Spaces:
Sleeping
Sleeping
Create 1024_model.py
Browse files- 1024_model.py +36 -0
1024_model.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
class UNet(nn.Module):
|
| 2 |
+
def __init__(self):
|
| 3 |
+
super(UNet, self).__init__()
|
| 4 |
+
|
| 5 |
+
# Encoder
|
| 6 |
+
self.encoder = nn.Sequential(
|
| 7 |
+
nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1), # 256 -> 128
|
| 8 |
+
nn.ReLU(inplace=True),
|
| 9 |
+
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), # 128 -> 64
|
| 10 |
+
nn.ReLU(inplace=True),
|
| 11 |
+
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), # 64 -> 32
|
| 12 |
+
nn.ReLU(inplace=True),
|
| 13 |
+
nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1), # 32 -> 16
|
| 14 |
+
nn.ReLU(inplace=True),
|
| 15 |
+
nn.Conv2d(512, 1024, kernel_size=4, stride=2, padding=1), # 16 -> 8
|
| 16 |
+
nn.ReLU(inplace=True)
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# Decoder
|
| 20 |
+
self.decoder = nn.Sequential(
|
| 21 |
+
nn.ConvTranspose2d(1024, 512, kernel_size=4, stride=2, padding=1), # 8 -> 16
|
| 22 |
+
nn.ReLU(inplace=True),
|
| 23 |
+
nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1), # 16 -> 32
|
| 24 |
+
nn.ReLU(inplace=True),
|
| 25 |
+
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1), # 32 -> 64
|
| 26 |
+
nn.ReLU(inplace=True),
|
| 27 |
+
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1), # 64 -> 128
|
| 28 |
+
nn.ReLU(inplace=True),
|
| 29 |
+
nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1), # 128 -> 256
|
| 30 |
+
nn.Tanh() # Output range [-1, 1]
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
def forward(self, x):
|
| 34 |
+
enc = self.encoder(x)
|
| 35 |
+
dec = self.decoder(enc)
|
| 36 |
+
return dec
|