Spaces:
Sleeping
Sleeping
KanishkJagya1
commited on
Commit
·
7fc7a14
1
Parent(s):
b76a3af
sketch - generator
Browse files- Procfile +1 -0
- app.py +73 -148
- requirements.txt +2 -1
Procfile
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
web: python app.py
|
app.py
CHANGED
|
@@ -1,154 +1,79 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
import random
|
| 4 |
-
|
| 5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
| 6 |
-
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
"
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
with gr.
|
| 69 |
-
gr.
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
container=False,
|
| 78 |
-
)
|
| 79 |
-
|
| 80 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
| 81 |
-
|
| 82 |
-
result = gr.Image(label="Result", show_label=False)
|
| 83 |
-
|
| 84 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 85 |
-
negative_prompt = gr.Text(
|
| 86 |
-
label="Negative prompt",
|
| 87 |
-
max_lines=1,
|
| 88 |
-
placeholder="Enter a negative prompt",
|
| 89 |
-
visible=False,
|
| 90 |
-
)
|
| 91 |
-
|
| 92 |
-
seed = gr.Slider(
|
| 93 |
-
label="Seed",
|
| 94 |
-
minimum=0,
|
| 95 |
-
maximum=MAX_SEED,
|
| 96 |
-
step=1,
|
| 97 |
-
value=0,
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 101 |
-
|
| 102 |
-
with gr.Row():
|
| 103 |
-
width = gr.Slider(
|
| 104 |
-
label="Width",
|
| 105 |
-
minimum=256,
|
| 106 |
-
maximum=MAX_IMAGE_SIZE,
|
| 107 |
-
step=32,
|
| 108 |
-
value=1024, # Replace with defaults that work for your model
|
| 109 |
-
)
|
| 110 |
-
|
| 111 |
-
height = gr.Slider(
|
| 112 |
-
label="Height",
|
| 113 |
-
minimum=256,
|
| 114 |
-
maximum=MAX_IMAGE_SIZE,
|
| 115 |
-
step=32,
|
| 116 |
-
value=1024, # Replace with defaults that work for your model
|
| 117 |
-
)
|
| 118 |
-
|
| 119 |
-
with gr.Row():
|
| 120 |
-
guidance_scale = gr.Slider(
|
| 121 |
-
label="Guidance scale",
|
| 122 |
-
minimum=0.0,
|
| 123 |
-
maximum=10.0,
|
| 124 |
-
step=0.1,
|
| 125 |
-
value=0.0, # Replace with defaults that work for your model
|
| 126 |
-
)
|
| 127 |
-
|
| 128 |
-
num_inference_steps = gr.Slider(
|
| 129 |
-
label="Number of inference steps",
|
| 130 |
-
minimum=1,
|
| 131 |
-
maximum=50,
|
| 132 |
-
step=1,
|
| 133 |
-
value=2, # Replace with defaults that work for your model
|
| 134 |
-
)
|
| 135 |
-
|
| 136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
| 137 |
-
gr.on(
|
| 138 |
-
triggers=[run_button.click, prompt.submit],
|
| 139 |
-
fn=infer,
|
| 140 |
-
inputs=[
|
| 141 |
-
prompt,
|
| 142 |
-
negative_prompt,
|
| 143 |
-
seed,
|
| 144 |
-
randomize_seed,
|
| 145 |
-
width,
|
| 146 |
-
height,
|
| 147 |
-
guidance_scale,
|
| 148 |
-
num_inference_steps,
|
| 149 |
-
],
|
| 150 |
-
outputs=[result, seed],
|
| 151 |
)
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from diffusers import StableDiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import torch
|
| 4 |
|
| 5 |
+
# Load models once at the start of the app for efficiency.
|
| 6 |
+
# This prevents reloading the models for every new request, which
|
| 7 |
+
# would be very slow.
|
| 8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
dtype = torch.float16 if torch.cuda.is_available() and device == "cuda" else torch.float32
|
| 10 |
+
|
| 11 |
+
# Stage 1: Text-to-Sketch model
|
| 12 |
+
# We use a base Stable Diffusion pipeline with a special prompt
|
| 13 |
+
# to generate a line drawing effect.
|
| 14 |
+
try:
|
| 15 |
+
sketch_pipeline = StableDiffusionPipeline.from_pretrained(
|
| 16 |
+
"runwayml/stable-diffusion-v1-5",
|
| 17 |
+
torch_dtype=dtype
|
| 18 |
+
)
|
| 19 |
+
sketch_pipeline.to(device)
|
| 20 |
+
except Exception as e:
|
| 21 |
+
print(f"Error loading sketch pipeline: {e}")
|
| 22 |
+
sketch_pipeline = None
|
| 23 |
+
|
| 24 |
+
# Stage 2: Sketch-to-Image model
|
| 25 |
+
# This pipeline is loaded with the Stable Diffusion base and then
|
| 26 |
+
# a LoRA model is attached to handle the sketch-to-image conversion.
|
| 27 |
+
try:
|
| 28 |
+
image_pipeline = StableDiffusionPipeline.from_pretrained(
|
| 29 |
+
"runwayml/stable-diffusion-v1-5",
|
| 30 |
+
torch_dtype=dtype
|
| 31 |
+
)
|
| 32 |
+
image_pipeline.load_lora("gokaygokay/Sketch-to-Image-Kontext-Dev-LoRA", lora_weights_name="model.safetensors")
|
| 33 |
+
image_pipeline.to(device)
|
| 34 |
+
except Exception as e:
|
| 35 |
+
print(f"Error loading image pipeline or LoRA: {e}")
|
| 36 |
+
image_pipeline = None
|
| 37 |
+
|
| 38 |
+
# The main function that connects the two stages
|
| 39 |
+
def generate_full_image(text_prompt):
|
| 40 |
+
if not sketch_pipeline or not image_pipeline:
|
| 41 |
+
return None, None
|
| 42 |
+
|
| 43 |
+
# Step 1: Generate the sketch from the text prompt
|
| 44 |
+
# The "line drawing" prompt helps steer the model's output
|
| 45 |
+
sketch_prompt = f"line drawing of a {text_prompt}"
|
| 46 |
+
sketch = sketch_pipeline(sketch_prompt).images[0]
|
| 47 |
+
|
| 48 |
+
# Step 2: Generate the final image from the sketch
|
| 49 |
+
# The 'image' input to the pipeline uses the generated sketch
|
| 50 |
+
final_image = image_pipeline(image=sketch, prompt="a realistic human portrait").images[0]
|
| 51 |
+
|
| 52 |
+
return sketch, final_image
|
| 53 |
+
|
| 54 |
+
# Define the Gradio UI using Blocks for a custom layout
|
| 55 |
+
with gr.Blocks(title="Sketch-to-Image Pipeline") as demo:
|
| 56 |
+
gr.Markdown("# Text-to-Sketch-to-Portrait")
|
| 57 |
+
gr.Markdown("Enter a description to generate a sketch, which is then converted into a realistic human portrait.")
|
| 58 |
+
|
| 59 |
+
with gr.Row():
|
| 60 |
+
text_input = gr.Textbox(
|
| 61 |
+
label="Person Description",
|
| 62 |
+
placeholder="e.g., A middle-aged man with a scar on his right cheek and shaggy hair"
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
generate_button = gr.Button("Generate Portrait")
|
| 66 |
+
|
| 67 |
+
with gr.Row():
|
| 68 |
+
sketch_output = gr.Image(label="Generated Sketch", type="pil")
|
| 69 |
+
final_image_output = gr.Image(label="Generated Portrait", type="pil")
|
| 70 |
+
|
| 71 |
+
# Connect the UI components to the Python function
|
| 72 |
+
generate_button.click(
|
| 73 |
+
fn=generate_full_image,
|
| 74 |
+
inputs=text_input,
|
| 75 |
+
outputs=[sketch_output, final_image_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
)
|
| 77 |
|
| 78 |
+
# Launch the app
|
| 79 |
+
demo.launch()
|
requirements.txt
CHANGED
|
@@ -3,4 +3,5 @@ diffusers
|
|
| 3 |
invisible_watermark
|
| 4 |
torch
|
| 5 |
transformers
|
| 6 |
-
xformers
|
|
|
|
|
|
| 3 |
invisible_watermark
|
| 4 |
torch
|
| 5 |
transformers
|
| 6 |
+
xformers
|
| 7 |
+
gradio
|