Spaces:
Sleeping
Sleeping
Deploy MNIST CNN Gradio app
Browse files- app.py +54 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from torchvision import transforms
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
class MNISTNet(nn.Module):
|
| 10 |
+
def __init__(self):
|
| 11 |
+
super().__init__()
|
| 12 |
+
self.conv1 = nn.Conv2d(1, 32, 3, 1)
|
| 13 |
+
self.conv2 = nn.Conv2d(32, 64, 3, 1)
|
| 14 |
+
self.dropout1 = nn.Dropout(0.25)
|
| 15 |
+
self.dropout2 = nn.Dropout(0.5)
|
| 16 |
+
self.fc1 = nn.Linear(9216, 128)
|
| 17 |
+
self.fc2 = nn.Linear(128, 10)
|
| 18 |
+
def forward(self, x):
|
| 19 |
+
x = F.relu(self.conv1(x))
|
| 20 |
+
x = F.relu(self.conv2(x))
|
| 21 |
+
x = F.max_pool2d(x, 2)
|
| 22 |
+
x = self.dropout1(x)
|
| 23 |
+
x = torch.flatten(x, 1)
|
| 24 |
+
x = F.relu(self.fc1(x))
|
| 25 |
+
x = self.dropout2(x)
|
| 26 |
+
x = self.fc2(x)
|
| 27 |
+
return x
|
| 28 |
+
|
| 29 |
+
model = MNISTNet()
|
| 30 |
+
model.load_state_dict(torch.hub.load_state_dict_from_url('https://huggingface.co/Gaimundo/mnist-nn/resolve/main/mnist_cnn.pt', map_location='cpu'))
|
| 31 |
+
model.eval()
|
| 32 |
+
|
| 33 |
+
transform = transforms.Compose([
|
| 34 |
+
transforms.Grayscale(),
|
| 35 |
+
transforms.Resize((28,28)),
|
| 36 |
+
transforms.ToTensor(),
|
| 37 |
+
transforms.Normalize((0.1307,), (0.3081,))
|
| 38 |
+
])
|
| 39 |
+
|
| 40 |
+
def predict(image):
|
| 41 |
+
image = transform(image).unsqueeze(0)
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
output = model(image)
|
| 44 |
+
probs = torch.softmax(output, dim=1)[0]
|
| 45 |
+
return {str(i): float(probs[i]) for i in range(10)}
|
| 46 |
+
|
| 47 |
+
iface = gr.Interface(
|
| 48 |
+
fn=predict,
|
| 49 |
+
inputs=gr.Image(type="pil", shape=(28,28), image_mode="L", label="Draw a digit"),
|
| 50 |
+
outputs=gr.Label(num_top_classes=10),
|
| 51 |
+
title="MNIST Digit Classifier (PyTorch)"
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
gradio
|