File size: 9,962 Bytes
c28dddb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
"""
This script computes the Chamfer Distance (CD) between two objects\n
"""

import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import torch
import numpy as np
import trimesh
from copy import deepcopy
from pytorch3d.structures import Meshes
from pytorch3d.ops import sample_points_from_meshes
from pytorch3d.loss import chamfer_distance
from objects.motions import transform_all_parts
from objects.dict_utils import (
    zero_center_object,
    rescale_object,
    compute_overall_bbox_size,
    get_base_part_idx,
    find_part_mapping
)

def _load_and_combine_plys(dir, ply_files, scale=None, z_rotate=None, translate=None):
    """
    Load and combine the ply files into one PyTorch3D mesh

    - dir: the directory of the object in which the ply files are from\n
    - ply_files: the list of ply files\n
    - scale: the scale factor to apply to the vertices\n
    - z_rotate: whether to rotate the object around the z-axis by 90 degrees\n
    - translate: the translation to apply to the vertices\n

    Return:\n
    - mesh: one PyTorch3D mesh of the combined ply files
    """

    # Combine the ply files into one
    meshes = []
    for ply_file in ply_files:
        meshes.append(trimesh.load(os.path.join(dir, ply_file), force="mesh"))
    full_part_mesh = trimesh.util.concatenate(meshes)

    # Apply the transformations
    full_part_mesh.vertices -= full_part_mesh.bounding_box.centroid
    transformation = trimesh.transformations.compose_matrix(
        scale=scale,
        angles=[0, 0, np.radians(90) if z_rotate else 0],
        translate=translate,
    )
    full_part_mesh.apply_transform(transformation)

    # Create the PyTorch3D mesh
    mesh = Meshes(
        verts=torch.as_tensor(full_part_mesh.vertices, dtype=torch.float32, device='cuda').unsqueeze(
            0
        ),
        faces=torch.as_tensor(full_part_mesh.faces, dtype=torch.int32, device='cuda').unsqueeze(0),
    )

    return mesh


def _compute_chamfer_distance(
    obj1_part_points, obj2_part_points, part_mapping=None, exclude_id=-1
):
    """
    Compute the chamfer distance between the two set of points representing the two objects

    - obj1_part_points: the set of points representing the first object\n
    - obj2_part_points: the set of points representing the second object\n
    - part_mapping (optional): the part mapping from the first object to the second object, if provided, the chamfer distance will be computed between the corresponding parts\n
    - exclude_id (optional): the part id to exclude from the chamfer distance computation, the default if provided is the base part id\n

    Return:\n
    - distance: the chamfer distance between the two objects
    """
    if part_mapping is not None:
        n_parts = part_mapping.shape[0]
        distance = 0
        for i in range(n_parts):
            if i == exclude_id:
                continue
            obj1_part_points_i = obj1_part_points[i]
            obj2_part_points_i = obj2_part_points[int(part_mapping[i, 0])]
            with torch.no_grad():
                obj1_part_points_i = obj1_part_points_i.cuda()
                obj2_part_points_i = obj2_part_points_i.cuda()
                # symmetric chamfer distance
                forward_distance, _ = chamfer_distance(
                    obj1_part_points_i[None, :],
                    obj2_part_points_i[None, :],
                    batch_reduction=None,
                )
                backward_distance, _ = chamfer_distance(
                    obj2_part_points_i[None, :],
                    obj1_part_points_i[None, :],
                    batch_reduction=None,
                )
                distance += (forward_distance.item() + backward_distance.item()) * 0.5
        distance /= n_parts
    else:
        # Merge the points of all parts into one tensor
        obj1_part_points = obj1_part_points.reshape(-1, 3)
        obj2_part_points = obj2_part_points.reshape(-1, 3)

        # Compute the chamfer distance between the two objects
        with torch.no_grad():
            obj1_part_points = obj1_part_points.cuda()
            obj2_part_points = obj2_part_points.cuda()
            forward_distance, _ = chamfer_distance(
                obj1_part_points[None, :],
                obj2_part_points[None, :],
                batch_reduction=None,
            )
            backward_distance, _ = chamfer_distance(
                obj2_part_points[None, :],
                obj1_part_points[None, :],
                batch_reduction=None,
            )
            distance = (forward_distance.item() + backward_distance.item()) * 0.5

    return distance


def _get_scores(
    src_dict,
    tgt_dict,
    original_src_part_points,
    original_tgt_part_points,
    part_mapping,
    num_states,
    include_base,
    src_base_idx,
):

    chamfer_distances = np.zeros(num_states, dtype=np.float32)
    joint_states = np.linspace(0, 1, num_states)
    for state_idx, state in enumerate(joint_states):

        # Reset the part point clouds
        src_part_points = deepcopy(original_src_part_points)
        tgt_part_points = deepcopy(original_tgt_part_points)

        # Transform the part point clouds to the current state using the joints
        transform_all_parts(src_part_points.numpy(), src_dict, state, dry_run=False)
        transform_all_parts(tgt_part_points.numpy(), tgt_dict, state, dry_run=False)

        # Compute the chamfer distance between the two objects
        chamfer_distances[state_idx] = _compute_chamfer_distance(
            src_part_points,
            tgt_part_points,
            part_mapping=part_mapping,
            exclude_id=-1 if include_base else src_base_idx,
        )

    # Compute the ID
    aid_cd = np.mean(chamfer_distances)
    rid_cd = chamfer_distances[0]

    return {
        "AS-CD": float(aid_cd),
        "RS-CD": float(rid_cd),
    }


def CD(
    gen_obj_dict,
    gen_obj_path,
    gt_obj_dict,
    gt_obj_path,
    num_states=5,
    num_samples=2048,
    include_base=False,
):
    """
    Compute the Chamfer Distance\n
    This metric is the average of per-part chamfer distance between the two objects over a number of articulation states\n

    - gen_obj_dict: the generated object dictionary\n
    - gen_obj_path: the directory to the predicted object\n
    - gt_obj_dict: the ground truth object dictionary\n
    - gt_obj_path: the directory to the ground truth object\n
    - num_states (optional): the number of articulation states to compute the metric\n
    - num_samples (optional): the number of samples to use\n
    - include_base (optional): whether to include the base part in the chamfer distance computation\n

    Return:\n
    - aid_score: the score over the sampled articulated states\n
    - rid_score: the score at the resting state\n
        - The score is in the range of [0, inf), lower is better
    """
    # Make copies of the dictionaries to avoid modifying the original dictionaries
    gen_dict = deepcopy(gen_obj_dict)
    gt_dict = deepcopy(gt_obj_dict)

    # Zero center the objects
    zero_center_object(gen_dict)
    zero_center_object(gt_dict)

    # Compute the scale factor by comparing the overall bbox size and scale the candidate object as a whole
    gen_bbox_size = compute_overall_bbox_size(gen_dict)
    gt_bbox_size = compute_overall_bbox_size(gt_dict)
    scale_factor = gen_bbox_size / gt_bbox_size
    rescale_object(gen_obj_dict, scale_factor)

    # Record the indices of the base parts of the two objects
    gen_base_idx = get_base_part_idx(gen_dict)
    gt_base_idx = get_base_part_idx(gt_dict)

    # Find mapping between the parts of the two objects based on closest bbox centers
    mapping_gen2gt = find_part_mapping(gen_dict, gt_dict, use_hungarian=True)
    mapping_gt2gen = find_part_mapping(gt_dict, gen_dict, use_hungarian=True)

    # Get the number of parts of the two objects
    gen_tree = gen_dict["diffuse_tree"]
    gt_tree = gt_dict["diffuse_tree"]
    gen_num_parts = len(gen_tree)
    gt_num_parts = len(gt_tree)

    # Get the paths of the ply files of the two objects
    gen_part_ply_paths = [
        {"dir": gen_obj_path, "files": gen_tree[i]["plys"]}
        for i in range(gen_num_parts)
    ]
    gt_part_ply_paths = [
        {"dir": gt_obj_path, "files": gt_tree[i]["plys"]}
        for i in range(gt_num_parts)
    ]

    # Load the ply files of the two objects and sample points from them
    gen_part_points = torch.zeros(
        (gen_num_parts, num_samples, 3), dtype=torch.float32
    )
    for i in range(gen_num_parts):
        part_mesh = _load_and_combine_plys(
            gen_part_ply_paths[i]["dir"],
            gen_part_ply_paths[i]["files"],
            scale=scale_factor,
            translate=gen_tree[i]["aabb"]["center"],
        )
        gen_part_points[i] = sample_points_from_meshes(
            part_mesh, num_samples=num_samples
        ).squeeze(0).cpu()

    gt_part_points = torch.zeros(
        (gt_num_parts, num_samples, 3), dtype=torch.float32
    )
    for i in range(gt_num_parts):
        part_mesh = _load_and_combine_plys(
            gt_part_ply_paths[i]["dir"],
            gt_part_ply_paths[i]["files"],
            translate=gt_tree[i]["aabb"]["center"],
        )
        gt_part_points[i] = sample_points_from_meshes(
            part_mesh, num_samples=num_samples
        ).squeeze(0).cpu()

    cd_gen2gt = _get_scores(
        gen_dict,
        gt_dict,
        gen_part_points,
        gt_part_points,
        mapping_gen2gt,
        num_states,
        include_base,
        gen_base_idx,
    )

    cd_gt2gen = _get_scores(
        gt_dict,
        gen_dict,
        gt_part_points,
        gen_part_points,
        mapping_gt2gen,
        num_states,
        include_base,
        gt_base_idx,
    )

    return {
        "AS-CD": (cd_gen2gt["AS-CD"] + cd_gt2gen["AS-CD"]) / 2,
        "RS-CD": (cd_gen2gt["RS-CD"] + cd_gt2gen["RS-CD"]) / 2,
    }