import gradio as gr from huggingface_hub import hf_hub_download import torch import torch.nn as nn import torch.nn.functional as F from torchvision import transforms from PIL import Image class MNISTNet(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = F.relu(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) return x model = MNISTNet() model_file = hf_hub_download(repo_id="Gaimundo/mnist-nn", filename="mnist_cnn.pt") model.load_state_dict(torch.load(model_file, map_location="cpu")) model.eval() transform = transforms.Compose([ transforms.Grayscale(), transforms.Resize((28,28)), transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) def predict(image): image = transform(image).unsqueeze(0) with torch.no_grad(): output = model(image) probs = torch.softmax(output, dim=1)[0] return {str(i): float(probs[i]) for i in range(10)} iface = gr.Interface( fn=predict, inputs=gr.Image(type="pil", image_mode="L", label="Draw a digit"), outputs=gr.Label(num_top_classes=10), title="MNIST Digit Classifier (PyTorch)" ) iface.launch()