Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,326 Bytes
c28dddb 6dc99b2 c28dddb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
import os, sys
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
import json
import torch
import argparse
import numpy as np
from PIL import Image, ImageOps
import imageio
# from my_utils.plot import viz_graph
from my_utils.misc import load_config
import torchvision.transforms as T
from diffusers import DDPMScheduler
from models.denoiser import Denoiser
from scripts.json2urdf import create_urdf_from_json, pybullet_render
from dataset.utils import make_white_background, load_input_from, convert_data_range, parse_tree
import models
import torch.nn.functional as F
from io import BytesIO
import base64
from scripts.graph_pred.api import predict_graph_twomode, gpt_infer_image_category
import subprocess
import spaces
import time
cat_ref = {
"Table": 0,
"Dishwasher": 1,
"StorageFurniture": 2,
"Refrigerator": 3,
"WashingMachine": 4,
"Microwave": 5,
"Oven": 6,
}
def run_retrieve(src_dir, json_name, data_root):
fn_call = ['python', 'scripts/mesh_retrieval/retrieve.py', '--src_dir', src_dir, '--json_name', json_name, '--gt_data_root', data_root]
try:
subprocess.run(fn_call, check=True, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as e:
print(f'Error from run_retrieve: {src_dir}')
print(f'Error: {e}')
def make_white_background(src_img):
'''Make the white background for the input RGBA image.'''
src_img.load()
background = Image.new("RGB", src_img.size, (255, 255, 255))
background.paste(src_img, mask=src_img.split()[3]) # 3 is the alpha channel
return background
def pad_to_square(img, fill=0):
"""Pad image to square with given fill value (default: 0 = black)."""
width, height = img.size
if width == height:
return img
max_side = max(width, height)
delta_w = max_side - width
delta_h = max_side - height
padding = (delta_w // 2, delta_h // 2, delta_w - delta_w // 2, delta_h - delta_h // 2)
return ImageOps.expand(img, padding, fill=fill)
def load_img(img_path):
transform = T.Compose([
T.Resize((224, 224), interpolation=T.InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])
with Image.open(img_path) as img:
if img.mode == 'RGBA':
img = make_white_background(img)
img = img.convert('RGB') # Ensure it's 3-channel for normalization
img = pad_to_square(img, fill=0)
img = transform(img)
img_batch = img.unsqueeze(0).cuda()
return img_batch
def load_frame_with_imageio(frame):
"""
将单帧图像处理为符合 DINO 模型输入的格式。
"""
transform = T.Compose([
T.Resize((224, 224), interpolation=T.InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])
img = Image.fromarray(frame) # 转为 PIL 图像
if img.mode == 'RGBA':
img = make_white_background(img)
img = transform(img) # 应用预处理
return img.unsqueeze(0).cuda() # 增加 batch 维度
def read_video_as_batch_with_imageio(video_path):
"""
使用 imageio 读取视频并将所有帧处理为 batch 格式 (B, C, H, W)。
"""
reader = imageio.get_reader(video_path)
batch_frames = []
try:
for frame in reader:
# 加载帧并处理为 (1, C, H, W)
processed_frame = load_frame_with_imageio(frame)
batch_frames.append(processed_frame)
reader.close()
if batch_frames:
return torch.cat(batch_frames, dim=0).cuda() # 在 batch 维度堆叠,并转移到 GPU
else:
print("视频没有有效帧")
return None
except Exception as e:
print(f"处理视频时出错: {e}")
return None
def extract_dino_feature(img_path_1, img_path_2):
print('Extracting DINO feature...')
feat_1 = load_img(img_path_1)
feat_2 = load_img(img_path_2)
frames = torch.cat([feat_1, feat_2], dim=0)
dinov2_vitb14_reg = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14_reg', pretrained=True).cuda()
print('step4')
with torch.no_grad():
feat = dinov2_vitb14_reg.forward_features(frames)["x_norm_patchtokens"]
# release the GPU memory of the model
feat_input = torch.cat([feat[0], feat[-1]], dim=0).unsqueeze(0)
print('Extracting DINO feature over')
torch.cuda.empty_cache()
return feat_input
def set_scheduler(n_steps=100):
scheduler = DDPMScheduler(num_train_timesteps=1000, beta_schedule='linear', prediction_type='epsilon')
scheduler.set_timesteps(n_steps)
return scheduler
def prepare_model_input(data, cond, feat, n_samples):
# attention masks
attr_mask = torch.from_numpy(cond['attr_mask']).unsqueeze(0).repeat(n_samples, 1, 1)
key_pad_mask = torch.from_numpy(cond['key_pad_mask'])
graph_mask = torch.from_numpy(cond['adj_mask'])
# input image feature
f = feat.repeat(n_samples, 1, 1)
# input noise
B, C = data.shape
noise = torch.randn([n_samples, B, C], dtype=torch.float32)
# dummy image feature (used for guided diffusion)
dummy_feat = torch.from_numpy(np.load('systems/dino_dummy.npy').astype(np.float32))
dummy_feat = dummy_feat.unsqueeze(0).repeat(n_samples, 1, 1)
# dummy object category
cat = torch.zeros(1, dtype=torch.long).repeat(n_samples)
return {
"noise": noise.cuda(),
"attr_mask": attr_mask.cuda(),
"key_pad_mask": key_pad_mask.cuda(),
"graph_mask": graph_mask.cuda(),
"dummy_f": dummy_feat.cuda(),
'cat': cat.cuda(),
'f': f.cuda(),
}
def prepare_model_input_nocond(feat, n_samples):
# attention masks
cond_example = np.zeros((32*5, 32*5), dtype=bool)
attr_mask = np.eye(32, 32, dtype=bool)
attr_mask = attr_mask.repeat(5, axis=0).repeat(5, axis=1)
attr_mask = torch.from_numpy(attr_mask).unsqueeze(0).repeat(n_samples, 1, 1)
key_pad_mask = torch.from_numpy(cond_example).unsqueeze(0).repeat(n_samples, 1, 1)
graph_mask = torch.from_numpy(cond_example).unsqueeze(0).repeat(n_samples, 1, 1)
# input image feature
f = feat.repeat(n_samples, 1, 1)
# input noise
data = np.zeros((32*5, 6), dtype=bool)
noise = torch.randn(data.shape, dtype=torch.float32).repeat(n_samples, 1, 1)
# dummy image feature (used for guided diffusion)
dummy_feat = torch.from_numpy(np.load('systems/dino_dummy.npy').astype(np.float32))
dummy_feat = dummy_feat.unsqueeze(0).repeat(n_samples, 1, 1)
# dummy object category
cat = torch.zeros(1, dtype=torch.long).repeat(n_samples)
return {
"noise": noise.cuda(),
"attr_mask": attr_mask.cuda(),
"key_pad_mask": key_pad_mask.cuda(),
"graph_mask": graph_mask.cuda(),
"dummy_f": dummy_feat.cuda(),
'cat': cat.cuda(),
'f': f.cuda(),
}
def save_graph(pred_graph, save_dir):
print(f'Saving the predicted graph to {save_dir}/pred_graph.json')
# save the response
with open(os.path.join(save_dir, "pred_graph.json"), "w") as f:
json.dump(pred_graph, f, indent=4)
# Visualize the graph
# img_graph = Image.fromarray(viz_graph(pred_graph))
# img_graph.save(os.path.join(save_dir, "pred_graph.png"))
def forward(model, scheduler, inputs, omega=0.5):
print('Running inference...')
noisy_x = inputs['noise']
for t in scheduler.timesteps:
timesteps = torch.tensor([t], device=inputs['noise'].device)
outputs_cond = model(
x=noisy_x,
cat=inputs['cat'],
timesteps=timesteps,
feat=inputs['f'],
key_pad_mask=inputs['key_pad_mask'],
graph_mask=inputs['graph_mask'],
attr_mask=inputs['attr_mask'],
label_free=True,
) # take condtional image as input
if omega != 0:
outputs_free = model(
x=noisy_x,
cat=inputs['cat'],
timesteps=timesteps,
feat=inputs['dummy_f'],
key_pad_mask=inputs['key_pad_mask'],
graph_mask=inputs['graph_mask'],
attr_mask=inputs['attr_mask'],
label_free=True,
) # take the dummy DINO features for the condition-free mode
noise_pred = (1 + omega) * outputs_cond['noise_pred'] - omega * outputs_free['noise_pred']
else:
noise_pred = outputs_cond['noise_pred']
noisy_x = scheduler.step(noise_pred, t, noisy_x).prev_sample
return noisy_x
def _convert_json(x, c):
out = {"meta": {}, "diffuse_tree": []}
n_nodes = c["n_nodes"]
par = c["parents"].tolist()
adj = c["adj"]
np.fill_diagonal(adj, 0) # remove self-loop for the root node
if "obj_cat" in c:
out["meta"]["obj_cat"] = c["obj_cat"]
# convert the data to original range
data = convert_data_range(x)
# parse the tree
out["diffuse_tree"] = parse_tree(data, n_nodes, par, adj)
return out
def post_process(output, cond, save_root, gt_data_root, visualize=False):
print('Post-processing...')
# N = output.shape[0]
N = 1
for i in range(N):
cond_n = {}
cond_n['n_nodes'] = cond['n_nodes'][i]
cond_n['parents'] = cond['parents'][i]
cond_n['adj'] = cond['adj'][i]
cond_n['obj_cat'] = cond['cat']
# convert the raw model output to the json format
out_json = _convert_json(output, cond_n)
save_dir = os.path.join(save_root, str(i))
os.makedirs(save_dir, exist_ok=True)
with open(os.path.join(save_dir, "object.json"), "w") as f:
json.dump(out_json, f, indent=4)
# retrieve part meshes (call python script)
# print(f"Retrieving part meshes for the object {i}...")
# os.system(f"python scripts/mesh_retrieval/retrieve.py --src_dir {save_dir} --json_name object.json --gt_data_root {gt_data_root}")
def load_model(ckpt_path, config):
print('Loading model from checkpoint...')
model = models.make(config.name, config)
state_dict = torch.load(ckpt_path)
state_dict = {k.replace("model.", ""): v for k, v in state_dict.items()}
model.load_state_dict(state_dict)
model.eval()
return model.cuda()
def convert_pred_graph(pred_graph):
cond = {}
B, K = pred_graph.shape[:2]
adj = np.zeros((B, K, K), dtype=np.float32)
padding = np.zeros((B, 5 * K, 5* K), dtype=bool)
parents = np.zeros((B, K), dtype=np.int32)
n_nodes = np.zeros((B,), dtype=np.int32)
for b in range(B):
node_len = 0
for k in range(K):
if pred_graph[b, k] == k and k > 0:
node_len = k
break
node = pred_graph[b, k]
adj[b, k, node] = 1
adj[b, node, k] = 1
parents[b, k] = node
adj[b, node_len:] = 1
padding[b, :, :5 * node_len] = 1
parents[b, 0] = -1
n_nodes[b] = node_len
adj_mask = adj.astype(bool).repeat(5, axis=1).repeat(5, axis=2)
attr_mask = np.eye(32, 32, dtype=bool)
attr_mask = attr_mask.repeat(5, axis=0).repeat(5, axis=1)
cond['adj_mask'] = adj_mask
cond['attr_mask'] = attr_mask
cond['key_pad_mask'] = padding
cond['adj'] = adj
cond['parents'] = parents
cond['n_nodes'] = n_nodes
cond['cat'] = 'StorageFurniture'
data = np.zeros((32*5, 6), dtype=bool)
return data, cond
def bfs_tree_simple(tree_list):
order = [0] * len(tree_list)
queue = []
current_node_idx = 0
for node_idx, node in enumerate(tree_list):
if node['parent'] == -1:
queue.append(node['id'])
order[current_node_idx] = node_idx
current_node_idx += 1
break
while len(queue) > 0:
current_node = queue.pop(0)
for node_idx, node in enumerate(tree_list):
if node['parent'] == current_node:
queue.append(node['id'])
order[current_node_idx] = node_idx
current_node_idx += 1
return order
def get_graph_from_gpt(img_path_1, img_path_2):
first_img = Image.open(img_path_1)
first_img_data = first_img.resize((1024, 1024))
buffer = BytesIO()
first_img_data.save(buffer, format="PNG")
buffer.seek(0)
# encode the image as base64
first_encoded_image = base64.b64encode(buffer.read()).decode("utf-8")
second_img = Image.open(img_path_2)
second_img_data = second_img.resize((1024, 1024))
buffer = BytesIO()
second_img_data.save(buffer, format="PNG")
buffer.seek(0)
# encode the image as base64
second_encoded_image = base64.b64encode(buffer.read()).decode("utf-8")
pred_gpt = predict_graph_twomode('', first_img_data=first_encoded_image, second_img_data=second_encoded_image)
print(pred_gpt)
pred_graph = pred_gpt['diffuse_tree']
# order = bfs_tree_simple(pred_graph)
# pred_graph = [pred_graph[i] for i in order]
# generate array [0, 1, 2, ..., 31] for init
graph_array = np.array([i for i in range(32)])
for node_idx, node in enumerate(pred_graph):
if node['parent'] == -1:
graph_array[node_idx] = node_idx
else:
graph_array[node_idx] = node['parent']
# new axis for batch
graph_array = np.expand_dims(graph_array, axis=0)
cat_str = gpt_infer_image_category(first_encoded_image, second_encoded_image)
return torch.from_numpy(graph_array).cuda().repeat(3, 1), cat_str
@spaces.GPU
def run_demo(args):
# extract DINOV2 feature from the input image
t1 = time.time()
feat = extract_dino_feature(args.img_path_1, args.img_path_2)
t2 = time.time()
print(f'Extracted DINO feature in {t2 - t1:.2f} seconds')
scheduler = set_scheduler(args.n_denoise_steps)
# load the checkpoint of the model
model = load_model(args.ckpt_path, args.config.system.model)
# inference
with torch.no_grad():
t3 = time.time()
pred_graph, cat_str = get_graph_from_gpt(args.img_path_1, args.img_path_2)
t4 = time.time()
print(f'Got the predicted graph in {t4 - t3:.2f} seconds')
print(pred_graph)
data, cond = convert_pred_graph(pred_graph)
inputs = prepare_model_input(data, cond, feat, n_samples=args.n_samples)
# Update the object category
cond['cat'] = cat_str
inputs['cat'][:] = cat_ref[cat_str]
print(f'Object category predicted by GPT: {cat_str}, {cat_ref[cat_str]}')
output = forward(model, scheduler, inputs, omega=args.omega).cpu().numpy()
t5 = time.time()
print(f'Forwarded the model in {t5 - t4:.2f} seconds')
# post-process
post_process(output, cond, args.save_dir, args.gt_data_root, visualize=True)
# retrieve
for sample in os.listdir(args.save_dir):
sample_dir = os.path.join(args.save_dir, sample)
t6 = time.time()
run_retrieve(sample_dir, 'object.json', args.gt_data_root)
t7 = time.time()
print(f'Retrieved part meshes for in {t7 - t6:.2f} seconds')
save_json_path = os.path.join(args.save_dir, "0", "object.json")
with open(save_json_path, 'r') as file:
json_data = json.load(file)
create_urdf_from_json(json_data, save_json_path.replace('.json', '.urdf'))
pybullet_render(save_json_path.replace('.json', '.urdf'), os.path.join(args.save_dir, "0"), 8)
if __name__ == '__main__':
'''
Script for running the inference on an example image input.
'''
parser = argparse.ArgumentParser()
parser.add_argument("--img_path_1", type=str, default='examples/1.png', help="path to the input image")
parser.add_argument("--img_path_2", type=str, default='examples/1_open_1.png', help="path to the input image")
parser.add_argument("--ckpt_path", type=str, default='exps/singapo/final/ckpts/last.ckpt', help="path to the checkpoint of the model")
parser.add_argument("--config_path", type=str, default='exps/singapo/final/config/parsed.yaml', help="path to the config file")
parser.add_argument("--use_example_graph", action="store_true", default=False, help="if you don't have the openai key yet, turn on to use the example graph for inference")
parser.add_argument("--save_dir", type=str, default='results', help="path to save the output")
parser.add_argument("--gt_data_root", type=str, default='./', help="the root directory of the original data, used for part mesh retrieval")
parser.add_argument("--n_samples", type=int, default=3, help="number of samples to generate given the input")
parser.add_argument("--omega", type=float, default=0.5, help="the weight of the condition-free mode in the inference")
parser.add_argument("--n_denoise_steps", type=int, default=100, help="number of denoising steps")
args = parser.parse_args()
assert os.path.exists(args.img_path_1), "The input image does not exist"
# assert os.path.exists(args.ckpt_path), "The checkpoint does not exist"
assert os.path.exists(args.config_path), "The config file does not exist"
os.makedirs(args.save_dir, exist_ok=True)
config = load_config(args.config_path)
args.config = config
run_demo(args) |