Spaces:
Runtime error
Runtime error
File size: 9,304 Bytes
81afba2 8bc82b6 81afba2 8bc82b6 81afba2 fd93d25 81afba2 f8c9785 81afba2 d8aa5fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
from response_parser import *
import gradio as gr
import os
username = os.getenv('USERNAME')
password = os.getenv('PASSWORD')
def initialization(state_dict: Dict) -> None:
if not os.path.exists('cache'):
os.mkdir('cache')
if state_dict["bot_backend"] is None:
state_dict["bot_backend"] = BotBackend()
if 'OPENAI_API_KEY' in os.environ:
del os.environ['OPENAI_API_KEY']
def get_bot_backend(state_dict: Dict) -> BotBackend:
return state_dict["bot_backend"]
def switch_to_gpt4(state_dict: Dict, whether_switch: bool) -> None:
bot_backend = get_bot_backend(state_dict)
if whether_switch:
bot_backend.update_gpt_model_choice("GPT-4")
else:
bot_backend.update_gpt_model_choice("GPT-3.5")
def add_text(state_dict: Dict, history: List, text: str) -> Tuple[List, Dict]:
bot_backend = get_bot_backend(state_dict)
bot_backend.add_text_message(user_text=text)
history = history + [(text, None)]
return history, gr.update(value="", interactive=False)
def add_file(state_dict: Dict, history: List, file) -> List:
bot_backend = get_bot_backend(state_dict)
path = file.name
filename = os.path.basename(path)
bot_msg = [f'π[{filename}]', None]
history.append(bot_msg)
bot_backend.add_file_message(path=path, bot_msg=bot_msg)
return history
def undo_upload_file(state_dict: Dict, history: List) -> Tuple[List, Dict]:
bot_backend = get_bot_backend(state_dict)
bot_msg = bot_backend.revoke_file()
if bot_msg is None:
return history, gr.Button.update(interactive=False)
else:
assert history[-1] == bot_msg
del history[-1]
if bot_backend.revocable_files:
return history, gr.Button.update(interactive=True)
else:
return history, gr.Button.update(interactive=False)
def refresh_file_display(state_dict: Dict) -> List[str]:
bot_backend = get_bot_backend(state_dict)
work_dir = bot_backend.jupyter_work_dir
filenames = os.listdir(work_dir)
paths = []
for filename in filenames:
paths.append(
os.path.join(work_dir, filename)
)
return paths
def restart_ui(history: List) -> Tuple[List, Dict, Dict, Dict, Dict]:
history.clear()
return (
history,
gr.Textbox.update(value="", interactive=False),
gr.Button.update(interactive=False),
gr.Button.update(interactive=False),
gr.Button.update(interactive=False)
)
def restart_bot_backend(state_dict: Dict) -> None:
bot_backend = get_bot_backend(state_dict)
bot_backend.restart()
def bot(state_dict: Dict, history: List) -> List:
bot_backend = get_bot_backend(state_dict)
while bot_backend.finish_reason in ('new_input', 'function_call'):
if history[-1][0] is None:
history.append(
[None, ""]
)
else:
history[-1][1] = ""
response = chat_completion(bot_backend=bot_backend)
for chunk in response:
history, weather_exit = parse_response(
chunk=chunk,
history=history,
bot_backend=bot_backend
)
yield history
if weather_exit:
exit(-1)
yield history
if __name__ == '__main__':
config = get_config()
custom_css = """
.gradio-container {
background-color: white ;
margin: 0 !important ;
padding: 0 !important ;
space : 0
}
#mainDiv {
width :100%;
border : none;
height: 100vh ;
}
#chatbot_div{
padding : 10px
}
#chatbot {
border-color: #a6a6a6 ;
background-color: white ;
border-radius: 5px;
}
#sidebar {
background-color: #f2f2f2;
padding : 5px ;
}
#files {
height : 60% ;
color : #f2f2f2 ;
background-color : #f2f2f2 ;
border : none
}
#gpt4_button {
border-radius: 0px ;
background-color : #0CAFFF ;
padding : 10px ;
}
#gpt4_button:hover {
background-color : #0ca6ff ;
}
#textbox {
border-color : #a6a6a6 ;
background-color : white ;
}
#textbox:hover {
border-color : black ;
}
#upload_button {
background-color : #b3b3b3;
}
#upload_button:hover {
background-color : #8c8c8c ;
box-shadow: 0 12px 16px 0 rgba(0,0,0,0.24),0 17px 50px 0 rgba(0,0,0,0.19);
}
/* width */
::-webkit-scrollbar {
width: 4px;
}
/* Track */
::-webkit-scrollbar-track {
background: #f1f1f1;
}
/* Handle */
::-webkit-scrollbar-thumb {
background: #0CAFFF;
}
/* Handle on hover */
::-webkit-scrollbar-thumb:hover {
background: #555;
}
footer{display:none !important}
"""
javascript_code = """
function get_browser_height() {
return window.innerHeight;
}
"""
with gr.Blocks(theme=gr.themes.Base(),css= custom_css , title='DMO-GPT-Interpreter') as block:
"""
Reference: https://www.gradio.app/guides/creating-a-chatbot-fast
"""
# UI components
state = gr.State(value={"bot_backend": None})
with gr.Row( elem_id="mainDiv"):
with gr.Column( elem_id="sidebar" , scale=0.20):
sidebar_header = gr.HTML("<h1 style='color:black; font-weight:bold; text-align:center; margin-top : 10px ;'>DMO-GPT-Interpreter</h1>")
hr_linr = gr.HTML("<hr/>")
file_section = gr.HTML("<h2 style='color:gray; font-weight:bold; text-align:start; margin-top : 5px ; font-size: 18px ; margin-bottom: -3px'>Files</h2>")
file_output = gr.Files(elem_id="files", show_label=False )
setting_section = gr.HTML("<h2 style='color:gray; font-weight:bold; text-align:start; margin-top : 5px ; font-size: 18px ; margin-bottom: -3px'>Settings</h2>")
check_box = gr.Checkbox(label="Use with GPT-4 β¨", interactive=config['model']['GPT-4']['available'] , elem_id="gpt4_button" , scale=2)
check_box.change(fn=switch_to_gpt4, inputs=[state, check_box])
with gr.Column( elem_id="chatbot_div"):
chatbot = gr.Chatbot([], elem_id="chatbot", height=600 , label="Welcome to DMO-GPT-Interpreter!" , show_share_button=False)
with gr.Row():
with gr.Column(scale=0.85 ):
text_box = gr.Textbox(
show_label=False,
placeholder="Enter text and press enter, or upload a file",
container=False,
elem_id='textbox'
)
with gr.Column(scale=0.15, min_width=0):
file_upload_button = gr.UploadButton("π Upload log files", file_types=['file'] , elem_id="upload_button")
# with gr.Tab("Chat"):
# chatbot = gr.Chatbot([], elem_id="chatbot", label="Local Code Interpreter", height=500)
# with gr.Row():
# with gr.Column(scale=0.85 ):
# text_box = gr.Textbox(
# show_label=False,
# placeholder="Enter text and press enter, or upload a file",
# container=False
#
# )
# with gr.Column(scale=0.15, min_width=0):
# file_upload_button = gr.UploadButton("π", file_types=['file'])
# with gr.Row(equal_height=True):
# with gr.Column(scale=0.7):
# check_box = gr.Checkbox(label="Use GPT-4", interactive=config['model']['GPT-4']['available'])
# check_box.change(fn=switch_to_gpt4, inputs=[state, check_box])
# with gr.Column(scale=0.15, min_width=0):
# restart_button = gr.Button(value='π Restart')
# with gr.Column(scale=0.15, min_width=0):
# undo_file_button = gr.Button(value="β©οΈUndo upload file", interactive=False)
# with gr.Tab("Files"):
# file_output = gr.Files()
# Components function binding
txt_msg = text_box.submit(add_text, [state, chatbot, text_box], [chatbot, text_box], queue=False).then(
bot, [state, chatbot], chatbot
)
txt_msg.then(fn=refresh_file_display, inputs=[state], outputs=[file_output])
txt_msg.then(lambda: gr.update(interactive=True), None, [text_box], queue=False)
txt_msg.then(lambda: gr.Button.update(interactive=False), None, queue=False)
file_msg = file_upload_button.upload(
add_file, [state, chatbot, file_upload_button], [chatbot], queue=False
).then(
bot, [state, chatbot], chatbot
)
file_msg.then(lambda: gr.Button.update(interactive=True), None, queue=False)
file_msg.then(fn=refresh_file_display, inputs=[state], outputs=[file_output])
block.load(fn=initialization, inputs=[state] , _js=javascript_code)
block.queue()
block.launch(inbrowser=True , auth=(username,password) , auth_message= "Login to continue with DMO-GPT-Interpreter" , favicon_path="ai.png" )
|