# reference of object categories cat_ref = { "Table": 0, "Dishwasher": 1, "StorageFurniture": 2, "Refrigerator": 3, "WashingMachine": 4, "Microwave": 5, "Oven": 6, } data_mode_ref = { "aabb_max": 0, "aabb_min": 1, "joint_type": 2, "axis_dir": 3, "axis_ori": 4, "joint_range": 5, "label": 6 } # reference of semantic labels for each part sem_ref = { "fwd": { "door": 0, "drawer": 1, "base": 2, "handle": 3, "wheel": 4, "knob": 5, "shelf": 6, "tray": 7, }, "bwd": { 0: "door", 1: "drawer", 2: "base", 3: "handle", 4: "wheel", 5: "knob", 6: "shelf", 7: "tray", }, } # reference of joint types for each part joint_ref = { "fwd": {"fixed": 1, "revolute": 2, "prismatic": 3, "screw": 4, "continuous": 5}, "bwd": {1: "fixed", 2: "revolute", 3: "prismatic", 4: "screw", 5: "continuous"}, } import plotly.express as px # pallette for joint type color joint_color_ref = px.colors.qualitative.Set1 # pallette for graph node color # graph_color_ref = px.colors.qualitative.Bold + px.colors.qualitative.Prism # graph_color_ref = [ # "rgb(200, 200, 200)", # 奶橙黄 # "rgb(255, 196, 200)", # 莓奶粉 # "rgb(154, 228, 186)", # 牛油果绿 # "rgb(252, 208, 140)", # 奶橙黄 # "rgb(217, 189, 250)", # 薄紫 # "rgb(203, 237, 164)", # 抹茶绿 # "rgb(188, 229, 235)", # 青蓝灰 # "rgb(179, 199, 243)", # 雾蓝 # "rgb(255, 224, 130)", # 淡柠黄 # "rgb(222, 179, 212)", # 粉紫 # "rgb(148, 212, 224)", # 冰蓝 # ] graph_color_ref = [ "rgb(160, 160, 160)", # 奶橙灰 → 深灰白,对比提升 "rgb(255, 130, 145)", # 莓奶粉 → 更亮更红 "rgb(80, 200, 150)", # 牛油果绿 → 更深更绿 "rgb(255, 180, 60)", # 奶橙黄 → 更橙更亮 "rgb(180, 140, 255)", # 薄紫 → 更强饱和度紫 "rgb(130, 210, 50)", # 抹茶绿 → 偏亮偏黄的绿 "rgb(90, 190, 220)", # 青蓝灰 → 加蓝提升对比 "rgb(100, 150, 255)", # 雾蓝 → 饱和冷蓝 "rgb(255, 200, 0)", # 淡柠黄 → 纯柠黄 "rgb(200, 100, 190)", # 粉紫 → 更紫 "rgb(80, 180, 255)", # 冰蓝 → 更冷更亮的蓝 "rgb(255, 130, 145)", # 莓奶粉 → 更亮更红 "rgb(80, 200, 150)", # 牛油果绿 → 更深更绿 "rgb(255, 180, 60)", # 奶橙黄 → 更橙更亮 "rgb(180, 140, 255)", # 薄紫 → 更强饱和度紫 "rgb(130, 210, 50)", # 抹茶绿 → 偏亮偏黄的绿 "rgb(90, 190, 220)", # 青蓝灰 → 加蓝提升对比 "rgb(100, 150, 255)", # 雾蓝 → 饱和冷蓝 "rgb(255, 200, 0)", # 淡柠黄 → 纯柠黄 "rgb(200, 100, 190)", # 粉紫 → 更紫 "rgb(80, 180, 255)", # 冰蓝 → 更冷更亮的蓝 "rgb(255, 130, 145)", # 莓奶粉 → 更亮更红 "rgb(80, 200, 150)", # 牛油果绿 → 更深更绿 "rgb(255, 180, 60)", # 奶橙黄 → 更橙更亮 "rgb(180, 140, 255)", # 薄紫 → 更强饱和度紫 "rgb(130, 210, 50)", # 抹茶绿 → 偏亮偏黄的绿 "rgb(90, 190, 220)", # 青蓝灰 → 加蓝提升对比 "rgb(100, 150, 255)", # 雾蓝 → 饱和冷蓝 "rgb(255, 200, 0)", # 淡柠黄 → 纯柠黄 "rgb(200, 100, 190)", # 粉紫 → 更紫 "rgb(80, 180, 255)", # 冰蓝 → 更冷更亮的蓝 "rgb(255, 130, 145)", # 莓奶粉 → 更亮更红 "rgb(80, 200, 150)", # 牛油果绿 → 更深更绿 "rgb(255, 180, 60)", # 奶橙黄 → 更橙更亮 "rgb(180, 140, 255)", # 薄紫 → 更强饱和度紫 "rgb(130, 210, 50)", # 抹茶绿 → 偏亮偏黄的绿 "rgb(90, 190, 220)", # 青蓝灰 → 加蓝提升对比 "rgb(100, 150, 255)", # 雾蓝 → 饱和冷蓝 "rgb(255, 200, 0)", # 淡柠黄 → 纯柠黄 "rgb(200, 100, 190)", # 粉紫 → 更紫 "rgb(80, 180, 255)", # 冰蓝 → 更冷更亮的蓝 ] # pallette for semantic label color semantic_color_ref = px.colors.qualitative.Vivid_r # attention map visulaization color attn_color_ref = px.colors.sequential.Viridis from matplotlib.colors import LinearSegmentedColormap cmap_attn = LinearSegmentedColormap.from_list("mycmap", attn_color_ref, N=256)