""" Code copied from lightning-bolts """ import math import warnings from typing import List from torch.optim import Optimizer from torch.optim.lr_scheduler import _LRScheduler class LinearWarmupCosineAnnealingLR(_LRScheduler): """Sets the learning rate of each parameter group to follow a linear warmup schedule between warmup_start_lr and base_lr followed by a cosine annealing schedule between base_lr and eta_min. .. warning:: It is recommended to call :func:`.step()` for :class:`LinearWarmupCosineAnnealingLR` after each iteration as calling it after each epoch will keep the starting lr at warmup_start_lr for the first epoch which is 0 in most cases. .. warning:: passing epoch to :func:`.step()` is being deprecated and comes with an EPOCH_DEPRECATION_WARNING. It calls the :func:`_get_closed_form_lr()` method for this scheduler instead of :func:`get_lr()`. Though this does not change the behavior of the scheduler, when passing epoch param to :func:`.step()`, the user should call the :func:`.step()` function before calling train and validation methods. """ def __init__( self, optimizer: Optimizer, warmup_epochs: int, max_epochs: int, warmup_start_lr: float = 0.0, eta_min: float = 0.0, last_epoch: int = -1, ) -> None: """ Args: optimizer (Optimizer): Wrapped optimizer. warmup_epochs (int): Maximum number of iterations for linear warmup max_epochs (int): Maximum number of iterations warmup_start_lr (float): Learning rate to start the linear warmup. Default: 0. eta_min (float): Minimum learning rate. Default: 0. last_epoch (int): The index of last epoch. Default: -1. """ self.warmup_epochs = warmup_epochs self.max_epochs = max_epochs self.warmup_start_lr = warmup_start_lr self.eta_min = eta_min super().__init__(optimizer, last_epoch) def get_lr(self) -> List[float]: """Compute learning rate using chainable form of the scheduler.""" if not self._get_lr_called_within_step: warnings.warn( "To get the last learning rate computed by the scheduler; please use `get_last_lr()`.", UserWarning, ) if self.last_epoch == 0: return [self.warmup_start_lr] * len(self.base_lrs) if self.last_epoch < self.warmup_epochs: return [ group["lr"] + (base_lr - self.warmup_start_lr) / (self.warmup_epochs - 1) for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups) ] if self.last_epoch == self.warmup_epochs: return self.base_lrs if (self.last_epoch - 1 - self.max_epochs) % (2 * (self.max_epochs - self.warmup_epochs)) == 0: return [ group["lr"] + (base_lr - self.eta_min) * (1 - math.cos(math.pi / (self.max_epochs - self.warmup_epochs))) / 2 for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups) ] return [ (1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) / (self.max_epochs - self.warmup_epochs))) / ( 1 + math.cos( math.pi * (self.last_epoch - self.warmup_epochs - 1) / (self.max_epochs - self.warmup_epochs) ) ) * (group["lr"] - self.eta_min) + self.eta_min for group in self.optimizer.param_groups ] def _get_closed_form_lr(self) -> List[float]: """Called when epoch is passed as a param to the `step` function of the scheduler.""" if self.last_epoch < self.warmup_epochs: return [ self.warmup_start_lr + self.last_epoch * (base_lr - self.warmup_start_lr) / (self.warmup_epochs - 1) for base_lr in self.base_lrs ] return [ self.eta_min + 0.5 * (base_lr - self.eta_min) * (1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) / (self.max_epochs - self.warmup_epochs))) for base_lr in self.base_lrs ]