', False)}")
        if llm_conf.get("use_lora", False):
            from omegaconf import DictConfig, OmegaConf

            lora_conf = llm_conf.get("lora_conf", {})
            if isinstance(lora_conf, (OmegaConf, DictConfig)):
                lora_conf = OmegaConf.to_container(lora_conf, resolve=True)
            from peft import LoraConfig, PeftModel, get_peft_model

            lora_init_param_path = lora_conf.get("init_param_path", None)
            if lora_init_param_path is not None:
                logging.info(f"lora_init_param_path: {lora_init_param_path}")
                model = PeftModel.from_pretrained(model, lora_init_param_path)
                for name, param in model.named_parameters():
                    if not lora_conf.get("freeze_lora", False):
                        if "lora_" in name:
                            param.requires_grad = True
            else:
                peft_config = LoraConfig(**lora_conf)
                model = get_peft_model(model, peft_config)
            model.print_trainable_parameters()

        if llm_conf.get("activation_checkpoint", False):
            model.gradient_checkpointing_enable()

        self.llm_dtype = llm_conf.get("llm_dtype", "fp32")
        self.llm = model.to(dtype_map[self.llm_dtype])
        llm_dim = model.get_input_embeddings().weight.shape[-1]

        # adaptor
        adaptor_class = tables.adaptor_classes.get(audio_adaptor)
        if audio_encoder_output_size > 0:
            audio_adaptor_conf["encoder_dim"] = audio_encoder_output_size
        audio_adaptor_conf["llm_dim"] = (
            llm_dim if llm_dim is not None else audio_adaptor_conf["llm_dim"]
        )
        audio_adaptor = adaptor_class(**audio_adaptor_conf)
        freeze = audio_adaptor_conf.get("freeze", False)
        if freeze:
            for name, param in audio_adaptor.named_parameters():
                param.requires_grad = False
            audio_adaptor.eval()
        self.audio_adaptor = audio_adaptor

        self.length_normalized_loss = length_normalized_loss
        self.feat_permute = audio_encoder_conf.get("feat_permute", True)
        rank = int(os.environ.get("RANK", 0))
        logging.info(f"rank: {rank}, model is builded.")

    def forward(
        self,
        speech: torch.Tensor = None,
        speech_lengths: torch.Tensor = None,
        input_ids: torch.Tensor = None,
        attention_mask: torch.Tensor = None,
        labels_ids: torch.Tensor = None,
        fbank_beg: torch.Tensor = None,
        fbank_mask: torch.Tensor = None,
        **kwargs,
    ):
        batch_size, token_num = input_ids.shape
        stats = {}
        input_ids[input_ids < 0] = 0
        inputs_embeds = self.llm.model.get_input_embeddings()(input_ids)
        if speech is not None:
            if len(speech_lengths.size()) > 1:
                speech_lengths = speech_lengths[:, 0]
            batch_size_speech, frames, _ = speech.shape

            # audio encoder
            if self.audio_encoder_activation_checkpoint:
                from torch.utils.checkpoint import checkpoint

                encoder_out, encoder_out_lens = checkpoint(
                    self.encode, speech, speech_lengths, use_reentrant=False
                )
            else:
                encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)

            # audio_adaptor
            encoder_out, encoder_out_lens = self.audio_adaptor(
                encoder_out, encoder_out_lens
            )

            batch_size, token_num, dims = inputs_embeds.shape
            fake_token_len = kwargs.get("fake_token_len")
            fake_token_len[fake_token_len < 0] = 0
            fbank_beg[fbank_beg < 0] = 0

            speech_idx = 0
            for batch_idx in range(batch_size):
                for turn_id in range(fbank_beg.shape[1]):
                    fbank_beg_idx = fbank_beg[batch_idx, turn_id].item()
                    if fbank_beg_idx > 0:
                        speech_token_len = fake_token_len[batch_idx, turn_id]
                        speech_token = encoder_out[speech_idx, :speech_token_len, :]

                        try:
                            inputs_embeds[
                                batch_idx,
                                fbank_beg_idx : fbank_beg_idx + speech_token_len,
                                :,
                            ] = speech_token
                        except Exception as e:
                            logging.error(f"{str(e)}, {traceback.format_exc()}")
                            logging.info(
                                f"batch_idx: {batch_idx}, inputs_embeds: {inputs_embeds.shape}, fbank_beg_idx: {fbank_beg_idx}, speech_token_len: {speech_token_len}, encoder_out: {encoder_out.shape}, encoder_out_lens: {encoder_out_lens}, fake_token_len: {fake_token_len}, speech_lengths: {speech_lengths}"
                            )
                            speech_token_len = encoder_out_lens[speech_idx].item()
                            speech_token = encoder_out[speech_idx, :speech_token_len, :]
                            inputs_embeds[
                                batch_idx,
                                fbank_beg_idx : fbank_beg_idx + speech_token_len,
                                :,
                            ] = speech_token

                        speech_idx += 1

            stats["batch_size_speech"] = batch_size_speech
            stats["batch_size_x_frames"] = frames * batch_size_speech
            stats["batch_size_real_frames"] = speech_lengths.sum().item()
            stats["padding_frames"] = (
                stats["batch_size_x_frames"] - stats["batch_size_real_frames"]
            )

        with torch.cuda.amp.autocast(
            enabled=True if self.llm_dtype != "fp32" else False,
            dtype=dtype_map[self.llm_dtype],
        ):
            labels_ids[labels_ids == -1] = -100
            attention_mask[attention_mask < 0] = 0
            model_outputs = self.llm(
                inputs_embeds=inputs_embeds.to(dtype_map[self.llm_dtype]),
                attention_mask=attention_mask,
                labels=labels_ids,
            )
            loss = model_outputs.loss

        with torch.no_grad():
            preds = torch.argmax(model_outputs.logits, -1)
            acc_att = compute_accuracy(
                preds[:, :-1], labels_ids[:, 1:], ignore_label=-100
            )
            stats["acc"] = acc_att

        stats["loss"] = torch.clone(loss.detach())
        stats["batch_size"] = batch_size

        stats["batch_size_x_tokens"] = token_num * batch_size
        stats["batch_size_real_tokens"] = attention_mask.sum().item()
        stats["padding_tokens"] = (
            stats["batch_size_x_tokens"] - stats["batch_size_real_tokens"]
        )

        dialog_turns = (fbank_beg > 0).sum(-1)
        dialog_turns_max = torch.max(dialog_turns).int().item()
        dialog_turns_avg = dialog_turns.sum().item() / batch_size
        stats["dialog_turns_max"] = dialog_turns_max
        stats["dialog_turns_avg"] = dialog_turns_avg

        # force_gatherable: to-device and to-tensor if scalar for DataParallel
        if self.length_normalized_loss:
            batch_size = int((labels_ids > 0 + 1).sum())
        loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
        return loss, stats, weight

    def forward_export(self, speech, speech_lengths, **kwargs):
        x, olens = self.audio_encoder(speech, speech_lengths)
        encoder_out, encoder_out_lens = self.audio_adaptor(x, olens)
        return encoder_out, encoder_out_lens

    def encode(self, speech, speech_lengths):
        # audio encoder
        if self.feat_permute:
            encoder_out, encoder_out_lens = self.audio_encoder(
                speech.permute(0, 2, 1), speech_lengths
            )
        else:
            encoder_out, encoder_out_lens = self.audio_encoder(speech, speech_lengths)

        return encoder_out, encoder_out_lens

    def data_template(self, data):
        system, user, assistant = [], [], []
        for i, item in enumerate(data):
            role = item["role"]
            content = item["content"]
            if role == "system":
                system.append(content)
            elif role == "user":
                if "audio" in item:
                    audio = item["audio"]
                    content = [content, audio]
                user.append(content)
            elif role == "assistant":
                assistant.append(content)

        system = system * len(user)

        contents = {
            "system": system,
            "user": user,
            "assistant": assistant,
        }

        return contents

    def data_load_speech(
        self, contents: dict, tokenizer, frontend, meta_data={}, **kwargs
    ):
        system = contents["system"]
        user = contents["user"]
        assistant = contents["assistant"]
        pattern = re.compile(r"(<\|startofspeech\|>.*?<\|endofspeech\|>)")
        do_think = True
        sys_prompt = True
        if "dataset_conf" in kwargs:
            do_think = kwargs["dataset_conf"].get("do_think", True)
            sys_prompt = kwargs["dataset_conf"].get("sys_prompt", True)

        input_ids, labels, fbank, fbank_lens, fbank_mask, fbank_beg, fake_token_len = (
            [],
            [],
            [],
            [],
            [],
            [],
            [],
        )
        input_source_ids = []
        for i, (system_prompt, user_prompt, target_out) in enumerate(
            zip(system, user, assistant)
        ):
            if i >= kwargs.get("multiturn_num_max", 5):
                break
            if len(input_ids) > kwargs.get("max_token_length", 1500):
                break
            if isinstance(user_prompt, (list, tuple)):
                user_prompt, audio = user_prompt
            if i == 0:
                if kwargs.get("infer_with_assistant_input", False):
                    source_input = f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{user_prompt}"
                    if not sys_prompt:
                        source_input = f"<|im_start|>user\n{user_prompt}"
                else:
                    source_input = f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{user_prompt}<|im_end|>\n<|im_start|>assistant\n"
                    if not sys_prompt:
                        source_input = f"<|im_start|>user\n{user_prompt}<|im_end|>\n<|im_start|>assistant\n"
            else:
                if kwargs.get("infer_with_assistant_input", False):
                    source_input = f"<|im_start|>user\n{user_prompt}"
                else:
                    source_input = f"<|im_start|>user\n{user_prompt}<|im_end|>\n<|im_start|>assistant\n"
            if not do_think:
                source_input += "<think>\n\n</think>\n\n"

            splits = pattern.split(source_input)
            source_ids = []
            fbank_mask_i = []
            fake_token_len_i = 0
            fbank_beg_i = -1
            speech, speech_lengths = [], []
            for k, sub_str in enumerate(splits):
                if not sub_str.startswith("<|startofspeech|>"):
                    sub_token = tokenizer.encode(sub_str)
                    source_ids += sub_token
                    fbank_mask_i += [0] * len(sub_token)
                else:
                    sub_str = sub_str.replace("<|startofspeech|>", "").replace(
                        "<|endofspeech|>", ""
                    )
                    if sub_str.startswith("!"):
                        sub_str = sub_str[1:]
                        if sub_str.startswith("!"):  # !!: audio sample point
                            sub_str = audio
                        try:
                            time1 = time.perf_counter()
                            data_src = load_audio_text_image_video(
                                sub_str, fs=frontend.fs, **kwargs
                            )
                            time2 = time.perf_counter()
                            meta_data["load_data"] = f"{time2 - time1:0.3f}"
                        except Exception as e:
                            logging.error(
                                f"Loading wav failed! {str(e)}, {traceback.format_exc()}"
                            )

                        speech, speech_lengths = extract_fbank(
                            data_src,
                            data_type=kwargs.get("data_type", "sound"),
                            frontend=frontend,
                            is_final=True,
                        )  # speech: [b, T, d]

                        time3 = time.perf_counter()
                        meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
                        meta_data["batch_data_time"] = (
                            speech_lengths.sum().item()
                            * frontend.frame_shift
                            * frontend.lfr_n
                            / 1000
                        )

                        if self.feat_permute:
                            speech = speech.permute(0, 2, 1)

                        olens = 1 + (speech_lengths[0].item() - 3 + 2 * 1) // 2
                        olens = 1 + (olens - 3 + 2 * 1) // 2
                        fake_token_len_i = (olens - 1) // 2 + 1
                        fake_token = [0] * fake_token_len_i
                        fbank_beg_i = len(source_ids)
                        source_ids += fake_token
                        fbank_mask_i += [1] * len(fake_token)

            fbank_beg += [fbank_beg_i + len(input_ids)]
            fake_token_len += [fake_token_len_i]
            source_mask = [-100] * len(source_ids)
            target_out = f"{target_out}<|im_end|>"
            target_ids = tokenizer.encode(target_out)
            input_source_ids = input_ids + source_ids
            input_ids += source_ids + target_ids
            labels += source_mask + target_ids
            fbank_mask += fbank_mask_i
            if len(speech) > 0:
                fbank.append(speech[0, :, :])
                fbank_lens.append(speech_lengths)

        input_ids = torch.tensor(
            input_ids, dtype=torch.int64
        )  # [: self.max_token_length]
        attention_mask = torch.tensor([1] * len(input_ids), dtype=torch.int32)
        labels = torch.tensor(labels, dtype=torch.int64)  # [: self.max_token_length]

        fbank_mask = torch.tensor(fbank_mask, dtype=torch.float32)
        fbank_beg = torch.tensor(fbank_beg, dtype=torch.int32)
        fake_token_len = torch.tensor(fake_token_len, dtype=torch.int32)
        source_ids = torch.tensor(input_source_ids, dtype=torch.int64)
        target_ids = torch.tensor(target_ids, dtype=torch.int64)

        if len(fbank) > 0:
            speech = torch.nn.utils.rnn.pad_sequence(
                fbank, batch_first=True, padding_value=0.0
            )
            speech_lengths = torch.nn.utils.rnn.pad_sequence(
                fbank_lens, batch_first=True, padding_value=-1
            )
        else:
            speech = []
            speech_lengths = []
        output = {
            "speech": speech,
            "speech_lengths": speech_lengths,
            "fbank_mask": fbank_mask[None, :],
            "fbank_beg": fbank_beg[None,],
            "fake_token_len": fake_token_len[None, :],
            "input_ids": input_ids[None,],
            "attention_mask": attention_mask[None,],
            "labels_ids": labels,
            "source_ids": source_ids[None, :],
            "target_ids": target_ids[None, :],
        }

        return output

    def inference_prepare(
        self,
        data_in,
        data_lengths=None,
        key: list = None,
        tokenizer=None,
        frontend=None,
        **kwargs,
    ):
        meta_data = {}

        if kwargs.get("batch_size", 1) > 1:
            raise NotImplementedError("batch decoding is not implemented")

        contents = self.data_template(data_in[0])
        output = self.data_load_speech(
            contents, tokenizer, frontend, meta_data=meta_data, **kwargs
        )
        batch = to_device(output, kwargs["device"])

        # audio encoder
        speech = batch["speech"]

        if len(speech) > 0:
            if "audio_embedding" in kwargs and "audio_embedding_lens" in kwargs:
                encoder_out = kwargs["audio_embedding"]
                encoder_out_lens = kwargs["audio_embedding_lens"]
            else:
                speech_lengths = batch["speech_lengths"][:, 0]
                # fp16
                if kwargs.get("fp16", False):
                    speech = speech.to(torch.float16)
                elif kwargs.get("bf16", False):
                    speech = speech.to(torch.bfloat16)
                # audio encoder
                encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)

                # audio_adaptor
                encoder_out, encoder_out_lens = self.audio_adaptor(
                    encoder_out, encoder_out_lens
                )
                meta_data["audio_adaptor_out"] = encoder_out
                meta_data["audio_adaptor_out_lens"] = encoder_out_lens

        input_ids = batch["input_ids"]
        source_ids = batch["source_ids"]
        fbank_beg = batch["fbank_beg"]
        fake_token_len = batch["fake_token_len"]

        if not kwargs.get("tearchforing", False):
            input_ids = source_ids

        input_ids[input_ids < 0] = 0
        inputs_embeds = self.llm.model.get_input_embeddings()(input_ids)

        batch_size, token_num, dims = inputs_embeds.shape

        fake_token_len[fake_token_len < 0] = 0
        fbank_beg[fbank_beg < 0] = 0

        speech_idx = 0
        for batch_idx in range(batch_size):
            for turn_id in range(fbank_beg.shape[1]):
                fbank_beg_idx = fbank_beg[batch_idx, turn_id].item()
                if fbank_beg_idx > 0:
                    speech_token_len = fake_token_len[batch_idx, turn_id]
                    speech_token = encoder_out[speech_idx, :speech_token_len, :]

                    try:
                        inputs_embeds[
                            batch_idx,
                            fbank_beg_idx : fbank_beg_idx + speech_token_len,
                            :,
                        ] = speech_token
                    except Exception as e:
                        #
                        logging.error(f"{str(e)}, {traceback.format_exc()}")
                        logging.info(
                            f"batch_idx: {batch_idx}, inputs_embeds: {inputs_embeds.shape}, fbank_beg_idx: {fbank_beg_idx}, speech_token_len: {speech_token_len}, encoder_out: {encoder_out.shape}, encoder_out_lens: {encoder_out_lens}, fake_token_len: {fake_token_len}, speech_lengths: {speech_lengths}"
                        )
                        speech_token_len = encoder_out_lens[speech_idx].item()
                        speech_token = encoder_out[speech_idx, :speech_token_len, :]
                        inputs_embeds[
                            batch_idx,
                            fbank_beg_idx : fbank_beg_idx + speech_token_len,
                            :,
                        ] = speech_token

                    speech_idx += 1
        return inputs_embeds, contents, batch, source_ids, meta_data

    def inference(
        self,
        data_in,
        data_lengths=None,
        key: list = None,
        tokenizer=None,
        frontend=None,
        **kwargs,
    ):
        hotwords = kwargs.get("hotwords", [])
        if len(hotwords) > 0:
            hotwords = ", ".join(hotwords)
            prompt = f"请结合上下文信息,更加准确地完成语音转写任务。如果没有相关信息,我们会留空。\n\n\n**上下文信息:**\n\n\n"
            prompt += f"热词列表:[{hotwords}]\n"
        else:
            prompt = ""
        language = kwargs.get("language", "auto")
        if language not in ("auto", "zh", "en", "ja"):
            language = "auto"
        if language == "auto":
            prompt += "语音转写"
        else:
            LANGUAGE_MAP = {"zh": "中文", "en": "英文", "ja": "日文"}
            prompt += f"语音转写成{LANGUAGE_MAP[language]}"
        itn = kwargs.get("itn", True)
        if not itn:
            prompt += ",不进行文本规整"
        prompt += ":"

        new_data_in = []
        for data in data_in:
            if isinstance(data, str):
                new_data_in.append(
                    [
                        {"role": "system", "content": "You are a helpful assistant."},
                        {
                            "role": "user",
                            "content": f"{prompt}<|startofspeech|>!{data}<|endofspeech|>",
                        },
                        {"role": "assistant", "content": "null"},
                    ]
                )
            elif isinstance(data, torch.Tensor):
                new_data_in.append(
                    [
                        {"role": "system", "content": "You are a helpful assistant."},
                        {
                            "role": "user",
                            "content": f"{prompt}<|startofspeech|>!!<|endofspeech|>",
                            "audio": data,
                        },
                        {"role": "assistant", "content": "null"},
                    ]
                )
        data_in = new_data_in

        if key is None:
            key = []
            for _ in data_in:
                chars = string.ascii_letters + string.digits
                key.append(
                    "rand_key_" + "".join(random.choice(chars) for _ in range(13))
                )

        return self.inference_llm(
            data_in,
            data_lengths=data_lengths,
            key=key,
            tokenizer=tokenizer,
            frontend=frontend,
            **kwargs,
        )

    def inference_llm(
        self,
        data_in,
        data_lengths=None,
        key: list = None,
        tokenizer=None,
        frontend=None,
        **kwargs,
    ):
        inputs_embeds, contents, batch, source_ids, meta_data = self.inference_prepare(
            data_in, data_lengths, key, tokenizer, frontend, **kwargs
        )
        llm_dtype = kwargs.get("llm_dtype", "fp32")
        if llm_dtype == "fp32":
            llm_dtype = "fp16" if kwargs.get("fp16", False) else llm_dtype
            llm_dtype = "bf16" if kwargs.get("bf16", False) else llm_dtype

        with torch.cuda.amp.autocast(
            enabled=True if llm_dtype != "fp32" else False, dtype=dtype_map[llm_dtype]
        ):
            label = contents["assistant"][-1]
            self.llm = self.llm.to(dtype_map[llm_dtype])
            inputs_embeds = inputs_embeds.to(dtype_map[llm_dtype])
            llm_kwargs = kwargs.get("llm_kwargs", {})
            if not kwargs.get("teachforing", False):
                generated_ids = self.llm.generate(
                    inputs_embeds=inputs_embeds,
                    max_new_tokens=kwargs.get("max_length", 512),
                    **llm_kwargs,
                )

                response = tokenizer.batch_decode(
                    generated_ids,
                    skip_special_tokens=kwargs.get("skip_special_tokens", True),
                )[0]

                loss = None
            else:
                labels_ids = batch["labels_ids"]
                labels_ids[labels_ids == -1] = -100
                attention_mask = batch.get("attention_mask", None)
                model_outputs = self.llm(
                    inputs_embeds=inputs_embeds,
                    attention_mask=attention_mask,
                    labels=labels_ids,
                    **llm_kwargs,
                )

                preds = torch.argmax(model_outputs.logits, -1)[:, source_ids.shape[1] :]
                response = tokenizer.batch_decode(
                    preds,
                    add_special_tokens=False,
                    skip_special_tokens=kwargs.get("skip_special_tokens", True),
                )[0]
                loss = model_outputs.loss.item()

        ibest_writer = None
        if kwargs.get("output_dir") is not None:
            if not hasattr(self, "writer"):
                self.writer = DatadirWriter(kwargs.get("output_dir"))
            ibest_writer = self.writer[f"{0 + 1}best_recog"]

        results = []
        response_clean = re.sub(r"[^\w\s\u3000\u4e00-\u9fff]+", "", response)
        result_i = {
            "key": key[0],
            "text": re.sub(r'\s+', ' ', response.replace("/sil", " ")),
            "text_tn": response_clean,
            "label": label,
        }
        if loss is not None:
            result_i["loss"] = loss
        results.append(result_i)

        if ibest_writer is not None:
            ibest_writer["text"][key[0]] = response.replace("\n", " ")
            ibest_writer["label"][key[0]] = label.replace("\n", " ")
            ibest_writer["text_tn"][key[0]] = response_clean

        return results, meta_data

    @staticmethod
    def from_pretrained(model: str = None, **kwargs):
        from funasr import AutoModel

        model, kwargs = AutoModel.build_model(
            model=model, trust_remote_code=True, **kwargs
        )

        return model, kwargs