JamesBentley commited on
Commit
1c52c1d
·
verified ·
1 Parent(s): 44e0807

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -289
app.py CHANGED
@@ -1,296 +1,33 @@
1
- #!/usr/bin/env python
2
- # encoding: utf-8
3
- import spaces
4
  import gradio as gr
5
- from PIL import Image
6
- import traceback
7
- import re
8
- import torch
9
- import argparse
10
- from transformers import AutoModel, AutoTokenizer
11
- import fitz # PyMuPDF
12
 
13
- # README, How to run demo on different devices
14
-
15
- # For Nvidia GPUs.
16
- # python web_demo_2.5.py --device cuda
17
-
18
- # For Mac with MPS (Apple silicon or AMD GPUs).
19
- # PYTORCH_ENABLE_MPS_FALLBACK=1 python web_demo_2.5.py --device mps
20
-
21
- # Argparser
22
- parser = argparse.ArgumentParser(description='demo')
23
- parser.add_argument('--device', type=str, default='cuda', help='cuda or mps')
24
- args = parser.parse_args()
25
- device = args.device
26
- assert device in ['cuda', 'mps']
27
-
28
- # Load model
29
- model_path = 'openbmb/MiniCPM-Llama3-V-2_5'
30
- if 'int4' in model_path:
31
- if device == 'mps':
32
- print('Error: running int4 model with bitsandbytes on Mac is not supported right now.')
33
- exit()
34
- model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
35
- else:
36
- model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(dtype=torch.float16)
37
- model = model.to(device=device)
38
- tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
39
- model.eval()
40
-
41
- ERROR_MSG = "Error, please retry"
42
- model_name = 'MiniCPM-Llama3-V 2.5'
43
-
44
- form_radio = {
45
- 'choices': ['Beam Search', 'Sampling'],
46
- 'value': 'Sampling',
47
- 'interactive': True,
48
- 'label': 'Decode Type'
49
- }
50
- # Beam Form
51
- num_beams_slider = {
52
- 'minimum': 0,
53
- 'maximum': 5,
54
- 'value': 3,
55
- 'step': 1,
56
- 'interactive': True,
57
- 'label': 'Num Beams'
58
- }
59
- repetition_penalty_slider = {
60
- 'minimum': 0,
61
- 'maximum': 3,
62
- 'value': 1.2,
63
- 'step': 0.01,
64
- 'interactive': True,
65
- 'label': 'Repetition Penalty'
66
- }
67
- repetition_penalty_slider2 = {
68
- 'minimum': 0,
69
- 'maximum': 3,
70
- 'value': 1.05,
71
- 'step': 0.01,
72
- 'interactive': True,
73
- 'label': 'Repetition Penalty'
74
- }
75
- max_new_tokens_slider = {
76
- 'minimum': 1,
77
- 'maximum': 4096,
78
- 'value': 1024,
79
- 'step': 1,
80
- 'interactive': True,
81
- 'label': 'Max New Tokens'
82
- }
83
-
84
- top_p_slider = {
85
- 'minimum': 0,
86
- 'maximum': 1,
87
- 'value': 0.8,
88
- 'step': 0.05,
89
- 'interactive': True,
90
- 'label': 'Top P'
91
- }
92
- top_k_slider = {
93
- 'minimum': 0,
94
- 'maximum': 200,
95
- 'value': 100,
96
- 'step': 1,
97
- 'interactive': True,
98
- 'label': 'Top K'
99
- }
100
- temperature_slider = {
101
- 'minimum': 0,
102
- 'maximum': 2,
103
- 'value': 0.7,
104
- 'step': 0.05,
105
- 'interactive': True,
106
- 'label': 'Temperature'
107
- }
108
-
109
- def create_component(params, comp='Slider'):
110
- if comp == 'Slider':
111
- return gr.Slider(
112
- minimum=params['minimum'],
113
- maximum=params['maximum'],
114
- value=params['value'],
115
- step=params['step'],
116
- interactive=params['interactive'],
117
- label=params['label']
118
- )
119
- elif comp == 'Radio':
120
- return gr.Radio(
121
- choices=params['choices'],
122
- value=params['value'],
123
- interactive=params['interactive'],
124
- label=params['label']
125
- )
126
- elif comp == 'Button':
127
- return gr.Button(
128
- value=params['value'],
129
- interactive=True
130
- )
131
-
132
- @spaces.GPU(duration=120)
133
- def chat(img, msgs, ctx, params=None, vision_hidden_states=None):
134
- default_params = {"stream": False, "sampling": False, "num_beams":3, "repetition_penalty": 1.2, "max_new_tokens": 1024}
135
- if params is None:
136
- params = default_params
137
- if img is None:
138
- yield "Error, invalid image, please upload a new image"
139
- else:
140
- try:
141
- image = img.convert('RGB')
142
- answer = model.chat(
143
- image=image,
144
- msgs=msgs,
145
- tokenizer=tokenizer,
146
- **params
147
- )
148
- for char in answer:
149
- yield char
150
- except Exception as err:
151
- print(err)
152
- traceback.print_exc()
153
- yield ERROR_MSG
154
-
155
- def pdf_to_images(pdf_file):
156
- doc = fitz.open(stream=pdf_file, filetype="pdf")
157
- images = []
158
- for page_num in range(len(doc)):
159
- page = doc.load_page(page_num)
160
- pix = page.get_pixmap()
161
- img = Image.open(BytesIO(pix.tobytes()))
162
- images.append(img)
163
- return images
164
-
165
- def upload_pdf(pdf_file, _chatbot, _app_session):
166
- images = pdf_to_images(pdf_file)
167
- if images:
168
- _app_session['img'] = images[0]
169
- _chatbot.append(('', 'PDF uploaded successfully, the first page has been selected. You can talk to me now.'))
170
- else:
171
- _chatbot.append(('', 'Error processing PDF.'))
172
- return _chatbot, _app_session
173
-
174
- def upload_img(image, _chatbot, _app_session):
175
- image = Image.fromarray(image)
176
- _app_session['sts'] = None
177
- _app_session['ctx'] = []
178
- _app_session['img'] = image
179
- _chatbot.append(('', 'Image uploaded successfully, you can talk to me now'))
180
- return _chatbot, _app_session
181
-
182
- def respond(_chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature):
183
- _question = _chat_bot[-1][0]
184
- print('<Question>:', _question)
185
- if _app_cfg.get('ctx', None) is None:
186
- _chat_bot[-1][1] = 'Please upload an image to start'
187
- yield (_chat_bot, _app_cfg)
188
- else:
189
- _context = _app_cfg['ctx'].copy()
190
- if _context:
191
- _context.append({"role": "user", "content": _question})
192
- else:
193
- _context = [{"role": "user", "content": _question}]
194
- if params_form == 'Beam Search':
195
- params = {
196
- 'sampling': False,
197
- 'stream': False,
198
- 'num_beams': num_beams,
199
- 'repetition_penalty': repetition_penalty,
200
- "max_new_tokens": 896
201
- }
202
- else:
203
- params = {
204
- 'sampling': True,
205
- 'stream': True,
206
- 'top_p': top_p,
207
- 'top_k': top_k,
208
- 'temperature': temperature,
209
- 'repetition_penalty': repetition_penalty_2,
210
- "max_new_tokens": 896
211
- }
212
 
213
- gen = chat(_app_cfg['img'], _context, None, params)
214
- _chat_bot[-1][1] = ""
215
- for _char in gen:
216
- _chat_bot[-1][1] += _char
217
- _context[-1]["content"] += _char
218
- yield (_chat_bot, _app_cfg)
219
-
220
- def request(_question, _chat_bot, _app_cfg):
221
- _chat_bot.append((_question, None))
222
- return '', _chat_bot, _app_cfg
223
-
224
- def regenerate_button_clicked(_question, _chat_bot, _app_cfg):
225
- if len(_chat_bot) <= 1:
226
- _chat_bot.append(('Regenerate', 'No question for regeneration.'))
227
- return '', _chat_bot, _app_cfg
228
- elif _chat_bot[-1][0] == 'Regenerate':
229
- return '', _chat_bot, _app_cfg
230
- else:
231
- _question = _chat_bot[-1][0]
232
- _chat_bot = _chat_bot[:-1]
233
- _app_cfg['ctx'] = _app_cfg['ctx'][:-2]
234
- return request(_question, _chat_bot, _app_cfg)
235
-
236
- def clear_button_clicked(_question, _chat_bot, _app_cfg, _bt_pic):
237
- _chat_bot.clear()
238
- _app_cfg['sts'] = None
239
- _app_cfg['ctx'] = None
240
- _app_cfg['img'] = None
241
- _bt_pic = None
242
- return '', _chat_bot, _app_cfg, _bt_pic
243
 
 
244
  with gr.Blocks() as demo:
 
 
 
245
  with gr.Row():
246
- with gr.Column(scale=1, min_width=300):
247
- params_form = create_component(form_radio, comp='Radio')
248
- with gr.Accordion("Beam Search") as beams_according:
249
- num_beams = create_component(num_beams_slider)
250
- repetition_penalty = create_component(repetition_penalty_slider)
251
- with gr.Accordion("Sampling") as sampling_according:
252
- top_p = create_component(top_p_slider)
253
- top_k = create_component(top_k_slider)
254
- temperature = create_component(temperature_slider)
255
- repetition_penalty_2 = create_component(repetition_penalty_slider2)
256
- regenerate = create_component({'value': 'Regenerate'}, comp='Button')
257
- clear = create_component({'value': 'Clear'}, comp='Button')
258
- with gr.Column(scale=3, min_width=500):
259
- app_session = gr.State({'sts': None, 'ctx': None, 'img': None})
260
- bt_pic = gr.Image(label="Upload an image to start")
261
- bt_pdf = gr.File(label="Upload a PDF to start")
262
- chat_bot = gr.Chatbot(label=f"Chat with {model_name}")
263
- txt_message = gr.Textbox(label="Input text")
264
-
265
- clear.click(
266
- clear_button_clicked,
267
- [txt_message, chat_bot, app_session, bt_pic],
268
- [txt_message, chat_bot, app_session, bt_pic],
269
- queue=False
270
- )
271
- txt_message.submit(
272
- request,
273
- [txt_message, chat_bot, app_session],
274
- [txt_message, chat_bot, app_session],
275
- queue=False
276
- ).then(
277
- respond,
278
- [chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature],
279
- [chat_bot, app_session]
280
- )
281
- regenerate.click(
282
- regenerate_button_clicked,
283
- [txt_message, chat_bot, app_session],
284
- [txt_message, chat_bot, app_session],
285
- queue=False
286
- ).then(
287
- respond,
288
- [chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature],
289
- [chat_bot, app_session]
290
- )
291
- bt_pic.upload(lambda: None, None, chat_bot, queue=False).then(upload_img, inputs=[bt_pic, chat_bot, app_session], outputs=[chat_bot, app_session])
292
- bt_pdf.upload(lambda: None, None, chat_bot, queue=False).then(upload_pdf, inputs=[bt_pdf, chat_bot, app_session], outputs=[chat_bot, app_session])
293
 
294
- # launch
295
- demo.queue()
296
- demo.launch()
 
 
 
 
1
  import gradio as gr
2
+ import base64
3
+ import os
 
 
 
 
 
4
 
5
+ # Function to upload a PDF and return its content as HTML for display
6
+ def upload_and_display_pdf(pdf_file):
7
+ # Save the uploaded PDF with its original filename
8
+ pdf_path = os.path.join("/content", pdf_file.name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
+ with open(pdf_path, "wb") as f:
11
+ f.write(pdf_file.read())
12
+
13
+ # Convert the PDF to base64 and create an embedded HTML
14
+ with open(pdf_path, "rb") as pdf_file:
15
+ base64_pdf = base64.b64encode(pdf_file.read()).decode('utf-8')
16
+
17
+ pdf_display = f'<embed src="data:application/pdf;base64,{base64_pdf}" width="800" height="500" type="application/pdf">'
18
+
19
+ return pdf_display
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ # Set up the Gradio interface
22
  with gr.Blocks() as demo:
23
+ gr.Markdown("# PDF Viewer")
24
+ gr.Markdown("Upload a PDF file to view it in the browser.")
25
+
26
  with gr.Row():
27
+ file_input = gr.File(label="Upload your PDF file", type="binary", file_types=[".pdf"])
28
+ pdf_output = gr.HTML()
29
+
30
+ file_input.change(upload_and_display_pdf, inputs=file_input, outputs=pdf_output)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
+ if __name__ == "__main__":
33
+ demo.launch()