Spaces:
Runtime error
Runtime error
| import pickle | |
| import streamlit as stream | |
| import numpy as np | |
| import pandas as pd | |
| #importing the model | |
| with open("svm_model.pkl", 'rb') as model_file: | |
| model = pickle.load(model_file) | |
| #importing the scaler model | |
| with open("scaler.pkl", 'rb') as scaler_file: | |
| scaler = pickle.load(scaler_file) | |
| log_df = pd.DataFrame(columns=['Engine rpm', 'Lub oil pressure', 'Fuel pressure', 'Coolant pressure', 'lub oil temp', 'Coolant temp', 'Prediction']) | |
| def EngineHealth_predict(input_data, model, scaler, log_df): | |
| columns = ['Engine rpm', 'Lub oil pressure', 'Fuel pressure', 'Coolant pressure', 'lub oil temp', 'Coolant temp'] | |
| input_df = pd.DataFrame([input_data], columns=columns) | |
| input_array = np.array(input_df).reshape(1, -1) | |
| input_scaled = scaler.transform(input_array) | |
| prediction = model.predict(input_scaled) | |
| if prediction[0] == 0: | |
| health_status = "Engine is in Good Health!" | |
| else: | |
| health_status = "Engine is not in Good Health" | |
| input_data.append(prediction[0]) | |
| log_df.loc[len(log_df)] = input_data | |
| return health_status, log_df | |
| stream.title("Engine Health Prediction") | |
| engine_rpm = stream.number_input("Enter Engine rpm:", min_value=0.0, step=0.1) | |
| lub_oil_pressure = stream.number_input("Enter Lub oil pressure:", min_value=0.0, step=0.1) | |
| fuel_pressure = stream.number_input("Enter Fuel pressure:", min_value=0.0, step=0.1) | |
| coolant_pressure = stream.number_input("Enter Coolant pressure:", min_value=0.0, step=0.1) | |
| lub_oil_temp = stream.number_input("Enter Lub oil temp:", min_value=0.0, step=0.1) | |
| coolant_temp = stream.number_input("Enter Coolant temp:", min_value=0.0, step=0.1) | |
| if stream.button('Predict'): | |
| input_data = [ | |
| engine_rpm, | |
| lub_oil_pressure, | |
| fuel_pressure, | |
| coolant_pressure, | |
| lub_oil_temp, | |
| coolant_temp | |
| ] | |
| health_status, log_df = EngineHealth_predict(input_data, model, scaler, log_df) | |
| stream.write(f"Prediction: {health_status}") | |
| # Display the log DataFrame | |
| stream.write("Log of Predictions:") | |
| stream.dataframe(log_df) |