Spaces:
Running
on
Zero
Running
on
Zero
YuxueYang
commited on
Commit
·
9bd5e40
1
Parent(s):
531d0cf
Drop class and use functionality for user-uploaded models
Browse files
app.py
CHANGED
|
@@ -28,224 +28,207 @@ import numpy as np
|
|
| 28 |
from scipy.interpolate import PchipInterpolator
|
| 29 |
|
| 30 |
SAVE_DIR = "outputs"
|
|
|
|
| 31 |
LENGTH = 16
|
| 32 |
WIDTH = 512
|
| 33 |
HEIGHT = 320
|
| 34 |
LAYER_CAPACITY = 4
|
| 35 |
DEVICE = "cuda"
|
| 36 |
-
|
|
|
|
|
|
|
| 37 |
os.makedirs("checkpoints", exist_ok=True)
|
| 38 |
|
| 39 |
snapshot_download(
|
| 40 |
"Yuppie1204/LayerAnimate-Mix",
|
| 41 |
local_dir="checkpoints/LayerAnimate-Mix",
|
| 42 |
)
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
else:
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
heatmap = torch.cat([graymap, offset], dim=1)
|
| 206 |
-
heatmap = rearrange(heatmap, '(f n) c h w -> n f c h w', n=self.layer_capacity)
|
| 207 |
-
heatmap = heatmap[None]
|
| 208 |
-
heatmap = heatmap.to(self.device)
|
| 209 |
-
|
| 210 |
-
sample = self.pipeline(
|
| 211 |
-
prompt,
|
| 212 |
-
self.L,
|
| 213 |
-
self.H,
|
| 214 |
-
self.W,
|
| 215 |
-
frame_tensor,
|
| 216 |
-
layer_masks = layer_masks,
|
| 217 |
-
layer_regions = layer_regions,
|
| 218 |
-
layer_static = layer_static,
|
| 219 |
-
motion_scores = motion_scores,
|
| 220 |
-
sketch = sketch,
|
| 221 |
-
trajectory = heatmap,
|
| 222 |
-
layer_validity = layer_validity,
|
| 223 |
-
num_inference_steps = num_inference_steps,
|
| 224 |
-
guidance_scale = guidance_scale,
|
| 225 |
-
guidance_rescale = 0.7,
|
| 226 |
-
negative_prompt = n_prompt,
|
| 227 |
-
num_videos_per_prompt = 1,
|
| 228 |
-
eta = 1.0,
|
| 229 |
-
generator = self.generator,
|
| 230 |
-
fps = 24,
|
| 231 |
-
mode = mode,
|
| 232 |
-
weight_dtype = self.weight_dtype,
|
| 233 |
-
output_type = "tensor",
|
| 234 |
-
).videos
|
| 235 |
-
output_video_path = os.path.join(self.savedir, "video.mp4")
|
| 236 |
-
save_videos_grid(sample, output_video_path, fps=8)
|
| 237 |
-
output_video_traj_path = os.path.join(self.savedir, "video_with_traj.mp4")
|
| 238 |
-
vis_traj_flag = np.zeros(trajectory.shape[1], dtype=bool)
|
| 239 |
-
for traj_idx in range(trajectory.shape[1]):
|
| 240 |
-
if not args_layer_statics[traj_layer_index[traj_idx]]:
|
| 241 |
-
vis_traj_flag[traj_idx] = True
|
| 242 |
-
vis_traj = torch.from_numpy(trajectory[:, vis_traj_flag])
|
| 243 |
-
save_videos_with_traj(sample[0], vis_traj, os.path.join(self.savedir, f"video_with_traj.mp4"), fps=8, line_width=7, circle_radius=10)
|
| 244 |
-
return output_video_path, output_video_traj_path
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
layeranimate = LayerAnimate()
|
| 248 |
-
|
| 249 |
|
| 250 |
def update_layer_region(image, layer_mask):
|
| 251 |
if image is None or layer_mask is None:
|
|
@@ -558,13 +541,13 @@ if __name__ == "__main__":
|
|
| 558 |
```
|
| 559 |
""")
|
| 560 |
|
| 561 |
-
pretrained_model_path.input(
|
| 562 |
-
input_image.upload(
|
| 563 |
-
input_image_end.upload(
|
| 564 |
for i in range(LAYER_CAPACITY):
|
| 565 |
-
layer_masks[i].upload(
|
| 566 |
layer_masks[i].change(update_layer_region, [input_image, layer_masks[i]], [layer_regions[i], layer_valids[i]])
|
| 567 |
-
layer_masks_end[i].upload(
|
| 568 |
layer_masks_end[i].change(update_layer_region, [input_image_end, layer_masks_end[i]], [layer_regions_end[i], layer_valids[i]])
|
| 569 |
layer_traj_controls[i][0].click(add_drag, layer_indices[i], None)
|
| 570 |
layer_traj_controls[i][1].click(
|
|
@@ -598,7 +581,7 @@ if __name__ == "__main__":
|
|
| 598 |
[layer_regions[i], layer_regions_end[i]]
|
| 599 |
)
|
| 600 |
run_button.click(
|
| 601 |
-
|
| 602 |
[input_image, input_image_end, pretrained_model_path, seed, text_prompt, text_n_prompt, num_inference_steps, guidance_scale,
|
| 603 |
*layer_masks, *layer_masks_end, *layer_controls, *layer_score_controls, *layer_sketch_controls, *layer_valids, *layer_statics],
|
| 604 |
[output_video, output_video_traj]
|
|
|
|
| 28 |
from scipy.interpolate import PchipInterpolator
|
| 29 |
|
| 30 |
SAVE_DIR = "outputs"
|
| 31 |
+
os.makedirs(SAVE_DIR, exist_ok=True)
|
| 32 |
LENGTH = 16
|
| 33 |
WIDTH = 512
|
| 34 |
HEIGHT = 320
|
| 35 |
LAYER_CAPACITY = 4
|
| 36 |
DEVICE = "cuda"
|
| 37 |
+
WEIGHT_DTYPE = torch.bfloat16
|
| 38 |
+
PIPELINE = None
|
| 39 |
+
GENERATOR = None
|
| 40 |
os.makedirs("checkpoints", exist_ok=True)
|
| 41 |
|
| 42 |
snapshot_download(
|
| 43 |
"Yuppie1204/LayerAnimate-Mix",
|
| 44 |
local_dir="checkpoints/LayerAnimate-Mix",
|
| 45 |
)
|
| 46 |
+
TEXT_ENCODER = FrozenOpenCLIPEmbedder().eval()
|
| 47 |
+
IMAGE_ENCODER = FrozenOpenCLIPImageEmbedderV2().eval()
|
| 48 |
+
|
| 49 |
+
TRANSFORMS = transforms.Compose([
|
| 50 |
+
transforms.Resize(min(HEIGHT, WIDTH)),
|
| 51 |
+
transforms.CenterCrop((HEIGHT, WIDTH)),
|
| 52 |
+
])
|
| 53 |
+
SAMPLE_GRID = np.meshgrid(np.linspace(0, WIDTH - 1, 10, dtype=int), np.linspace(0, HEIGHT - 1, 10, dtype=int))
|
| 54 |
+
SAMPLE_GRID = np.stack(SAMPLE_GRID, axis=-1).reshape(-1, 1, 2)
|
| 55 |
+
SAMPLE_GRID = np.repeat(SAMPLE_GRID, LENGTH, axis=1) # [N, F, 2]
|
| 56 |
+
|
| 57 |
+
@spaces.GPU
|
| 58 |
+
def set_seed(seed):
|
| 59 |
+
np.random.seed(seed)
|
| 60 |
+
torch.manual_seed(seed)
|
| 61 |
+
return torch.Generator(DEVICE).manual_seed(seed)
|
| 62 |
+
|
| 63 |
+
@spaces.GPU
|
| 64 |
+
def set_model(pretrained_model_path):
|
| 65 |
+
global PIPELINE
|
| 66 |
+
scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
|
| 67 |
+
image_projector = Resampler.from_pretrained(pretrained_model_path, subfolder="image_projector").eval()
|
| 68 |
+
vae, vae_dualref = None, None
|
| 69 |
+
if "I2V" or "Mix" in pretrained_model_path:
|
| 70 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").eval()
|
| 71 |
+
if "Interp" or "Mix" in pretrained_model_path:
|
| 72 |
+
vae_dualref = AutoencoderKL_Dualref.from_pretrained(pretrained_model_path, subfolder="vae_dualref").eval()
|
| 73 |
+
unet = UNetModel.from_pretrained(pretrained_model_path, subfolder="unet").eval()
|
| 74 |
+
layer_controlnet = LayerControlNet.from_pretrained(pretrained_model_path, subfolder="layer_controlnet").eval()
|
| 75 |
+
|
| 76 |
+
PIPELINE = AnimationPipeline(
|
| 77 |
+
vae=vae, vae_dualref=vae_dualref, text_encoder=TEXT_ENCODER, image_encoder=IMAGE_ENCODER, image_projector=image_projector,
|
| 78 |
+
unet=unet, layer_controlnet=layer_controlnet, scheduler=scheduler
|
| 79 |
+
).to(device=DEVICE, dtype=WEIGHT_DTYPE)
|
| 80 |
+
if "Interp" or "Mix" in pretrained_model_path:
|
| 81 |
+
PIPELINE.vae_dualref.decoder.to(dtype=torch.float32)
|
| 82 |
+
return pretrained_model_path
|
| 83 |
+
|
| 84 |
+
set_model("checkpoints/LayerAnimate-Mix")
|
| 85 |
+
|
| 86 |
+
def upload_image(image):
|
| 87 |
+
image = TRANSFORMS(image)
|
| 88 |
+
return image
|
| 89 |
+
|
| 90 |
+
def run(input_image, input_image_end, pretrained_model_path, seed,
|
| 91 |
+
prompt, n_prompt, num_inference_steps, guidance_scale,
|
| 92 |
+
*layer_args):
|
| 93 |
+
generator = set_seed(seed)
|
| 94 |
+
global layer_tracking_points
|
| 95 |
+
args_layer_tracking_points = [layer_tracking_points[i].value for i in range(LAYER_CAPACITY)]
|
| 96 |
+
|
| 97 |
+
args_layer_masks = layer_args[:LAYER_CAPACITY]
|
| 98 |
+
args_layer_masks_end = layer_args[LAYER_CAPACITY : 2 * LAYER_CAPACITY]
|
| 99 |
+
args_layer_controls = layer_args[2 * LAYER_CAPACITY : 3 * LAYER_CAPACITY]
|
| 100 |
+
args_layer_scores = list(layer_args[3 * LAYER_CAPACITY : 4 * LAYER_CAPACITY])
|
| 101 |
+
args_layer_sketches = layer_args[4 * LAYER_CAPACITY : 5 * LAYER_CAPACITY]
|
| 102 |
+
args_layer_valids = layer_args[5 * LAYER_CAPACITY : 6 * LAYER_CAPACITY]
|
| 103 |
+
args_layer_statics = layer_args[6 * LAYER_CAPACITY : 7 * LAYER_CAPACITY]
|
| 104 |
+
for layer_idx in range(LAYER_CAPACITY):
|
| 105 |
+
if args_layer_controls[layer_idx] != "score":
|
| 106 |
+
args_layer_scores[layer_idx] = -1
|
| 107 |
+
if args_layer_statics[layer_idx]:
|
| 108 |
+
args_layer_scores[layer_idx] = 0
|
| 109 |
+
|
| 110 |
+
mode = "i2v"
|
| 111 |
+
image1 = F.to_tensor(input_image) * 2 - 1
|
| 112 |
+
frame_tensor = image1[None].to(DEVICE) # [F, C, H, W]
|
| 113 |
+
if input_image_end is not None:
|
| 114 |
+
mode = "interpolate"
|
| 115 |
+
image2 = F.to_tensor(input_image_end) * 2 - 1
|
| 116 |
+
frame_tensor2 = image2[None].to(DEVICE)
|
| 117 |
+
frame_tensor = torch.cat([frame_tensor, frame_tensor2], dim=0)
|
| 118 |
+
frame_tensor = frame_tensor[None]
|
| 119 |
+
|
| 120 |
+
if mode == "interpolate":
|
| 121 |
+
layer_masks = torch.zeros((1, LAYER_CAPACITY, 2, 1, HEIGHT, WIDTH), dtype=torch.bool)
|
| 122 |
+
else:
|
| 123 |
+
layer_masks = torch.zeros((1, LAYER_CAPACITY, 1, 1, HEIGHT, WIDTH), dtype=torch.bool)
|
| 124 |
+
for layer_idx in range(LAYER_CAPACITY):
|
| 125 |
+
if args_layer_masks[layer_idx] is not None:
|
| 126 |
+
mask = F.to_tensor(args_layer_masks[layer_idx]) > 0.5
|
| 127 |
+
layer_masks[0, layer_idx, 0] = mask
|
| 128 |
+
if args_layer_masks_end[layer_idx] is not None and mode == "interpolate":
|
| 129 |
+
mask = F.to_tensor(args_layer_masks_end[layer_idx]) > 0.5
|
| 130 |
+
layer_masks[0, layer_idx, 1] = mask
|
| 131 |
+
layer_masks = layer_masks.to(DEVICE)
|
| 132 |
+
layer_regions = layer_masks * frame_tensor[:, None]
|
| 133 |
+
layer_validity = torch.tensor([args_layer_valids], dtype=torch.bool, device=DEVICE)
|
| 134 |
+
motion_scores = torch.tensor([args_layer_scores], dtype=WEIGHT_DTYPE, device=DEVICE)
|
| 135 |
+
layer_static = torch.tensor([args_layer_statics], dtype=torch.bool, device=DEVICE)
|
| 136 |
+
|
| 137 |
+
sketch = torch.ones((1, LAYER_CAPACITY, LENGTH, 3, HEIGHT, WIDTH), dtype=WEIGHT_DTYPE)
|
| 138 |
+
for layer_idx in range(LAYER_CAPACITY):
|
| 139 |
+
sketch_path = args_layer_sketches[layer_idx]
|
| 140 |
+
if sketch_path is not None:
|
| 141 |
+
video_reader = decord.VideoReader(sketch_path)
|
| 142 |
+
assert len(video_reader) == LENGTH, f"Input the length of sketch sequence should match the video length."
|
| 143 |
+
video_frames = video_reader.get_batch(range(LENGTH)).asnumpy()
|
| 144 |
+
sketch_values = [F.to_tensor(TRANSFORMS(Image.fromarray(frame))) for frame in video_frames]
|
| 145 |
+
sketch_values = torch.stack(sketch_values) * 2 - 1
|
| 146 |
+
sketch[0, layer_idx] = sketch_values
|
| 147 |
+
sketch = sketch.to(DEVICE)
|
| 148 |
+
|
| 149 |
+
heatmap = torch.zeros((1, LAYER_CAPACITY, LENGTH, 3, HEIGHT, WIDTH), dtype=WEIGHT_DTYPE)
|
| 150 |
+
heatmap[:, :, :, 0] -= 1
|
| 151 |
+
trajectory = []
|
| 152 |
+
traj_layer_index = []
|
| 153 |
+
for layer_idx in range(LAYER_CAPACITY):
|
| 154 |
+
tracking_points = args_layer_tracking_points[layer_idx]
|
| 155 |
+
if args_layer_statics[layer_idx]:
|
| 156 |
+
# generate pseudo trajectory for static layers
|
| 157 |
+
temp_layer_mask = layer_masks[0, layer_idx, 0, 0].cpu().numpy()
|
| 158 |
+
valid_flag = temp_layer_mask[SAMPLE_GRID[:, 0, 1], SAMPLE_GRID[:, 0, 0]]
|
| 159 |
+
valid_grid = SAMPLE_GRID[valid_flag] # [F, N, 2]
|
| 160 |
+
trajectory.extend(list(valid_grid))
|
| 161 |
+
traj_layer_index.extend([layer_idx] * valid_grid.shape[0])
|
| 162 |
else:
|
| 163 |
+
for temp_track in tracking_points:
|
| 164 |
+
if len(temp_track) > 1:
|
| 165 |
+
x = [point[0] for point in temp_track]
|
| 166 |
+
y = [point[1] for point in temp_track]
|
| 167 |
+
t = np.linspace(0, 1, len(temp_track))
|
| 168 |
+
fx = PchipInterpolator(t, x)
|
| 169 |
+
fy = PchipInterpolator(t, y)
|
| 170 |
+
t_new = np.linspace(0, 1, LENGTH)
|
| 171 |
+
x_new = fx(t_new)
|
| 172 |
+
y_new = fy(t_new)
|
| 173 |
+
temp_traj = np.stack([x_new, y_new], axis=-1).astype(np.float32)
|
| 174 |
+
trajectory.append(temp_traj)
|
| 175 |
+
traj_layer_index.append(layer_idx)
|
| 176 |
+
elif len(temp_track) == 1:
|
| 177 |
+
trajectory.append(np.array(temp_track * LENGTH))
|
| 178 |
+
traj_layer_index.append(layer_idx)
|
| 179 |
+
|
| 180 |
+
trajectory = np.stack(trajectory)
|
| 181 |
+
trajectory = np.transpose(trajectory, (1, 0, 2))
|
| 182 |
+
traj_layer_index = np.array(traj_layer_index)
|
| 183 |
+
heatmap = generate_gaussian_heatmap(trajectory, WIDTH, HEIGHT, traj_layer_index, LAYER_CAPACITY, offset=True)
|
| 184 |
+
heatmap = rearrange(heatmap, "f n c h w -> (f n) c h w")
|
| 185 |
+
graymap, offset = heatmap[:, :1], heatmap[:, 1:]
|
| 186 |
+
graymap = graymap / 255.
|
| 187 |
+
rad = torch.sqrt(offset[:, 0:1]**2 + offset[:, 1:2]**2)
|
| 188 |
+
rad_max = torch.max(rad)
|
| 189 |
+
epsilon = 1e-5
|
| 190 |
+
offset = offset / (rad_max + epsilon)
|
| 191 |
+
graymap = graymap * 2 - 1
|
| 192 |
+
heatmap = torch.cat([graymap, offset], dim=1)
|
| 193 |
+
heatmap = rearrange(heatmap, '(f n) c h w -> n f c h w', n=LAYER_CAPACITY)
|
| 194 |
+
heatmap = heatmap[None]
|
| 195 |
+
heatmap = heatmap.to(DEVICE)
|
| 196 |
+
|
| 197 |
+
sample = PIPELINE(
|
| 198 |
+
prompt,
|
| 199 |
+
LENGTH,
|
| 200 |
+
HEIGHT,
|
| 201 |
+
WIDTH,
|
| 202 |
+
frame_tensor,
|
| 203 |
+
layer_masks = layer_masks,
|
| 204 |
+
layer_regions = layer_regions,
|
| 205 |
+
layer_static = layer_static,
|
| 206 |
+
motion_scores = motion_scores,
|
| 207 |
+
sketch = sketch,
|
| 208 |
+
trajectory = heatmap,
|
| 209 |
+
layer_validity = layer_validity,
|
| 210 |
+
num_inference_steps = num_inference_steps,
|
| 211 |
+
guidance_scale = guidance_scale,
|
| 212 |
+
guidance_rescale = 0.7,
|
| 213 |
+
negative_prompt = n_prompt,
|
| 214 |
+
num_videos_per_prompt = 1,
|
| 215 |
+
eta = 1.0,
|
| 216 |
+
generator = generator,
|
| 217 |
+
fps = 24,
|
| 218 |
+
mode = mode,
|
| 219 |
+
weight_dtype = WEIGHT_DTYPE,
|
| 220 |
+
output_type = "tensor",
|
| 221 |
+
).videos
|
| 222 |
+
output_video_path = os.path.join(SAVE_DIR, "video.mp4")
|
| 223 |
+
save_videos_grid(sample, output_video_path, fps=8)
|
| 224 |
+
output_video_traj_path = os.path.join(SAVE_DIR, "video_with_traj.mp4")
|
| 225 |
+
vis_traj_flag = np.zeros(trajectory.shape[1], dtype=bool)
|
| 226 |
+
for traj_idx in range(trajectory.shape[1]):
|
| 227 |
+
if not args_layer_statics[traj_layer_index[traj_idx]]:
|
| 228 |
+
vis_traj_flag[traj_idx] = True
|
| 229 |
+
vis_traj = torch.from_numpy(trajectory[:, vis_traj_flag])
|
| 230 |
+
save_videos_with_traj(sample[0], vis_traj, os.path.join(SAVE_DIR, f"video_with_traj.mp4"), fps=8, line_width=7, circle_radius=10)
|
| 231 |
+
return output_video_path, output_video_traj_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
def update_layer_region(image, layer_mask):
|
| 234 |
if image is None or layer_mask is None:
|
|
|
|
| 541 |
```
|
| 542 |
""")
|
| 543 |
|
| 544 |
+
pretrained_model_path.input(set_model, pretrained_model_path, pretrained_model_path)
|
| 545 |
+
input_image.upload(upload_image, input_image, input_image)
|
| 546 |
+
input_image_end.upload(upload_image, input_image_end, input_image_end)
|
| 547 |
for i in range(LAYER_CAPACITY):
|
| 548 |
+
layer_masks[i].upload(upload_image, layer_masks[i], layer_masks[i])
|
| 549 |
layer_masks[i].change(update_layer_region, [input_image, layer_masks[i]], [layer_regions[i], layer_valids[i]])
|
| 550 |
+
layer_masks_end[i].upload(upload_image, layer_masks_end[i], layer_masks_end[i])
|
| 551 |
layer_masks_end[i].change(update_layer_region, [input_image_end, layer_masks_end[i]], [layer_regions_end[i], layer_valids[i]])
|
| 552 |
layer_traj_controls[i][0].click(add_drag, layer_indices[i], None)
|
| 553 |
layer_traj_controls[i][1].click(
|
|
|
|
| 581 |
[layer_regions[i], layer_regions_end[i]]
|
| 582 |
)
|
| 583 |
run_button.click(
|
| 584 |
+
run,
|
| 585 |
[input_image, input_image_end, pretrained_model_path, seed, text_prompt, text_n_prompt, num_inference_steps, guidance_scale,
|
| 586 |
*layer_masks, *layer_masks_end, *layer_controls, *layer_score_controls, *layer_sketch_controls, *layer_valids, *layer_statics],
|
| 587 |
[output_video, output_video_traj]
|