HAMMALE's picture
Upload app.py with huggingface_hub
aa1d421 verified
import gradio as gr
import torch
import librosa
import numpy as np
from transformers import AutoProcessor, AutoModelForCTC
# Load model and processor
print("Loading model...")
processor = AutoProcessor.from_pretrained("HAMMALE/mms-darija-finetuned")
model = AutoModelForCTC.from_pretrained("HAMMALE/mms-darija-finetuned")
def transcribe_audio(audio_file):
try:
# Load audio
if audio_file is None:
return "Please upload an audio file."
# Load and preprocess audio
audio, sr = librosa.load(audio_file, sr=16000)
# Handle very short audio
if len(audio) < 1600: # Less than 0.1 seconds
return "Audio too short. Please upload a longer audio file."
# Process with model
inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
# Inference
with torch.no_grad():
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
return transcription if transcription.strip() else "No transcription generated."
except Exception as e:
return f"Error processing audio: {str(e)}"
# Create Gradio interface
demo = gr.Interface(
fn=transcribe_audio,
inputs=gr.Audio(type="filepath", label="Upload Darija Audio"),
outputs=gr.Textbox(label="Transcription", placeholder="Transcription will appear here..."),
title="🎤 Darija Speech Recognition",
description="Upload an audio file in Moroccan Arabic (Darija) and get the transcription. This model was fine-tuned on the Darija Bible dataset.",
article="Model: [HAMMALE/mms-darija-finetuned](https://huggingface.co/HAMMALE/mms-darija-finetuned)",
examples=[
# You can add example audio files here if you have them
],
cache_examples=False,
theme=gr.themes.Soft()
)
if __name__ == "__main__":
demo.launch()