Spaces:
Running
Running
Upload 2 files
Browse files- app.py +673 -0
- requirements.txt +12 -0
app.py
ADDED
|
@@ -0,0 +1,673 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
# from huggingface_hub import snapshot_download
|
| 3 |
+
from modelscope.hub.snapshot_download import snapshot_download
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
# 1. 定义本地路径和远程仓库ID
|
| 7 |
+
FUN_ASR_NANO_LOCAL_PATH = "./Fun-ASR/model"
|
| 8 |
+
FUN_ASR_NANO_REPO_ID = "FunAudioLLM/Fun-ASR-Nano-2512"
|
| 9 |
+
SENSE_VOICE_SMALL_LOCAL_PATH = "./Fun-ASR/model/SenseVoiceSmall"
|
| 10 |
+
# SENSE_VOICE_SMALL_REPO_ID = "FunAudioLLM/SenseVoiceSmall"
|
| 11 |
+
# REPO_TYPE = "hf" # "hf" for Hugging Face, "ms" for ModelScope
|
| 12 |
+
SENSE_VOICE_SMALL_REPO_ID = "iic/SenseVoiceSmall"
|
| 13 |
+
REPO_TYPE = "ms"
|
| 14 |
+
|
| 15 |
+
# 2. 检查本地是否存在,不存在则下载
|
| 16 |
+
if not os.path.exists(FUN_ASR_NANO_LOCAL_PATH):
|
| 17 |
+
from modelscope import HubApi
|
| 18 |
+
api= HubApi()
|
| 19 |
+
api.login(os.getenv("MODELSCOPE_TOKEN"))
|
| 20 |
+
print(f"正在下载模型 Fun-ASR-Nano 到 {FUN_ASR_NANO_LOCAL_PATH} ...")
|
| 21 |
+
snapshot_download(
|
| 22 |
+
repo_id=FUN_ASR_NANO_REPO_ID,
|
| 23 |
+
local_dir=FUN_ASR_NANO_LOCAL_PATH,
|
| 24 |
+
ignore_patterns=["*.onnx"], # 如果你不需要onnx文件,可以过滤掉以节省时间和空间
|
| 25 |
+
)
|
| 26 |
+
print("模型下载完毕!")
|
| 27 |
+
else:
|
| 28 |
+
print("检测到本地模型文件,跳过下载。")
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
if not os.path.exists(SENSE_VOICE_SMALL_LOCAL_PATH):
|
| 32 |
+
print(f"正在下载模型 {SENSE_VOICE_SMALL_REPO_ID} 到 {SENSE_VOICE_SMALL_LOCAL_PATH} ...")
|
| 33 |
+
snapshot_download(
|
| 34 |
+
repo_id=SENSE_VOICE_SMALL_REPO_ID,
|
| 35 |
+
local_dir=SENSE_VOICE_SMALL_LOCAL_PATH,
|
| 36 |
+
ignore_patterns=["*.onnx"], # 如果你不需要onnx文件,可以过滤掉以节省时间和空间
|
| 37 |
+
)
|
| 38 |
+
print("模型下载完毕!")
|
| 39 |
+
else:
|
| 40 |
+
print("检测到本地模型文件,跳过下载。")
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
import gradio as gr
|
| 46 |
+
import time
|
| 47 |
+
import sys
|
| 48 |
+
import io
|
| 49 |
+
import tempfile
|
| 50 |
+
import subprocess
|
| 51 |
+
import requests
|
| 52 |
+
from urllib.parse import urlparse
|
| 53 |
+
from pydub import AudioSegment
|
| 54 |
+
import logging
|
| 55 |
+
import torch
|
| 56 |
+
import importlib
|
| 57 |
+
from funasr import AutoModel
|
| 58 |
+
from funasr.utils.postprocess_utils import rich_transcription_postprocess
|
| 59 |
+
|
| 60 |
+
# Model configurations for Hugging Face deployment
|
| 61 |
+
FUN_ASR_NANO_MODEL_PATH_LIST = [
|
| 62 |
+
"Fun-ASR/model", # local path, ms
|
| 63 |
+
"FunAudioLLM/fun-asr-nano", # huggingface model repo, hf
|
| 64 |
+
"FunAudioLLM/fun-asr-nano" # ModelScope model repo, ms
|
| 65 |
+
]
|
| 66 |
+
|
| 67 |
+
SENSEVOICE_MODEL_PATH_LIST = [
|
| 68 |
+
"Fun-ASR/model/SenseVoiceSmall", # local path together with this hf space
|
| 69 |
+
"FunAudioLLM/SenseVoiceSmall", # huggingface model repo
|
| 70 |
+
"iic/SenseVoiceSmall" # ModelScope model repo
|
| 71 |
+
]
|
| 72 |
+
|
| 73 |
+
class LogCapture(io.StringIO):
|
| 74 |
+
def __init__(self, callback):
|
| 75 |
+
super().__init__()
|
| 76 |
+
self.callback = callback
|
| 77 |
+
|
| 78 |
+
def write(self, s):
|
| 79 |
+
super().write(s)
|
| 80 |
+
self.callback(s)
|
| 81 |
+
|
| 82 |
+
# Set up logging
|
| 83 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
# Check for CUDA availability
|
| 91 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 92 |
+
logging.info(f"Using device: {device}")
|
| 93 |
+
|
| 94 |
+
def download_audio(url, method_choice, proxy_url, proxy_username, proxy_password):
|
| 95 |
+
"""
|
| 96 |
+
Downloads audio from a given URL using the specified method and proxy settings.
|
| 97 |
+
|
| 98 |
+
Args:
|
| 99 |
+
url (str): The URL of the audio.
|
| 100 |
+
method_choice (str): The method to use for downloading audio.
|
| 101 |
+
proxy_url (str): Proxy URL if needed.
|
| 102 |
+
proxy_username (str): Proxy username.
|
| 103 |
+
proxy_password (str): Proxy password.
|
| 104 |
+
|
| 105 |
+
Returns:
|
| 106 |
+
tuple: (path to the downloaded audio file, is_temp_file), or (None, False) if failed.
|
| 107 |
+
"""
|
| 108 |
+
parsed_url = urlparse(url)
|
| 109 |
+
logging.info(f"Downloading audio from URL: {url} using method: {method_choice}")
|
| 110 |
+
try:
|
| 111 |
+
if 'youtube.com' in parsed_url.netloc or 'youtu.be' in parsed_url.netloc:
|
| 112 |
+
error_msg = f"YouTube download is not supported. Please use direct audio URLs instead."
|
| 113 |
+
logging.error(error_msg)
|
| 114 |
+
return None, False
|
| 115 |
+
elif parsed_url.scheme == 'rtsp':
|
| 116 |
+
audio_file = download_rtsp_audio(url, proxy_url)
|
| 117 |
+
if not audio_file:
|
| 118 |
+
error_msg = f"Failed to download RTSP audio from {url}"
|
| 119 |
+
logging.error(error_msg)
|
| 120 |
+
return None, False
|
| 121 |
+
else:
|
| 122 |
+
audio_file = download_direct_audio(url, method_choice, proxy_url, proxy_username, proxy_password)
|
| 123 |
+
if not audio_file:
|
| 124 |
+
error_msg = f"Failed to download audio from {url} using method {method_choice}"
|
| 125 |
+
logging.error(error_msg)
|
| 126 |
+
return None, False
|
| 127 |
+
return audio_file, True
|
| 128 |
+
except Exception as e:
|
| 129 |
+
error_msg = f"Error downloading audio from {url} using method {method_choice}: {str(e)}"
|
| 130 |
+
logging.error(error_msg)
|
| 131 |
+
return None, False
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def download_rtsp_audio(url, proxy_url):
|
| 137 |
+
"""
|
| 138 |
+
Downloads audio from an RTSP URL using FFmpeg.
|
| 139 |
+
|
| 140 |
+
Args:
|
| 141 |
+
url (str): The RTSP URL.
|
| 142 |
+
proxy_url (str): Proxy URL if needed.
|
| 143 |
+
|
| 144 |
+
Returns:
|
| 145 |
+
str: Path to the downloaded audio file, or None if failed.
|
| 146 |
+
"""
|
| 147 |
+
logging.info("Using FFmpeg to download RTSP stream")
|
| 148 |
+
output_file = tempfile.mktemp(suffix='.mp3')
|
| 149 |
+
command = ['ffmpeg', '-i', url, '-acodec', 'libmp3lame', '-ab', '192k', '-y', output_file]
|
| 150 |
+
env = os.environ.copy()
|
| 151 |
+
if proxy_url and len(proxy_url.strip()) > 0:
|
| 152 |
+
env['http_proxy'] = proxy_url
|
| 153 |
+
env['https_proxy'] = proxy_url
|
| 154 |
+
try:
|
| 155 |
+
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env)
|
| 156 |
+
logging.info(f"Downloaded RTSP audio to: {output_file}")
|
| 157 |
+
return output_file
|
| 158 |
+
except subprocess.CalledProcessError as e:
|
| 159 |
+
logging.error(f"FFmpeg error: {e.stderr.decode()}")
|
| 160 |
+
return None
|
| 161 |
+
except Exception as e:
|
| 162 |
+
logging.error(f"Error downloading RTSP audio: {str(e)}")
|
| 163 |
+
return None
|
| 164 |
+
|
| 165 |
+
def download_direct_audio(url, method_choice, proxy_url, proxy_username, proxy_password):
|
| 166 |
+
"""
|
| 167 |
+
Downloads audio from a direct URL using the specified method.
|
| 168 |
+
|
| 169 |
+
Args:
|
| 170 |
+
url (str): The direct URL of the audio file.
|
| 171 |
+
method_choice (str): The method to use for downloading.
|
| 172 |
+
proxy_url (str): Proxy URL if needed.
|
| 173 |
+
proxy_username (str): Proxy username.
|
| 174 |
+
proxy_password (str): Proxy password.
|
| 175 |
+
|
| 176 |
+
Returns:
|
| 177 |
+
str: Path to the downloaded audio file, or None if failed.
|
| 178 |
+
"""
|
| 179 |
+
logging.info(f"Downloading direct audio from: {url} using method: {method_choice}")
|
| 180 |
+
methods = {
|
| 181 |
+
'wget': wget_method,
|
| 182 |
+
'requests': requests_method,
|
| 183 |
+
'ffmpeg': ffmpeg_method,
|
| 184 |
+
'aria2': aria2_method,
|
| 185 |
+
}
|
| 186 |
+
method = methods.get(method_choice, requests_method)
|
| 187 |
+
try:
|
| 188 |
+
audio_file = method(url, proxy_url, proxy_username, proxy_password)
|
| 189 |
+
if not audio_file or not os.path.exists(audio_file):
|
| 190 |
+
error_msg = f"Failed to download direct audio from {url} using method {method_choice}"
|
| 191 |
+
logging.error(error_msg)
|
| 192 |
+
return None
|
| 193 |
+
return audio_file
|
| 194 |
+
except Exception as e:
|
| 195 |
+
logging.error(f"Error downloading direct audio with {method_choice}: {str(e)}")
|
| 196 |
+
return None
|
| 197 |
+
|
| 198 |
+
def requests_method(url, proxy_url, proxy_username, proxy_password):
|
| 199 |
+
"""
|
| 200 |
+
Downloads audio using the requests library.
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
url (str): The URL of the audio file.
|
| 204 |
+
proxy_url (str): Proxy URL if needed.
|
| 205 |
+
proxy_username (str): Proxy username.
|
| 206 |
+
proxy_password (str): Proxy password.
|
| 207 |
+
|
| 208 |
+
Returns:
|
| 209 |
+
str: Path to the downloaded audio file, or None if failed.
|
| 210 |
+
"""
|
| 211 |
+
try:
|
| 212 |
+
proxies = None
|
| 213 |
+
auth = None
|
| 214 |
+
if proxy_url and len(proxy_url.strip()) > 0:
|
| 215 |
+
proxies = {
|
| 216 |
+
"http": proxy_url,
|
| 217 |
+
"https": proxy_url
|
| 218 |
+
}
|
| 219 |
+
if proxy_username and proxy_password:
|
| 220 |
+
auth = (proxy_username, proxy_password)
|
| 221 |
+
response = requests.get(url, stream=True, proxies=proxies, auth=auth)
|
| 222 |
+
if response.status_code == 200:
|
| 223 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
|
| 224 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 225 |
+
if chunk:
|
| 226 |
+
temp_file.write(chunk)
|
| 227 |
+
logging.info(f"Downloaded direct audio to: {temp_file.name}")
|
| 228 |
+
return temp_file.name
|
| 229 |
+
else:
|
| 230 |
+
logging.error(f"Failed to download audio from {url} with status code {response.status_code}")
|
| 231 |
+
return None
|
| 232 |
+
except Exception as e:
|
| 233 |
+
logging.error(f"Error in requests_method: {str(e)}")
|
| 234 |
+
return None
|
| 235 |
+
|
| 236 |
+
def wget_method(url, proxy_url, proxy_username, proxy_password):
|
| 237 |
+
"""
|
| 238 |
+
Downloads audio using the wget command-line tool.
|
| 239 |
+
|
| 240 |
+
Args:
|
| 241 |
+
url (str): The URL of the audio file.
|
| 242 |
+
proxy_url (str): Proxy URL if needed.
|
| 243 |
+
proxy_username (str): Proxy username.
|
| 244 |
+
proxy_password (str): Proxy password.
|
| 245 |
+
|
| 246 |
+
Returns:
|
| 247 |
+
str: Path to the downloaded audio file, or None if failed.
|
| 248 |
+
"""
|
| 249 |
+
logging.info("Using wget method")
|
| 250 |
+
output_file = tempfile.mktemp(suffix='.mp3')
|
| 251 |
+
command = ['wget', '-O', output_file, url]
|
| 252 |
+
env = os.environ.copy()
|
| 253 |
+
if proxy_url and len(proxy_url.strip()) > 0:
|
| 254 |
+
env['http_proxy'] = proxy_url
|
| 255 |
+
env['https_proxy'] = proxy_url
|
| 256 |
+
try:
|
| 257 |
+
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env)
|
| 258 |
+
logging.info(f"Downloaded audio to: {output_file}")
|
| 259 |
+
return output_file
|
| 260 |
+
except subprocess.CalledProcessError as e:
|
| 261 |
+
logging.error(f"Wget error: {e.stderr.decode()}")
|
| 262 |
+
return None
|
| 263 |
+
except Exception as e:
|
| 264 |
+
logging.error(f"Error in wget_method: {str(e)}")
|
| 265 |
+
return None
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
def ffmpeg_method(url, proxy_url, proxy_username, proxy_password):
|
| 269 |
+
"""
|
| 270 |
+
Downloads audio using FFmpeg.
|
| 271 |
+
|
| 272 |
+
Args:
|
| 273 |
+
url (str): The URL of the audio file.
|
| 274 |
+
proxy_url (str): Proxy URL if needed.
|
| 275 |
+
proxy_username (str): Proxy username.
|
| 276 |
+
proxy_password (str): Proxy password.
|
| 277 |
+
|
| 278 |
+
Returns:
|
| 279 |
+
str: Path to the downloaded audio file, or None if failed.
|
| 280 |
+
"""
|
| 281 |
+
logging.info("Using ffmpeg method")
|
| 282 |
+
output_file = tempfile.mktemp(suffix='.mp3')
|
| 283 |
+
command = ['ffmpeg', '-i', url, '-vn', '-acodec', 'libmp3lame', '-q:a', '2', output_file]
|
| 284 |
+
env = os.environ.copy()
|
| 285 |
+
if proxy_url and len(proxy_url.strip()) > 0:
|
| 286 |
+
env['http_proxy'] = proxy_url
|
| 287 |
+
env['https_proxy'] = proxy_url
|
| 288 |
+
try:
|
| 289 |
+
subprocess.run(command, check=True, capture_output=True, text=True, env=env)
|
| 290 |
+
logging.info(f"Downloaded and converted audio to: {output_file}")
|
| 291 |
+
return output_file
|
| 292 |
+
except subprocess.CalledProcessError as e:
|
| 293 |
+
logging.error(f"FFmpeg error: {e.stderr}")
|
| 294 |
+
return None
|
| 295 |
+
except Exception as e:
|
| 296 |
+
logging.error(f"Error in ffmpeg_method: {str(e)}")
|
| 297 |
+
return None
|
| 298 |
+
|
| 299 |
+
def aria2_method(url, proxy_url, proxy_username, proxy_password):
|
| 300 |
+
"""
|
| 301 |
+
Downloads audio using aria2.
|
| 302 |
+
|
| 303 |
+
Args:
|
| 304 |
+
url (str): The URL of the audio file.
|
| 305 |
+
proxy_url (str): Proxy URL if needed.
|
| 306 |
+
proxy_username (str): Proxy username.
|
| 307 |
+
proxy_password (str): Proxy password.
|
| 308 |
+
|
| 309 |
+
Returns:
|
| 310 |
+
str: Path to the downloaded audio file, or None if failed.
|
| 311 |
+
"""
|
| 312 |
+
logging.info("Using aria2 method")
|
| 313 |
+
output_file = tempfile.mktemp(suffix='.mp3')
|
| 314 |
+
command = ['aria2c', '--split=4', '--max-connection-per-server=4', '--out', output_file, url]
|
| 315 |
+
if proxy_url and len(proxy_url.strip()) > 0:
|
| 316 |
+
command.extend(['--all-proxy', proxy_url])
|
| 317 |
+
try:
|
| 318 |
+
subprocess.run(command, check=True, capture_output=True, text=True)
|
| 319 |
+
logging.info(f"Downloaded audio to: {output_file}")
|
| 320 |
+
return output_file
|
| 321 |
+
except subprocess.CalledProcessError as e:
|
| 322 |
+
logging.error(f"Aria2 error: {e.stderr}")
|
| 323 |
+
return None
|
| 324 |
+
except Exception as e:
|
| 325 |
+
logging.error(f"Error in aria2_method: {str(e)}")
|
| 326 |
+
return None
|
| 327 |
+
|
| 328 |
+
def trim_audio(audio_path, start_time, end_time):
|
| 329 |
+
"""
|
| 330 |
+
Trims an audio file to the specified start and end times.
|
| 331 |
+
|
| 332 |
+
Args:
|
| 333 |
+
audio_path (str): Path to the audio file.
|
| 334 |
+
start_time (float): Start time in seconds.
|
| 335 |
+
end_time (float): End time in seconds.
|
| 336 |
+
|
| 337 |
+
Returns:
|
| 338 |
+
str: Path to the trimmed audio file.
|
| 339 |
+
|
| 340 |
+
Raises:
|
| 341 |
+
gr.Error: If invalid start or end times are provided.
|
| 342 |
+
"""
|
| 343 |
+
try:
|
| 344 |
+
logging.info(f"Trimming audio from {start_time} to {end_time}")
|
| 345 |
+
audio = AudioSegment.from_file(audio_path)
|
| 346 |
+
audio_duration = len(audio) / 1000 # Duration in seconds
|
| 347 |
+
|
| 348 |
+
# Default start and end times if None
|
| 349 |
+
start_time = max(0, start_time) if start_time is not None else 0
|
| 350 |
+
end_time = min(audio_duration, end_time) if end_time is not None else audio_duration
|
| 351 |
+
|
| 352 |
+
# Validate times
|
| 353 |
+
if start_time >= end_time:
|
| 354 |
+
raise gr.Error("End time must be greater than start time.")
|
| 355 |
+
|
| 356 |
+
trimmed_audio = audio[int(start_time * 1000):int(end_time * 1000)]
|
| 357 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio_file:
|
| 358 |
+
trimmed_audio.export(temp_audio_file.name, format="wav")
|
| 359 |
+
logging.info(f"Trimmed audio saved to: {temp_audio_file.name}")
|
| 360 |
+
return temp_audio_file.name
|
| 361 |
+
except Exception as e:
|
| 362 |
+
logging.error(f"Error trimming audio: {str(e)}")
|
| 363 |
+
raise gr.Error(f"Error trimming audio: {str(e)}")
|
| 364 |
+
|
| 365 |
+
def save_transcription(transcription):
|
| 366 |
+
"""
|
| 367 |
+
Saves the transcription text to a temporary file.
|
| 368 |
+
|
| 369 |
+
Args:
|
| 370 |
+
transcription (str): The transcription text.
|
| 371 |
+
|
| 372 |
+
Returns:
|
| 373 |
+
str: The path to the transcription file.
|
| 374 |
+
"""
|
| 375 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.txt', mode='w', encoding='utf-8') as temp_file:
|
| 376 |
+
temp_file.write(transcription)
|
| 377 |
+
logging.info(f"Transcription saved to: {temp_file.name}")
|
| 378 |
+
return temp_file.name
|
| 379 |
+
|
| 380 |
+
def get_model_options(pipeline_type):
|
| 381 |
+
"""
|
| 382 |
+
Returns a list of model IDs based on the selected pipeline type.
|
| 383 |
+
|
| 384 |
+
Args:
|
| 385 |
+
pipeline_type (str): The type of pipeline.
|
| 386 |
+
|
| 387 |
+
Returns:
|
| 388 |
+
list: A list of model IDs.
|
| 389 |
+
"""
|
| 390 |
+
if pipeline_type == "fun-asr-nano":
|
| 391 |
+
return FUN_ASR_NANO_MODEL_PATH_LIST
|
| 392 |
+
elif pipeline_type == "sensevoice":
|
| 393 |
+
return SENSEVOICE_MODEL_PATH_LIST
|
| 394 |
+
else:
|
| 395 |
+
return []
|
| 396 |
+
# if pipeline_type == "sensevoice":
|
| 397 |
+
# return SENSEVOICE_MODEL_PATH_LIST
|
| 398 |
+
# else:
|
| 399 |
+
# return []
|
| 400 |
+
|
| 401 |
+
# Dictionary to store loaded models
|
| 402 |
+
loaded_models = {}
|
| 403 |
+
|
| 404 |
+
def transcribe_audio(audio_input, audio_url, proxy_url, proxy_username, proxy_password, pipeline_type, model_id, download_method, start_time=None, end_time=None, verbose=False):
|
| 405 |
+
"""
|
| 406 |
+
Transcribes audio from a given source using SenseVoice.
|
| 407 |
+
|
| 408 |
+
Args:
|
| 409 |
+
audio_input (str): Path to uploaded audio file or recorded audio.
|
| 410 |
+
audio_url (str): URL of audio.
|
| 411 |
+
proxy_url (str): Proxy URL if needed.
|
| 412 |
+
proxy_username (str): Proxy username.
|
| 413 |
+
proxy_password (str): Proxy password.
|
| 414 |
+
pipeline_type (str): Type of pipeline to use ('sensevoice').
|
| 415 |
+
model_id (str): The ID of the model to use.
|
| 416 |
+
download_method (str): Method to use for downloading audio.
|
| 417 |
+
start_time (float, optional): Start time in seconds for trimming audio.
|
| 418 |
+
end_time (float, optional): End time in seconds for trimming audio.
|
| 419 |
+
verbose (bool, optional): Whether to output verbose logging.
|
| 420 |
+
|
| 421 |
+
Yields:
|
| 422 |
+
Tuple[str, str, str or None]: Metrics and messages, transcription text, path to transcription file.
|
| 423 |
+
"""
|
| 424 |
+
try:
|
| 425 |
+
if verbose:
|
| 426 |
+
logging.getLogger().setLevel(logging.INFO)
|
| 427 |
+
else:
|
| 428 |
+
logging.getLogger().setLevel(logging.WARNING)
|
| 429 |
+
|
| 430 |
+
logging.info(f"Transcription parameters: pipeline_type={pipeline_type}, model_id={model_id}, download_method={download_method}")
|
| 431 |
+
verbose_messages = f"Starting transcription with parameters:\nPipeline Type: {pipeline_type}\nModel ID: {model_id}\nDownload Method: {download_method}\n"
|
| 432 |
+
|
| 433 |
+
if verbose:
|
| 434 |
+
yield verbose_messages, "", None
|
| 435 |
+
|
| 436 |
+
# Determine the audio source
|
| 437 |
+
audio_path = None
|
| 438 |
+
is_temp_file = False
|
| 439 |
+
|
| 440 |
+
if audio_input is not None and len(audio_input) > 0:
|
| 441 |
+
# audio_input is a filepath to uploaded or recorded audio
|
| 442 |
+
audio_path = audio_input
|
| 443 |
+
is_temp_file = False
|
| 444 |
+
elif audio_url is not None and len(audio_url.strip()) > 0:
|
| 445 |
+
# audio_url is provided
|
| 446 |
+
audio_path, is_temp_file = download_audio(audio_url, download_method, proxy_url, proxy_username, proxy_password)
|
| 447 |
+
if not audio_path:
|
| 448 |
+
error_msg = f"Error downloading audio from {audio_url} using method {download_method}. Check logs for details."
|
| 449 |
+
logging.error(error_msg)
|
| 450 |
+
yield verbose_messages + error_msg, "", None
|
| 451 |
+
return
|
| 452 |
+
else:
|
| 453 |
+
verbose_messages += f"Successfully downloaded audio from {audio_url}\n"
|
| 454 |
+
if verbose:
|
| 455 |
+
yield verbose_messages, "", None
|
| 456 |
+
else:
|
| 457 |
+
error_msg = "No audio source provided. Please upload an audio file, record audio, or enter a URL."
|
| 458 |
+
logging.error(error_msg)
|
| 459 |
+
yield verbose_messages + error_msg, "", None
|
| 460 |
+
return
|
| 461 |
+
|
| 462 |
+
# Convert start_time and end_time to float or None
|
| 463 |
+
start_time = float(start_time) if start_time else None
|
| 464 |
+
end_time = float(end_time) if end_time else None
|
| 465 |
+
|
| 466 |
+
if start_time is not None or end_time is not None:
|
| 467 |
+
audio_path = trim_audio(audio_path, start_time, end_time)
|
| 468 |
+
is_temp_file = True # The trimmed audio is a temporary file
|
| 469 |
+
verbose_messages += f"Audio trimmed from {start_time} to {end_time}\n"
|
| 470 |
+
if verbose:
|
| 471 |
+
yield verbose_messages, "", None
|
| 472 |
+
|
| 473 |
+
# Model caching
|
| 474 |
+
model_key = (pipeline_type, model_id)
|
| 475 |
+
if model_key in loaded_models:
|
| 476 |
+
model = loaded_models[model_key]
|
| 477 |
+
logging.info("Loaded model from cache")
|
| 478 |
+
else:
|
| 479 |
+
if pipeline_type == "fun-asr-nano":
|
| 480 |
+
model = AutoModel(
|
| 481 |
+
model=model_id,
|
| 482 |
+
trust_remote_code=True,
|
| 483 |
+
remote_code=f"./Fun-ASR/model.py",
|
| 484 |
+
vad_model="fsmn-vad",
|
| 485 |
+
vad_kwargs={"max_single_segment_time": 30000},
|
| 486 |
+
device=device,
|
| 487 |
+
disable_update=True,
|
| 488 |
+
hub=REPO_TYPE,
|
| 489 |
+
)
|
| 490 |
+
elif pipeline_type == "sensevoice":
|
| 491 |
+
model = AutoModel(
|
| 492 |
+
model=model_id,
|
| 493 |
+
trust_remote_code=False,
|
| 494 |
+
vad_model="fsmn-vad",
|
| 495 |
+
vad_kwargs={"max_single_segment_time": 30000},
|
| 496 |
+
device=device,
|
| 497 |
+
disable_update=True,
|
| 498 |
+
hub=REPO_TYPE,
|
| 499 |
+
)
|
| 500 |
+
else:
|
| 501 |
+
error_msg = "Invalid pipeline type. Only 'sensevoice' is supported."
|
| 502 |
+
logging.error(error_msg)
|
| 503 |
+
yield verbose_messages + error_msg, "", None
|
| 504 |
+
return
|
| 505 |
+
loaded_models[model_key] = model
|
| 506 |
+
|
| 507 |
+
# Perform the transcription
|
| 508 |
+
start_time_perf = time.time()
|
| 509 |
+
|
| 510 |
+
if pipeline_type == "fun-asr-nano":
|
| 511 |
+
system_prompt = "You are a helpful assistant."
|
| 512 |
+
user_prompt = f"语音转写:<|startofspeech|>!{audio_path}<|endofspeech|>"
|
| 513 |
+
contents_i = []
|
| 514 |
+
contents_i.append({"role": "system", "content": system_prompt})
|
| 515 |
+
contents_i.append({"role": "user", "content": user_prompt})
|
| 516 |
+
contents_i.append({"role": "assistant", "content": "null"})
|
| 517 |
+
print(audio_path)
|
| 518 |
+
res = model.generate(
|
| 519 |
+
input=[audio_path],
|
| 520 |
+
use_itn=True,
|
| 521 |
+
batch_size=1,
|
| 522 |
+
)
|
| 523 |
+
elif pipeline_type == "sensevoice":
|
| 524 |
+
res = model.generate(
|
| 525 |
+
input=audio_path,
|
| 526 |
+
cache={},
|
| 527 |
+
language="auto", # "zh", "en", "yue", "ja", "ko", "nospeech"
|
| 528 |
+
use_itn=True,
|
| 529 |
+
batch_size_s=60,
|
| 530 |
+
merge_vad=True,
|
| 531 |
+
merge_length_s=15,
|
| 532 |
+
)
|
| 533 |
+
|
| 534 |
+
transcription = rich_transcription_postprocess(res[0]["text"])
|
| 535 |
+
end_time_perf = time.time()
|
| 536 |
+
|
| 537 |
+
# Calculate metrics
|
| 538 |
+
transcription_time = end_time_perf - start_time_perf
|
| 539 |
+
audio_file_size = os.path.getsize(audio_path) / (1024 * 1024)
|
| 540 |
+
|
| 541 |
+
metrics_output = (
|
| 542 |
+
f"Transcription time: {transcription_time:.2f} seconds\n"
|
| 543 |
+
f"Audio file size: {audio_file_size:.2f} MB\n"
|
| 544 |
+
)
|
| 545 |
+
|
| 546 |
+
# Save the transcription to a file
|
| 547 |
+
transcription_file = save_transcription(transcription)
|
| 548 |
+
|
| 549 |
+
# Always yield the final result, regardless of verbose setting
|
| 550 |
+
final_metrics = verbose_messages + metrics_output
|
| 551 |
+
yield final_metrics, transcription, transcription_file
|
| 552 |
+
|
| 553 |
+
except Exception as e:
|
| 554 |
+
error_msg = f"An error occurred during transcription: {str(e)}"
|
| 555 |
+
logging.error(error_msg)
|
| 556 |
+
yield verbose_messages + error_msg, "", None
|
| 557 |
+
|
| 558 |
+
finally:
|
| 559 |
+
# Clean up temporary audio files
|
| 560 |
+
if audio_path and is_temp_file and os.path.exists(audio_path):
|
| 561 |
+
os.remove(audio_path)
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
with gr.Blocks() as iface:
|
| 565 |
+
gr.Markdown("# Audio Transcription")
|
| 566 |
+
gr.Markdown("Transcribe audio using SenseVoice model with multilingual support.")
|
| 567 |
+
|
| 568 |
+
with gr.Row():
|
| 569 |
+
audio_input = gr.Audio(label="Upload or Record Audio", sources=["upload", "microphone"], type="filepath")
|
| 570 |
+
audio_url = gr.Textbox(label="Or Enter URL of audio file (direct link only, no YouTube)")
|
| 571 |
+
|
| 572 |
+
transcribe_button = gr.Button("Transcribe")
|
| 573 |
+
|
| 574 |
+
with gr.Accordion("Advanced Options", open=False):
|
| 575 |
+
with gr.Row():
|
| 576 |
+
proxy_url = gr.Textbox(label="Proxy URL", placeholder="Enter proxy URL if needed", value="", lines=1)
|
| 577 |
+
proxy_username = gr.Textbox(label="Proxy Username", placeholder="Proxy username (optional)", value="", lines=1)
|
| 578 |
+
proxy_password = gr.Textbox(label="Proxy Password", placeholder="Proxy password (optional)", value="", lines=1, type="password")
|
| 579 |
+
|
| 580 |
+
|
| 581 |
+
with gr.Row():
|
| 582 |
+
pipeline_type = gr.Dropdown(
|
| 583 |
+
choices=["sensevoice","fun-asr-nano"],
|
| 584 |
+
label="Pipeline Type",
|
| 585 |
+
value="fun-asr-nano"
|
| 586 |
+
)
|
| 587 |
+
model_id = gr.Dropdown(
|
| 588 |
+
label="Model",
|
| 589 |
+
choices=get_model_options("fun-asr-nano"),
|
| 590 |
+
value=FUN_ASR_NANO_MODEL_PATH_LIST[0] # Default to official Local Model
|
| 591 |
+
)
|
| 592 |
+
with gr.Row():
|
| 593 |
+
download_method = gr.Dropdown(
|
| 594 |
+
choices=["requests", "ffmpeg", "aria2", "wget"],
|
| 595 |
+
label="Download Method",
|
| 596 |
+
value="requests"
|
| 597 |
+
)
|
| 598 |
+
|
| 599 |
+
with gr.Row():
|
| 600 |
+
start_time = gr.Number(label="Start Time (seconds)", value=None, minimum=0)
|
| 601 |
+
end_time = gr.Number(label="End Time (seconds)", value=None, minimum=0)
|
| 602 |
+
verbose = gr.Checkbox(label="Verbose Output", value=False)
|
| 603 |
+
|
| 604 |
+
with gr.Row():
|
| 605 |
+
metrics_output = gr.Textbox(label="Transcription Metrics and Verbose Messages", lines=10)
|
| 606 |
+
transcription_output = gr.Textbox(label="Transcription", lines=10)
|
| 607 |
+
transcription_file = gr.File(label="Download Transcription")
|
| 608 |
+
|
| 609 |
+
def update_model_dropdown(pipeline_type):
|
| 610 |
+
"""
|
| 611 |
+
Updates the model dropdown choices based on the selected pipeline type.
|
| 612 |
+
|
| 613 |
+
Args:
|
| 614 |
+
pipeline_type (str): The selected pipeline type.
|
| 615 |
+
|
| 616 |
+
Returns:
|
| 617 |
+
gr.update: Updated model dropdown component.
|
| 618 |
+
"""
|
| 619 |
+
try:
|
| 620 |
+
model_choices = get_model_options(pipeline_type)
|
| 621 |
+
logging.info(f"Model choices for {pipeline_type}: {model_choices}")
|
| 622 |
+
if model_choices:
|
| 623 |
+
return gr.update(choices=model_choices, value=model_choices[0], visible=True)
|
| 624 |
+
else:
|
| 625 |
+
return gr.update(choices=["No models available"], value=None, visible=False)
|
| 626 |
+
except Exception as e:
|
| 627 |
+
logging.error(f"Error in update_model_dropdown: {str(e)}")
|
| 628 |
+
return gr.update(choices=["Error"], value="Error", visible=True)
|
| 629 |
+
|
| 630 |
+
# Event handler for pipeline_type change
|
| 631 |
+
pipeline_type.change(update_model_dropdown, inputs=[pipeline_type], outputs=[model_id])
|
| 632 |
+
|
| 633 |
+
def transcribe_with_progress(*args):
|
| 634 |
+
# The audio_input is now the first argument
|
| 635 |
+
for result in transcribe_audio(*args):
|
| 636 |
+
yield result
|
| 637 |
+
|
| 638 |
+
transcribe_button.click(
|
| 639 |
+
transcribe_with_progress,
|
| 640 |
+
inputs=[audio_input, audio_url, proxy_url, proxy_username, proxy_password, pipeline_type, model_id, download_method, start_time, end_time, verbose],
|
| 641 |
+
outputs=[metrics_output, transcription_output, transcription_file]
|
| 642 |
+
)
|
| 643 |
+
|
| 644 |
+
# Note: For examples, users should use local audio files or upload their own files
|
| 645 |
+
# Examples with specific paths may not work for all users
|
| 646 |
+
|
| 647 |
+
gr.Markdown(f"""
|
| 648 |
+
### Usage Examples:
|
| 649 |
+
1. **Upload Audio**: Click the "Upload or Record Audio" button to select your audio file
|
| 650 |
+
2. **Select Pipeline Type**: Choose from available pipelines:
|
| 651 |
+
- **Fun-ASR-Nano** (default) - Large language model based ASR model
|
| 652 |
+
- **SenseVoice** - CTC-based based ASR model with VAD
|
| 653 |
+
|
| 654 |
+
3. **Available Model Options**:
|
| 655 |
+
|
| 656 |
+
**For Fun-ASR-Nano:**
|
| 657 |
+
- `Fun-ASR/model` (local path, default)
|
| 658 |
+
- `FunAudioLLM/fun-asr-nano` (HuggingFace)
|
| 659 |
+
- `FunAudioLLM/fun-asr-nano` (ModelScope)
|
| 660 |
+
|
| 661 |
+
**For SenseVoice:**
|
| 662 |
+
- `Fun-ASR/model/SenseVoiceSmall` (local path, default for this pipeline)
|
| 663 |
+
- `FunAudioLLM/SenseVoiceSmall` (HuggingFace)
|
| 664 |
+
- `iic/SenseVoiceSmall` (ModelScope)
|
| 665 |
+
|
| 666 |
+
4. **Local Testing**: For development, you can use local paths as shown above
|
| 667 |
+
|
| 668 |
+
Supported languages:
|
| 669 |
+
- Fun-ASR-Nano: more than 50 languages and Chinese dialects.
|
| 670 |
+
- SenseVoiceSmall:Chinese (zh), English (en), Cantonese (yue), Japanese (ja), Korean (ko).
|
| 671 |
+
""")
|
| 672 |
+
|
| 673 |
+
iface.queue().launch(share=False, debug=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
requests
|
| 3 |
+
ffmpeg-python
|
| 4 |
+
pydub
|
| 5 |
+
torch
|
| 6 |
+
transformers
|
| 7 |
+
funasr>=1.1.3
|
| 8 |
+
torchaudio
|
| 9 |
+
modelscope
|
| 10 |
+
huggingface_hub
|
| 11 |
+
pydantic>=2.12.4
|
| 12 |
+
dotenv
|