Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- .github/workflows/update_space.yml +28 -0
- .gitignore +4 -0
- README.md +2 -8
- app.py +200 -0
- demo_feature_dashboards.html +0 -0
- loading_analyzing.py +266 -0
- sae_tiny-stories-1L-21M_blocks.0.hook_mlp_out_16384/cfg.json +1 -0
- steer_stories.py +150 -0
- using_an_sae_as_a_steering_vector.ipynb +2171 -0
.github/workflows/update_space.yml
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: Run Python script
|
| 2 |
+
|
| 3 |
+
on:
|
| 4 |
+
push:
|
| 5 |
+
branches:
|
| 6 |
+
- y
|
| 7 |
+
|
| 8 |
+
jobs:
|
| 9 |
+
build:
|
| 10 |
+
runs-on: ubuntu-latest
|
| 11 |
+
|
| 12 |
+
steps:
|
| 13 |
+
- name: Checkout
|
| 14 |
+
uses: actions/checkout@v2
|
| 15 |
+
|
| 16 |
+
- name: Set up Python
|
| 17 |
+
uses: actions/setup-python@v2
|
| 18 |
+
with:
|
| 19 |
+
python-version: '3.9'
|
| 20 |
+
|
| 21 |
+
- name: Install Gradio
|
| 22 |
+
run: python -m pip install gradio
|
| 23 |
+
|
| 24 |
+
- name: Log in to Hugging Face
|
| 25 |
+
run: python -c 'import huggingface_hub; huggingface_hub.login(token="${{ secrets.hf_token }}")'
|
| 26 |
+
|
| 27 |
+
- name: Deploy to Spaces
|
| 28 |
+
run: gradio deploy
|
.gitignore
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
venv
|
| 2 |
+
*.safetensors
|
| 3 |
+
*.pyc
|
| 4 |
+
.DS_Store
|
README.md
CHANGED
|
@@ -1,12 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
|
| 4 |
-
colorFrom: red
|
| 5 |
-
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 4.38.1
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
---
|
| 11 |
-
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: steer-hexter
|
| 3 |
+
app_file: app.py
|
|
|
|
|
|
|
| 4 |
sdk: gradio
|
| 5 |
sdk_version: 4.38.1
|
|
|
|
|
|
|
| 6 |
---
|
|
|
|
|
|
app.py
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformer_lens import HookedTransformer
|
| 2 |
+
from sae_lens import SAE
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
if torch.backends.mps.is_available():
|
| 6 |
+
device = "mps"
|
| 7 |
+
else:
|
| 8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
|
| 10 |
+
class Inference:
|
| 11 |
+
|
| 12 |
+
def __init__(self, model, pretrained_sae, layer):
|
| 13 |
+
self.layer = layer
|
| 14 |
+
if model == "gemma-2b":
|
| 15 |
+
self.sae_id = f"blocks.{layer}.hook_resid_post"
|
| 16 |
+
elif model == "gpt2-small":
|
| 17 |
+
print(f"using {model}")
|
| 18 |
+
self.sae_id = f"blocks.{0}.hook_resid_pre"
|
| 19 |
+
self.sampling_kwargs = dict(temperature=1.0, top_p=0.1, freq_penalty=1.0)
|
| 20 |
+
self.set_coeff(1)
|
| 21 |
+
self.set_model(model)
|
| 22 |
+
self.set_SAE(pretrained_sae)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def set_model(self, model):
|
| 26 |
+
self.model = HookedTransformer.from_pretrained(model, device = device)
|
| 27 |
+
|
| 28 |
+
def set_coeff(self, coeff):
|
| 29 |
+
self.coeff = coeff
|
| 30 |
+
|
| 31 |
+
def set_temperature(self, temperature):
|
| 32 |
+
self.sampling_kwargs['temperature'] = temperature
|
| 33 |
+
|
| 34 |
+
def set_steering_vector_prompt(self, prompt: str):
|
| 35 |
+
self.steering_vector_prompt = prompt
|
| 36 |
+
|
| 37 |
+
def set_SAE(self, sae_name):
|
| 38 |
+
sae, cfg_dict, _ = SAE.from_pretrained(
|
| 39 |
+
release = sae_name,
|
| 40 |
+
sae_id = self.sae_id,
|
| 41 |
+
device = device
|
| 42 |
+
)
|
| 43 |
+
self.sae = sae
|
| 44 |
+
self.cfg_dict = cfg_dict
|
| 45 |
+
|
| 46 |
+
def _get_sae_out_and_feature_activations(self):
|
| 47 |
+
# given the words in steering_vectore_prompt, the SAE predicts that the neurons(aka features) in activateCache will be activated
|
| 48 |
+
sv_logits, activationCache = self.model.run_with_cache(self.steering_vector_prompt, prepend_bos=True)
|
| 49 |
+
sv_feature_acts = self.sae.encode(activationCache[self.sae.cfg.hook_name])
|
| 50 |
+
# get top_k of 1
|
| 51 |
+
# self.sae_out = sae.decode(sv_feature_acts)
|
| 52 |
+
return self.sae.decode(sv_feature_acts), sv_feature_acts
|
| 53 |
+
|
| 54 |
+
def _hooked_generate(self, prompt_batch, fwd_hooks, seed=None, **kwargs):
|
| 55 |
+
if seed is not None:
|
| 56 |
+
torch.manual_seed(seed)
|
| 57 |
+
|
| 58 |
+
with self.model.hooks(fwd_hooks=fwd_hooks):
|
| 59 |
+
tokenized = self.model.to_tokens(prompt_batch)
|
| 60 |
+
result = self.model.generate(
|
| 61 |
+
stop_at_eos=False, # avoids a bug on MPS
|
| 62 |
+
input=tokenized,
|
| 63 |
+
max_new_tokens=50,
|
| 64 |
+
do_sample=True,
|
| 65 |
+
**kwargs)
|
| 66 |
+
return result
|
| 67 |
+
|
| 68 |
+
def _get_features(self, sv_feature_activations):
|
| 69 |
+
# return torch.topk(sv_feature_acts, 1).indices.tolist()
|
| 70 |
+
features = torch.topk(sv_feature_activations, 1).indices
|
| 71 |
+
print(f'features that align with the text prompt: {features}')
|
| 72 |
+
print("pump the features into the tool that gives you the words associated with each feature")
|
| 73 |
+
return features
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def _get_steering_hook(self, feature, sae_out):
|
| 77 |
+
coeff = self.coeff
|
| 78 |
+
steering_vector = self.sae.W_dec[feature]
|
| 79 |
+
steering_vector = steering_vector[0]
|
| 80 |
+
def steering_hook(resid_pre, hook):
|
| 81 |
+
if resid_pre.shape[1] == 1:
|
| 82 |
+
return
|
| 83 |
+
|
| 84 |
+
position = sae_out.shape[1]
|
| 85 |
+
# using our steering vector and applying the coefficient
|
| 86 |
+
resid_pre[:, :position - 1, :] += coeff * steering_vector
|
| 87 |
+
|
| 88 |
+
return steering_hook
|
| 89 |
+
|
| 90 |
+
def _get_steering_hooks(self):
|
| 91 |
+
# TODO: refactor this. It works because sae_out.shape[1] = sv_feature_acts.shape[1] = len(features[0])
|
| 92 |
+
# you can manipulate views to retrieve hooks more cleanly
|
| 93 |
+
# and not use the seperate function _get_steering_hook()
|
| 94 |
+
sae_out, sv_feature_acts = self._get_sae_out_and_feature_activations()
|
| 95 |
+
features = self._get_features(sv_feature_acts)
|
| 96 |
+
steering_hooks = [self._get_steering_hook(feature, sae_out) for feature in features[0]]
|
| 97 |
+
|
| 98 |
+
return steering_hooks
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def _run_generate(self, example_prompt, steering_on: bool):
|
| 102 |
+
|
| 103 |
+
self.model.reset_hooks()
|
| 104 |
+
steer_hooks = self._get_steering_hooks()
|
| 105 |
+
editing_hooks = [ (self.sae_id, steer_hook) for steer_hook in steer_hooks]
|
| 106 |
+
# editing_hooks = [(self.sae_id, steer_hook)]
|
| 107 |
+
# ^^change this to support steer_hooks being a list of steer_hooks
|
| 108 |
+
print(f"steering by {len(editing_hooks)} hooks")
|
| 109 |
+
if steering_on:
|
| 110 |
+
res = self._hooked_generate([example_prompt] * 3, editing_hooks, seed=None, **self.sampling_kwargs)
|
| 111 |
+
else:
|
| 112 |
+
tokenized = self.model.to_tokens([example_prompt])
|
| 113 |
+
res = self.model.generate(
|
| 114 |
+
stop_at_eos=False, # avoids a bug on MPS
|
| 115 |
+
input=tokenized,
|
| 116 |
+
max_new_tokens=50,
|
| 117 |
+
do_sample=True,
|
| 118 |
+
**self.sampling_kwargs)
|
| 119 |
+
|
| 120 |
+
# Print results, removing the ugly beginning of sequence token
|
| 121 |
+
res_str = self.model.to_string(res[:, 1:])
|
| 122 |
+
response = ("\n\n" + "-" * 80 + "\n\n").join(res_str)
|
| 123 |
+
print(response)
|
| 124 |
+
return response
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def generate(self, message: str, steering_on: bool):
|
| 128 |
+
return self._run_generate(message, steering_on)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
MODEL = "gemma-2b"
|
| 133 |
+
PRETRAINED_SAE = "gemma-2b-res-jb"
|
| 134 |
+
MODEL = "gpt2-small"
|
| 135 |
+
PRETRAINED_SAE = "gpt2-small-res-jb"
|
| 136 |
+
LAYER = 10
|
| 137 |
+
chatbot_model = Inference(MODEL,PRETRAINED_SAE, LAYER)
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
import time
|
| 141 |
+
import gradio as gr
|
| 142 |
+
|
| 143 |
+
default_image = "Hexter-Hackathon.png"
|
| 144 |
+
|
| 145 |
+
def slow_echo(message, history):
|
| 146 |
+
result = chatbot_model.generate(message, False)
|
| 147 |
+
for i in range(len(result)):
|
| 148 |
+
time.sleep(0.01)
|
| 149 |
+
yield result[: i + 1]
|
| 150 |
+
def slow_echo_steering(message, history):
|
| 151 |
+
result = chatbot_model.generate(message, True)
|
| 152 |
+
for i in range(len(result)):
|
| 153 |
+
time.sleep(0.01)
|
| 154 |
+
yield result[: i + 1]
|
| 155 |
+
|
| 156 |
+
with gr.Blocks() as demo:
|
| 157 |
+
with gr.Row():
|
| 158 |
+
gr.Markdown("*STANDARD HEXTER BOT*")
|
| 159 |
+
with gr.Row():
|
| 160 |
+
chatbot = gr.ChatInterface(
|
| 161 |
+
slow_echo,
|
| 162 |
+
chatbot=gr.Chatbot(min_width=1000),
|
| 163 |
+
textbox=gr.Textbox(placeholder="Ask Hexter anything!", min_width=1000),
|
| 164 |
+
theme="soft",
|
| 165 |
+
cache_examples=False,
|
| 166 |
+
retry_btn=None,
|
| 167 |
+
clear_btn=None,
|
| 168 |
+
undo_btn=None,
|
| 169 |
+
)
|
| 170 |
+
with gr.Row():
|
| 171 |
+
gr.Markdown("*STEERED HEXTER BOT*")
|
| 172 |
+
with gr.Row():
|
| 173 |
+
chatbot_steered = gr.ChatInterface(
|
| 174 |
+
slow_echo_steering,
|
| 175 |
+
chatbot=gr.Chatbot(min_width=1000),
|
| 176 |
+
textbox=gr.Textbox(placeholder="Ask Hexter anything!", min_width=1000),
|
| 177 |
+
theme="soft",
|
| 178 |
+
cache_examples=False,
|
| 179 |
+
retry_btn=None,
|
| 180 |
+
clear_btn=None,
|
| 181 |
+
undo_btn=None,
|
| 182 |
+
)
|
| 183 |
+
with gr.Row():
|
| 184 |
+
steering_prompt = gr.Textbox(label="Steering prompt", value="Golden Gate Bridge")
|
| 185 |
+
with gr.Row():
|
| 186 |
+
coeff = gr.Slider(1, 1000, 300, label="Coefficient", info="Coefficient is..", interactive=True)
|
| 187 |
+
with gr.Row():
|
| 188 |
+
temp = gr.Slider(0, 5, 1, label="Temperature", info="Temperature is..", interactive=True)
|
| 189 |
+
|
| 190 |
+
# Set up an action when the sliders change
|
| 191 |
+
temp.change(chatbot_model.set_temperature, inputs=[temp], outputs=[])
|
| 192 |
+
coeff.change(chatbot_model.set_coeff, inputs=[coeff], outputs=[])
|
| 193 |
+
chatbot_model.set_steering_vector_prompt(steering_prompt)
|
| 194 |
+
steering_prompt.change(chatbot_model.set_steering_vector_prompt, inputs=[steering_prompt], outputs=[])
|
| 195 |
+
|
| 196 |
+
demo.queue()
|
| 197 |
+
demo.launch(debug=True)
|
| 198 |
+
|
| 199 |
+
if __name__ == "__main__":
|
| 200 |
+
demo.launch(allowed_paths=["/"])
|
demo_feature_dashboards.html
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
loading_analyzing.py
ADDED
|
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
COLAB = False
|
| 3 |
+
# from IPython import get_ipython # type: ignore
|
| 4 |
+
# ipython = get_ipython(); assert ipython is not None
|
| 5 |
+
# ipython.run_line_magic("load_ext", "autoreload")
|
| 6 |
+
# ipython.run_line_magic("autoreload", "2")
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# Standard imports
|
| 10 |
+
import os
|
| 11 |
+
import torch
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
import plotly.express as px
|
| 14 |
+
|
| 15 |
+
# Imports for displaying vis in Colab / notebook
|
| 16 |
+
import webbrowser
|
| 17 |
+
import http.server
|
| 18 |
+
import socketserver
|
| 19 |
+
import threading
|
| 20 |
+
PORT = 8000
|
| 21 |
+
|
| 22 |
+
torch.set_grad_enabled(False);
|
| 23 |
+
|
| 24 |
+
# For the most part I'll try to import functions and classes near where they are used
|
| 25 |
+
# to make it clear where they come from.
|
| 26 |
+
|
| 27 |
+
if torch.backends.mps.is_available():
|
| 28 |
+
device = "mps"
|
| 29 |
+
else:
|
| 30 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
+
|
| 32 |
+
print(f"Device: {device}")
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def display_vis_inline(filename: str, height: int = 850):
|
| 36 |
+
'''
|
| 37 |
+
Displays the HTML files in Colab. Uses global `PORT` variable defined in prev cell, so that each
|
| 38 |
+
vis has a unique port without having to define a port within the function.
|
| 39 |
+
'''
|
| 40 |
+
if not(COLAB):
|
| 41 |
+
webbrowser.open(filename);
|
| 42 |
+
|
| 43 |
+
else:
|
| 44 |
+
global PORT
|
| 45 |
+
|
| 46 |
+
def serve(directory):
|
| 47 |
+
os.chdir(directory)
|
| 48 |
+
|
| 49 |
+
# Create a handler for serving files
|
| 50 |
+
handler = http.server.SimpleHTTPRequestHandler
|
| 51 |
+
|
| 52 |
+
# Create a socket server with the handler
|
| 53 |
+
with socketserver.TCPServer(("", PORT), handler) as httpd:
|
| 54 |
+
print(f"Serving files from {directory} on port {PORT}")
|
| 55 |
+
httpd.serve_forever()
|
| 56 |
+
|
| 57 |
+
thread = threading.Thread(target=serve, args=("/content",))
|
| 58 |
+
thread.start()
|
| 59 |
+
|
| 60 |
+
# output.serve_kernel_port_as_iframe(PORT, path=f"/{filename}", height=height, cache_in_notebook=True)
|
| 61 |
+
|
| 62 |
+
PORT += 1
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
from datasets import load_dataset
|
| 68 |
+
from transformer_lens import HookedTransformer
|
| 69 |
+
from sae_lens import SAE
|
| 70 |
+
|
| 71 |
+
model = HookedTransformer.from_pretrained("gpt2-small", device = device)
|
| 72 |
+
|
| 73 |
+
# the cfg dict is returned alongside the SAE since it may contain useful information for analysing the SAE (eg: instantiating an activation store)
|
| 74 |
+
# Note that this is not the same as the SAEs config dict, rather it is whatever was in the HF repo, from which we can extract the SAE config dict
|
| 75 |
+
# We also return the feature sparsities which are stored in HF for convenience.
|
| 76 |
+
sae, cfg_dict, sparsity = SAE.from_pretrained(
|
| 77 |
+
release = "gpt2-small-res-jb", # see other options in sae_lens/pretrained_saes.yaml
|
| 78 |
+
sae_id = "blocks.8.hook_resid_pre", # won't always be a hook point
|
| 79 |
+
device = device
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
from transformer_lens.utils import tokenize_and_concatenate
|
| 84 |
+
|
| 85 |
+
dataset = load_dataset(
|
| 86 |
+
path = "NeelNanda/pile-10k",
|
| 87 |
+
split="train",
|
| 88 |
+
streaming=False,
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
token_dataset = tokenize_and_concatenate(
|
| 92 |
+
dataset= dataset,# type: ignore
|
| 93 |
+
tokenizer = model.tokenizer, # type: ignore
|
| 94 |
+
streaming=True,
|
| 95 |
+
max_length=sae.cfg.context_size,
|
| 96 |
+
add_bos_token=sae.cfg.prepend_bos,
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
sae.eval() # prevents error if we're expecting a dead neuron mask for who grads
|
| 101 |
+
|
| 102 |
+
with torch.no_grad():
|
| 103 |
+
# activation store can give us tokens.
|
| 104 |
+
batch_tokens = token_dataset[:32]["tokens"]
|
| 105 |
+
_, cache = model.run_with_cache(batch_tokens, prepend_bos=True)
|
| 106 |
+
|
| 107 |
+
# Use the SAE
|
| 108 |
+
feature_acts = sae.encode(cache[sae.cfg.hook_name])
|
| 109 |
+
sae_out = sae.decode(feature_acts)
|
| 110 |
+
|
| 111 |
+
# save some room
|
| 112 |
+
del cache
|
| 113 |
+
|
| 114 |
+
# ignore the bos token, get the number of features that activated in each token, averaged accross batch and position
|
| 115 |
+
l0 = (feature_acts[:, 1:] > 0).float().sum(-1).detach()
|
| 116 |
+
print("average l0", l0.mean().item())
|
| 117 |
+
px.histogram(l0.flatten().cpu().numpy()).show()
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
from transformer_lens import utils
|
| 123 |
+
from functools import partial
|
| 124 |
+
|
| 125 |
+
# next we want to do a reconstruction test.
|
| 126 |
+
def reconstr_hook(activation, hook, sae_out):
|
| 127 |
+
return sae_out
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def zero_abl_hook(activation, hook):
|
| 131 |
+
return torch.zeros_like(activation)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
print("Orig", model(batch_tokens, return_type="loss").item())
|
| 135 |
+
print(
|
| 136 |
+
"reconstr",
|
| 137 |
+
model.run_with_hooks(
|
| 138 |
+
batch_tokens,
|
| 139 |
+
fwd_hooks=[
|
| 140 |
+
(
|
| 141 |
+
sae.cfg.hook_name,
|
| 142 |
+
partial(reconstr_hook, sae_out=sae_out),
|
| 143 |
+
)
|
| 144 |
+
],
|
| 145 |
+
return_type="loss",
|
| 146 |
+
).item(),
|
| 147 |
+
)
|
| 148 |
+
print(
|
| 149 |
+
"Zero",
|
| 150 |
+
model.run_with_hooks(
|
| 151 |
+
batch_tokens,
|
| 152 |
+
return_type="loss",
|
| 153 |
+
fwd_hooks=[(sae.cfg.hook_name, zero_abl_hook)],
|
| 154 |
+
).item(),
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
example_prompt = "When John and Mary went to the shops, John gave the bag to"
|
| 161 |
+
example_answer = " Mary"
|
| 162 |
+
utils.test_prompt(example_prompt, example_answer, model, prepend_bos=True)
|
| 163 |
+
|
| 164 |
+
logits, cache = model.run_with_cache(example_prompt, prepend_bos=True)
|
| 165 |
+
tokens = model.to_tokens(example_prompt)
|
| 166 |
+
sae_out = sae(cache[sae.cfg.hook_name])
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def reconstr_hook(activations, hook, sae_out):
|
| 170 |
+
return sae_out
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def zero_abl_hook(mlp_out, hook):
|
| 174 |
+
return torch.zeros_like(mlp_out)
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
hook_name = sae.cfg.hook_name
|
| 178 |
+
|
| 179 |
+
print("Orig", model(tokens, return_type="loss").item())
|
| 180 |
+
print(
|
| 181 |
+
"reconstr",
|
| 182 |
+
model.run_with_hooks(
|
| 183 |
+
tokens,
|
| 184 |
+
fwd_hooks=[
|
| 185 |
+
(
|
| 186 |
+
hook_name,
|
| 187 |
+
partial(reconstr_hook, sae_out=sae_out),
|
| 188 |
+
)
|
| 189 |
+
],
|
| 190 |
+
return_type="loss",
|
| 191 |
+
).item(),
|
| 192 |
+
)
|
| 193 |
+
print(
|
| 194 |
+
"Zero",
|
| 195 |
+
model.run_with_hooks(
|
| 196 |
+
tokens,
|
| 197 |
+
return_type="loss",
|
| 198 |
+
fwd_hooks=[(hook_name, zero_abl_hook)],
|
| 199 |
+
).item(),
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
with model.hooks(
|
| 204 |
+
fwd_hooks=[
|
| 205 |
+
(
|
| 206 |
+
hook_name,
|
| 207 |
+
partial(reconstr_hook, sae_out=sae_out),
|
| 208 |
+
)
|
| 209 |
+
]
|
| 210 |
+
):
|
| 211 |
+
utils.test_prompt(example_prompt, example_answer, model, prepend_bos=True)
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
from sae_dashboard.sae_vis_data import SaeVisConfig
|
| 217 |
+
from sae_dashboard.sae_vis_runner import SaeVisRunner
|
| 218 |
+
|
| 219 |
+
test_feature_idx_gpt = list(range(10)) + [14057]
|
| 220 |
+
|
| 221 |
+
feature_vis_config_gpt = SaeVisConfig(
|
| 222 |
+
hook_point=hook_name,
|
| 223 |
+
features=test_feature_idx_gpt,
|
| 224 |
+
minibatch_size_features=64,
|
| 225 |
+
minibatch_size_tokens=256,
|
| 226 |
+
verbose=True,
|
| 227 |
+
device=device,
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
visualization_data_gpt = SaeVisRunner(feature_vis_config_gpt).run(
|
| 231 |
+
encoder=sae, # type: ignore
|
| 232 |
+
model=model,
|
| 233 |
+
tokens=token_dataset[:10000]["tokens"], # type: ignore
|
| 234 |
+
)
|
| 235 |
+
# SaeVisData.create(
|
| 236 |
+
# encoder=sae,
|
| 237 |
+
# model=model, # type: ignore
|
| 238 |
+
# tokens=token_dataset[:10000]["tokens"], # type: ignore
|
| 239 |
+
# cfg=feature_vis_config_gpt,
|
| 240 |
+
# )
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
from sae_dashboard.data_writing_fns import save_feature_centric_vis
|
| 247 |
+
|
| 248 |
+
filename = f"demo_feature_dashboards.html"
|
| 249 |
+
save_feature_centric_vis(sae_vis_data=visualization_data_gpt, filename=filename)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
from sae_lens.analysis.neuronpedia_integration import get_neuronpedia_quick_list
|
| 254 |
+
|
| 255 |
+
# this function should open
|
| 256 |
+
neuronpedia_quick_list = get_neuronpedia_quick_list(
|
| 257 |
+
test_feature_idx_gpt,
|
| 258 |
+
layer=sae.cfg.hook_layer,
|
| 259 |
+
model="gpt2-small",
|
| 260 |
+
dataset="res-jb",
|
| 261 |
+
name="A quick list we made",
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
if COLAB:
|
| 265 |
+
# If you're on colab, click the link below
|
| 266 |
+
print(neuronpedia_quick_list)
|
sae_tiny-stories-1L-21M_blocks.0.hook_mlp_out_16384/cfg.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"model_name": "tiny-stories-1L-21M", "model_class_name": "HookedTransformer", "hook_name": "blocks.0.hook_mlp_out", "hook_eval": "NOT_IN_USE", "hook_layer": 0, "hook_head_index": null, "dataset_path": "apollo-research/roneneldan-TinyStories-tokenizer-gpt2", "dataset_trust_remote_code": true, "streaming": true, "is_dataset_tokenized": true, "context_size": 512, "use_cached_activations": false, "cached_activations_path": null, "architecture": "standard", "d_in": 1024, "d_sae": 16384, "b_dec_init_method": "zeros", "expansion_factor": 16, "activation_fn": "relu", "activation_fn_kwargs": {}, "normalize_sae_decoder": false, "noise_scale": 0.0, "from_pretrained_path": null, "apply_b_dec_to_input": false, "decoder_orthogonal_init": false, "decoder_heuristic_init": true, "init_encoder_as_decoder_transpose": true, "n_batches_in_buffer": 64, "training_tokens": 122880000, "finetuning_tokens": 0, "store_batch_size_prompts": 16, "train_batch_size_tokens": 4096, "normalize_activations": "expected_average_only_in", "device": "cuda", "act_store_device": "cuda", "seed": 42, "dtype": "float32", "prepend_bos": true, "autocast": false, "autocast_lm": false, "compile_llm": false, "llm_compilation_mode": null, "compile_sae": false, "sae_compilation_mode": null, "adam_beta1": 0.9, "adam_beta2": 0.999, "mse_loss_normalization": null, "l1_coefficient": 5, "lp_norm": 1.0, "scale_sparsity_penalty_by_decoder_norm": true, "l1_warm_up_steps": 1500, "lr": 5e-05, "lr_scheduler_name": "constant", "lr_warm_up_steps": 0, "lr_end": 5e-06, "lr_decay_steps": 6000, "n_restart_cycles": 1, "finetuning_method": null, "use_ghost_grads": false, "feature_sampling_window": 1000, "dead_feature_window": 1000, "dead_feature_threshold": 0.0001, "n_eval_batches": 10, "eval_batch_size_prompts": null, "log_to_wandb": true, "log_activations_store_to_wandb": false, "log_optimizer_state_to_wandb": false, "wandb_project": "sae_lens_tutorial", "wandb_id": null, "run_name": "16384-L1-5-LR-5e-05-Tokens-1.229e+08", "wandb_entity": null, "wandb_log_frequency": 30, "eval_every_n_wandb_logs": 20, "resume": false, "n_checkpoints": 0, "checkpoint_path": "checkpoints/q5ut4uqw", "verbose": true, "model_kwargs": {}, "model_from_pretrained_kwargs": {}, "sae_lens_version": "3.13.0", "sae_lens_training_version": "3.13.0", "tokens_per_buffer": 134217728}
|
steer_stories.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# general imports
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
|
| 7 |
+
torch.set_grad_enabled(False);
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# package import
|
| 11 |
+
from torch import Tensor
|
| 12 |
+
from transformer_lens import utils
|
| 13 |
+
from functools import partial
|
| 14 |
+
from jaxtyping import Int, Float
|
| 15 |
+
|
| 16 |
+
# device setup
|
| 17 |
+
if torch.backends.mps.is_available():
|
| 18 |
+
device = "mps"
|
| 19 |
+
else:
|
| 20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
+
|
| 22 |
+
print(f"Device: {device}")
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
from transformer_lens import HookedTransformer
|
| 29 |
+
from sae_lens import SAE
|
| 30 |
+
|
| 31 |
+
# Choose a layer you want to focus on
|
| 32 |
+
# For this tutorial, we're going to use layer ????
|
| 33 |
+
layer = 0
|
| 34 |
+
|
| 35 |
+
# get model
|
| 36 |
+
model = HookedTransformer.from_pretrained("tiny-stories-1L-21M", device = device)
|
| 37 |
+
|
| 38 |
+
# get the SAE for this layer
|
| 39 |
+
sae = SAE.load_from_pretrained("sae_tiny-stories-1L-21M_blocks.0.hook_mlp_out_16384", device = device)
|
| 40 |
+
|
| 41 |
+
# get hook point
|
| 42 |
+
hook_point = sae.cfg.hook_name
|
| 43 |
+
print(hook_point)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
sv_prompt = " Lily"
|
| 48 |
+
sv_logits, activationCache = model.run_with_cache(sv_prompt, prepend_bos=True)
|
| 49 |
+
sv_feature_acts = sae.encode(activationCache[hook_point])
|
| 50 |
+
print(torch.topk(sv_feature_acts, 3).indices.tolist())
|
| 51 |
+
|
| 52 |
+
# Generate
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
sv_prompt = " Lily"
|
| 56 |
+
sv_logits, activationCache = model.run_with_cache(sv_prompt, prepend_bos=True)
|
| 57 |
+
tokens = model.to_tokens(sv_prompt)
|
| 58 |
+
print(tokens)
|
| 59 |
+
|
| 60 |
+
# get the feature activations from our SAE
|
| 61 |
+
sv_feature_acts = sae.encode(activationCache[hook_point])
|
| 62 |
+
|
| 63 |
+
# get sae_out
|
| 64 |
+
sae_out = sae.decode(sv_feature_acts)
|
| 65 |
+
|
| 66 |
+
# print out the top activations, focus on the indices
|
| 67 |
+
print(torch.topk(sv_feature_acts, 3))
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# get the neurons to use;
|
| 72 |
+
print(torch.topk(sv_feature_acts, 3).indices.tolist())
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# choose the vector -- find this from the above section
|
| 76 |
+
#
|
| 77 |
+
steering_vector = sae.W_dec[10284]
|
| 78 |
+
|
| 79 |
+
example_prompt = "Once upon a time"
|
| 80 |
+
coeff = 1000
|
| 81 |
+
sampling_kwargs = dict(temperature=1.0, top_p=0.1, freq_penalty=1.0)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
# apply steering vector when the model generates
|
| 86 |
+
|
| 87 |
+
def steering_hook(resid_pre, hook):
|
| 88 |
+
if resid_pre.shape[1] == 1:
|
| 89 |
+
return
|
| 90 |
+
|
| 91 |
+
position = sae_out.shape[1]
|
| 92 |
+
if steering_on:
|
| 93 |
+
breakpoint()
|
| 94 |
+
# using our steering vector and applying the coefficient
|
| 95 |
+
resid_pre[:, :position - 1, :] += coeff * steering_vector
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def hooked_generate(prompt_batch, fwd_hooks=[], seed=None, **kwargs):
|
| 99 |
+
if seed is not None:
|
| 100 |
+
torch.manual_seed(seed)
|
| 101 |
+
|
| 102 |
+
with model.hooks(fwd_hooks=fwd_hooks):
|
| 103 |
+
tokenized = model.to_tokens(prompt_batch)
|
| 104 |
+
result = model.generate(
|
| 105 |
+
stop_at_eos=False, # avoids a bug on MPS
|
| 106 |
+
input=tokenized,
|
| 107 |
+
max_new_tokens=50,
|
| 108 |
+
do_sample=True,
|
| 109 |
+
**kwargs)
|
| 110 |
+
return result
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def run_generate(example_prompt):
|
| 114 |
+
model.reset_hooks()
|
| 115 |
+
editing_hooks = [(f"blocks.{layer}.hook_resid_post", steering_hook)]
|
| 116 |
+
res = hooked_generate([example_prompt] * 3, editing_hooks, seed=None, **sampling_kwargs)
|
| 117 |
+
|
| 118 |
+
# Print results, removing the ugly beginning of sequence token
|
| 119 |
+
res_str = model.to_string(res[:, 1:])
|
| 120 |
+
print(("\n\n" + "-" * 80 + "\n\n").join(res_str))
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
steering_on = True
|
| 124 |
+
run_generate(example_prompt)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
# evaluate features
|
| 129 |
+
|
| 130 |
+
import pandas as pd
|
| 131 |
+
|
| 132 |
+
# Let's start by getting the top 10 logits for each feature
|
| 133 |
+
projection_onto_unembed = sae.W_dec @ model.W_U
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
# get the top 10 logits.
|
| 137 |
+
vals, inds = torch.topk(projection_onto_unembed, 10, dim=1)
|
| 138 |
+
|
| 139 |
+
# get 10 random features
|
| 140 |
+
random_indices = torch.randint(0, projection_onto_unembed.shape[0], (10,))
|
| 141 |
+
|
| 142 |
+
# Show the top 10 logits promoted by those features
|
| 143 |
+
top_10_logits_df = pd.DataFrame(
|
| 144 |
+
[model.to_str_tokens(i) for i in inds[random_indices]],
|
| 145 |
+
index=random_indices.tolist(),
|
| 146 |
+
).T
|
| 147 |
+
top_10_logits_df
|
| 148 |
+
# [7195, 5910, 2041]
|
| 149 |
+
top_10_associated_words_logits_df = model.to_str_tokens(inds[5910])
|
| 150 |
+
# See the words associated with feature 7195 (Should be "Golden")
|
using_an_sae_as_a_steering_vector.ipynb
ADDED
|
@@ -0,0 +1,2171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {
|
| 6 |
+
"id": "GoXn14ltnGh3"
|
| 7 |
+
},
|
| 8 |
+
"source": [
|
| 9 |
+
"# Using an SAE as a steering vector\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"This notebook demonstrates how to use SAE lens to identify a feature on a pretrained model, and then construct a steering vector to affect the models output to various prompts. This notebook will also make use of Neuronpedia for identifying features of interest.\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"The steps below include:\n",
|
| 14 |
+
"\n",
|
| 15 |
+
"\n",
|
| 16 |
+
"\n",
|
| 17 |
+
"* Installing relevant packages (Colab or locally)\n",
|
| 18 |
+
"* Load your SAE and the model it used\n",
|
| 19 |
+
"* Determining your feature of interest and its index\n",
|
| 20 |
+
"* Implementing your steering vector\n",
|
| 21 |
+
"\n",
|
| 22 |
+
"\n",
|
| 23 |
+
"\n"
|
| 24 |
+
]
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"cell_type": "markdown",
|
| 28 |
+
"metadata": {
|
| 29 |
+
"id": "gf3lJYPEXh0v"
|
| 30 |
+
},
|
| 31 |
+
"source": [
|
| 32 |
+
"## Setting up packages and notebook"
|
| 33 |
+
]
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"cell_type": "markdown",
|
| 37 |
+
"metadata": {
|
| 38 |
+
"id": "l9k5iGyOXtuN"
|
| 39 |
+
},
|
| 40 |
+
"source": [
|
| 41 |
+
"### Import and installs"
|
| 42 |
+
]
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"cell_type": "markdown",
|
| 46 |
+
"metadata": {
|
| 47 |
+
"id": "fapxk8MDrs6R"
|
| 48 |
+
},
|
| 49 |
+
"source": [
|
| 50 |
+
"#### Environment Setup\n"
|
| 51 |
+
]
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"cell_type": "code",
|
| 55 |
+
"execution_count": 1,
|
| 56 |
+
"metadata": {
|
| 57 |
+
"colab": {
|
| 58 |
+
"base_uri": "https://localhost:8080/"
|
| 59 |
+
},
|
| 60 |
+
"collapsed": true,
|
| 61 |
+
"id": "0TwNmRkRUgR7",
|
| 62 |
+
"outputId": "ffeb827a-9af2-4b09-b8dd-78e0d594ddf6"
|
| 63 |
+
},
|
| 64 |
+
"outputs": [],
|
| 65 |
+
"source": [
|
| 66 |
+
"try:\n",
|
| 67 |
+
" # for google colab users\n",
|
| 68 |
+
" import google.colab # type: ignore\n",
|
| 69 |
+
" from google.colab import output\n",
|
| 70 |
+
" COLAB = True\n",
|
| 71 |
+
" %pip install sae-lens transformer-lens\n",
|
| 72 |
+
"except:\n",
|
| 73 |
+
" # for local setup\n",
|
| 74 |
+
" COLAB = False\n",
|
| 75 |
+
" from IPython import get_ipython # type: ignore\n",
|
| 76 |
+
" ipython = get_ipython(); assert ipython is not None\n",
|
| 77 |
+
" ipython.run_line_magic(\"load_ext\", \"autoreload\")\n",
|
| 78 |
+
" ipython.run_line_magic(\"autoreload\", \"2\")\n",
|
| 79 |
+
"\n",
|
| 80 |
+
"# Imports for displaying vis in Colab / notebook\n",
|
| 81 |
+
"import webbrowser\n",
|
| 82 |
+
"import http.server\n",
|
| 83 |
+
"import socketserver\n",
|
| 84 |
+
"import threading\n",
|
| 85 |
+
"PORT = 8000\n",
|
| 86 |
+
"\n",
|
| 87 |
+
"# general imports\n",
|
| 88 |
+
"import os\n",
|
| 89 |
+
"import torch\n",
|
| 90 |
+
"from tqdm import tqdm\n",
|
| 91 |
+
"import plotly.express as px\n",
|
| 92 |
+
"\n",
|
| 93 |
+
"torch.set_grad_enabled(False);"
|
| 94 |
+
]
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"cell_type": "code",
|
| 98 |
+
"execution_count": 2,
|
| 99 |
+
"metadata": {
|
| 100 |
+
"id": "NGgIu1ZVYDub"
|
| 101 |
+
},
|
| 102 |
+
"outputs": [],
|
| 103 |
+
"source": [
|
| 104 |
+
"def display_vis_inline(filename: str, height: int = 850):\n",
|
| 105 |
+
" '''\n",
|
| 106 |
+
" Displays the HTML files in Colab. Uses global `PORT` variable defined in prev cell, so that each\n",
|
| 107 |
+
" vis has a unique port without having to define a port within the function.\n",
|
| 108 |
+
" '''\n",
|
| 109 |
+
" if not(COLAB):\n",
|
| 110 |
+
" webbrowser.open(filename);\n",
|
| 111 |
+
"\n",
|
| 112 |
+
" else:\n",
|
| 113 |
+
" global PORT\n",
|
| 114 |
+
"\n",
|
| 115 |
+
" def serve(directory):\n",
|
| 116 |
+
" os.chdir(directory)\n",
|
| 117 |
+
"\n",
|
| 118 |
+
" # Create a handler for serving files\n",
|
| 119 |
+
" handler = http.server.SimpleHTTPRequestHandler\n",
|
| 120 |
+
"\n",
|
| 121 |
+
" # Create a socket server with the handler\n",
|
| 122 |
+
" with socketserver.TCPServer((\"\", PORT), handler) as httpd:\n",
|
| 123 |
+
" print(f\"Serving files from {directory} on port {PORT}\")\n",
|
| 124 |
+
" httpd.serve_forever()\n",
|
| 125 |
+
"\n",
|
| 126 |
+
" thread = threading.Thread(target=serve, args=(\"/content\",))\n",
|
| 127 |
+
" thread.start()\n",
|
| 128 |
+
"\n",
|
| 129 |
+
" output.serve_kernel_port_as_iframe(PORT, path=f\"/{filename}\", height=height, cache_in_notebook=True)\n",
|
| 130 |
+
"\n",
|
| 131 |
+
" PORT += 1"
|
| 132 |
+
]
|
| 133 |
+
},
|
| 134 |
+
{
|
| 135 |
+
"cell_type": "markdown",
|
| 136 |
+
"metadata": {
|
| 137 |
+
"id": "CmaPYLpGrxbo"
|
| 138 |
+
},
|
| 139 |
+
"source": [
|
| 140 |
+
"#### General Installs and device setup"
|
| 141 |
+
]
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"cell_type": "code",
|
| 145 |
+
"execution_count": 3,
|
| 146 |
+
"metadata": {
|
| 147 |
+
"colab": {
|
| 148 |
+
"base_uri": "https://localhost:8080/"
|
| 149 |
+
},
|
| 150 |
+
"id": "tdUm9rZKr1Qb",
|
| 151 |
+
"outputId": "9b73b762-1356-437b-8925-91c514093b43"
|
| 152 |
+
},
|
| 153 |
+
"outputs": [
|
| 154 |
+
{
|
| 155 |
+
"name": "stdout",
|
| 156 |
+
"output_type": "stream",
|
| 157 |
+
"text": [
|
| 158 |
+
"Device: mps\n"
|
| 159 |
+
]
|
| 160 |
+
}
|
| 161 |
+
],
|
| 162 |
+
"source": [
|
| 163 |
+
"# package import\n",
|
| 164 |
+
"from torch import Tensor\n",
|
| 165 |
+
"from transformer_lens import utils\n",
|
| 166 |
+
"from functools import partial\n",
|
| 167 |
+
"from jaxtyping import Int, Float\n",
|
| 168 |
+
"\n",
|
| 169 |
+
"# device setup\n",
|
| 170 |
+
"if torch.backends.mps.is_available():\n",
|
| 171 |
+
" device = \"mps\"\n",
|
| 172 |
+
"else:\n",
|
| 173 |
+
" device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
| 174 |
+
"\n",
|
| 175 |
+
"print(f\"Device: {device}\")"
|
| 176 |
+
]
|
| 177 |
+
},
|
| 178 |
+
{
|
| 179 |
+
"cell_type": "markdown",
|
| 180 |
+
"metadata": {
|
| 181 |
+
"id": "lsB0qORUaXiK"
|
| 182 |
+
},
|
| 183 |
+
"source": [
|
| 184 |
+
"### Load your model and SAE\n",
|
| 185 |
+
"\n",
|
| 186 |
+
"We're going to work with a pretrained GPT2-small model, and the RES-JB SAE set which is for the residual stream."
|
| 187 |
+
]
|
| 188 |
+
},
|
| 189 |
+
{
|
| 190 |
+
"cell_type": "code",
|
| 191 |
+
"execution_count": 40,
|
| 192 |
+
"metadata": {
|
| 193 |
+
"colab": {
|
| 194 |
+
"base_uri": "https://localhost:8080/"
|
| 195 |
+
},
|
| 196 |
+
"collapsed": true,
|
| 197 |
+
"id": "bCvNtm1OOhlR",
|
| 198 |
+
"outputId": "e6fd27ab-ee94-46ec-a07e-ee48c8f30da3"
|
| 199 |
+
},
|
| 200 |
+
"outputs": [
|
| 201 |
+
{
|
| 202 |
+
"data": {
|
| 203 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 204 |
+
"model_id": "8607cfc3f17548078c7b3ff7ebcca055",
|
| 205 |
+
"version_major": 2,
|
| 206 |
+
"version_minor": 0
|
| 207 |
+
},
|
| 208 |
+
"text/plain": [
|
| 209 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
| 210 |
+
]
|
| 211 |
+
},
|
| 212 |
+
"metadata": {},
|
| 213 |
+
"output_type": "display_data"
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"name": "stderr",
|
| 217 |
+
"output_type": "stream",
|
| 218 |
+
"text": [
|
| 219 |
+
"WARNING:root:You are not using LayerNorm, so the writing weights can't be centered! Skipping\n"
|
| 220 |
+
]
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"name": "stdout",
|
| 224 |
+
"output_type": "stream",
|
| 225 |
+
"text": [
|
| 226 |
+
"Loaded pretrained model gemma-2b into HookedTransformer\n",
|
| 227 |
+
"blocks.6.hook_resid_post\n"
|
| 228 |
+
]
|
| 229 |
+
}
|
| 230 |
+
],
|
| 231 |
+
"source": [
|
| 232 |
+
"from transformer_lens import HookedTransformer\n",
|
| 233 |
+
"from sae_lens import SAE\n",
|
| 234 |
+
"from sae_lens.toolkit.pretrained_saes import get_gpt2_res_jb_saes\n",
|
| 235 |
+
"\n",
|
| 236 |
+
"# Choose a layer you want to focus on\n",
|
| 237 |
+
"# For this tutorial, we're going to use layer 2\n",
|
| 238 |
+
"layer = 6\n",
|
| 239 |
+
"\n",
|
| 240 |
+
"# get model\n",
|
| 241 |
+
"model = HookedTransformer.from_pretrained(\"gemma-2b\", device = device)\n",
|
| 242 |
+
"\n",
|
| 243 |
+
"# get the SAE for this layer\n",
|
| 244 |
+
"sae, cfg_dict, _ = SAE.from_pretrained(\n",
|
| 245 |
+
" release = \"gemma-2b-res-jb\",\n",
|
| 246 |
+
" sae_id = f\"blocks.{layer}.hook_resid_post\",\n",
|
| 247 |
+
" device = device\n",
|
| 248 |
+
")\n",
|
| 249 |
+
"\n",
|
| 250 |
+
"# get hook point\n",
|
| 251 |
+
"hook_point = sae.cfg.hook_name\n",
|
| 252 |
+
"print(hook_point)"
|
| 253 |
+
]
|
| 254 |
+
},
|
| 255 |
+
{
|
| 256 |
+
"cell_type": "markdown",
|
| 257 |
+
"metadata": {
|
| 258 |
+
"id": "NkAAoyFbu5a5"
|
| 259 |
+
},
|
| 260 |
+
"source": [
|
| 261 |
+
"## Determine your feature of interest and its index"
|
| 262 |
+
]
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"cell_type": "markdown",
|
| 266 |
+
"metadata": {
|
| 267 |
+
"id": "DkQNvdd54q4S"
|
| 268 |
+
},
|
| 269 |
+
"source": [
|
| 270 |
+
"### Find your feature"
|
| 271 |
+
]
|
| 272 |
+
},
|
| 273 |
+
{
|
| 274 |
+
"cell_type": "markdown",
|
| 275 |
+
"metadata": {
|
| 276 |
+
"id": "wzeY2D13xRjY"
|
| 277 |
+
},
|
| 278 |
+
"source": [
|
| 279 |
+
"#### Explore through code by using the feature activations for a prompt\n",
|
| 280 |
+
"\n",
|
| 281 |
+
"For the purpose of the tutorial, we are selecting a simple token prompt.\n",
|
| 282 |
+
"\n",
|
| 283 |
+
"In this example we will look trying to find and steer a \"Jedi\" feature.\n",
|
| 284 |
+
"\n",
|
| 285 |
+
"We run our prompt on our model and get the cache, which we then use with our sae to get our feature activations.\n",
|
| 286 |
+
"\n",
|
| 287 |
+
"Now we'll look at the top feature activations and look them up on Neuronpedia to determine what they have been intepreted as."
|
| 288 |
+
]
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"cell_type": "code",
|
| 292 |
+
"execution_count": 41,
|
| 293 |
+
"metadata": {
|
| 294 |
+
"colab": {
|
| 295 |
+
"base_uri": "https://localhost:8080/"
|
| 296 |
+
},
|
| 297 |
+
"id": "IIrdJ36mlXgB",
|
| 298 |
+
"outputId": "c4014b87-3af6-4c27-8f79-3b5a3c2c03dc"
|
| 299 |
+
},
|
| 300 |
+
"outputs": [
|
| 301 |
+
{
|
| 302 |
+
"name": "stdout",
|
| 303 |
+
"output_type": "stream",
|
| 304 |
+
"text": [
|
| 305 |
+
"tensor([[ 2, 714, 17489, 22352, 16125]], device='mps:0')\n",
|
| 306 |
+
"torch.return_types.topk(\n",
|
| 307 |
+
"values=tensor([[[72.5067, 70.9109, 68.8217],\n",
|
| 308 |
+
" [37.8954, 31.1813, 15.6114],\n",
|
| 309 |
+
" [65.9133, 14.2098, 13.3081],\n",
|
| 310 |
+
" [22.8078, 21.7340, 17.3972],\n",
|
| 311 |
+
" [43.6480, 12.6739, 10.7545]]], device='mps:0'),\n",
|
| 312 |
+
"indices=tensor([[[ 3390, 15881, 5347],\n",
|
| 313 |
+
" [ 6518, 13743, 1959],\n",
|
| 314 |
+
" [ 1571, 12529, 15173],\n",
|
| 315 |
+
" [12773, 10200, 15173],\n",
|
| 316 |
+
" [ 5192, 15173, 12030]]], device='mps:0'))\n"
|
| 317 |
+
]
|
| 318 |
+
}
|
| 319 |
+
],
|
| 320 |
+
"source": [
|
| 321 |
+
"sv_prompt = \" The Golden Gate Bridge\"\n",
|
| 322 |
+
"sv_logits, cache = model.run_with_cache(sv_prompt, prepend_bos=True)\n",
|
| 323 |
+
"tokens = model.to_tokens(sv_prompt)\n",
|
| 324 |
+
"print(tokens)\n",
|
| 325 |
+
"\n",
|
| 326 |
+
"# get the feature activations from our SAE\n",
|
| 327 |
+
"sv_feature_acts = sae.encode(cache[hook_point])\n",
|
| 328 |
+
"\n",
|
| 329 |
+
"# get sae_out\n",
|
| 330 |
+
"sae_out = sae.decode(sv_feature_acts)\n",
|
| 331 |
+
"\n",
|
| 332 |
+
"# print out the top activations, focus on the indices\n",
|
| 333 |
+
"print(torch.topk(sv_feature_acts, 3))"
|
| 334 |
+
]
|
| 335 |
+
},
|
| 336 |
+
{
|
| 337 |
+
"cell_type": "code",
|
| 338 |
+
"execution_count": 16,
|
| 339 |
+
"metadata": {},
|
| 340 |
+
"outputs": [
|
| 341 |
+
{
|
| 342 |
+
"name": "stderr",
|
| 343 |
+
"output_type": "stream",
|
| 344 |
+
"text": [
|
| 345 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
| 346 |
+
"To disable this warning, you can either:\n",
|
| 347 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
| 348 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
| 349 |
+
]
|
| 350 |
+
},
|
| 351 |
+
{
|
| 352 |
+
"data": {
|
| 353 |
+
"text/plain": [
|
| 354 |
+
"'https://neuronpedia.org/quick-list/?name=temporary_list&features=%5B%7B%22modelId%22%3A%20%22gemma-2b%22%2C%20%22layer%22%3A%20%220-res-jb%22%2C%20%22index%22%3A%20%22%5B%5B9036%2C%20347%2C%205775%5D%2C%20%5B12244%2C%208086%2C%2015895%5D%5D%22%7D%5D'"
|
| 355 |
+
]
|
| 356 |
+
},
|
| 357 |
+
"execution_count": 16,
|
| 358 |
+
"metadata": {},
|
| 359 |
+
"output_type": "execute_result"
|
| 360 |
+
}
|
| 361 |
+
],
|
| 362 |
+
"source": [
|
| 363 |
+
"from sae_lens.analysis.neuronpedia_integration import get_neuronpedia_quick_list\n",
|
| 364 |
+
"get_neuronpedia_quick_list(torch.topk(sv_feature_acts, 3).indices.tolist(), layer = layer, model = \"gemma-2b\", dataset=\"res-jb\")"
|
| 365 |
+
]
|
| 366 |
+
},
|
| 367 |
+
{
|
| 368 |
+
"cell_type": "markdown",
|
| 369 |
+
"metadata": {
|
| 370 |
+
"id": "7hy8RbbyTb8n"
|
| 371 |
+
},
|
| 372 |
+
"source": [
|
| 373 |
+
"As we can see from our print out of tokens, the prompt is made of three tokens in total - \"<endoftext>\", \"J\", and \"edi\".\n",
|
| 374 |
+
"\n",
|
| 375 |
+
"Our feature activation indexes at sv_feature_acts[2] - for \"edi\" - are of most interest to us.\n",
|
| 376 |
+
"\n",
|
| 377 |
+
"Because we are using pretrained saes that have published feature maps, you can search on Neuronpedia for a feature of interest."
|
| 378 |
+
]
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
"cell_type": "markdown",
|
| 382 |
+
"metadata": {
|
| 383 |
+
"id": "gFv4iBHFcOmE"
|
| 384 |
+
},
|
| 385 |
+
"source": [
|
| 386 |
+
"### Steps for Neuronpedia use\n",
|
| 387 |
+
"\n",
|
| 388 |
+
"Use the interface to search for a specific concept or item and determine which layer and at what index it is.\n",
|
| 389 |
+
"\n",
|
| 390 |
+
"1. Open the [Neuronpedia](https://www.neuronpedia.org/) homepage.\n",
|
| 391 |
+
"2. Using the \"Models\" dropdown, select your model. Here we are using GPT2-SM (GPT2-small).\n",
|
| 392 |
+
"3. The next page will have a search bar, which allows you to enter your index of interest. We're interested in the \"RES-JB\" SAE set, make sure to select it.\n",
|
| 393 |
+
"4. We found these indices in the previous step: [ 7650, 718, 22372]. Select them in the search to see the feature dashboard for each.\n",
|
| 394 |
+
"5. As we'll see, some of the indices may relate to features you don't care about.\n",
|
| 395 |
+
"\n",
|
| 396 |
+
"From using Neuronpedia, I have determined that my feature of interest is in layer 2, at index 7650: [here](https://www.neuronpedia.org/gpt2-small/2-res-jb/7650) is the feature."
|
| 397 |
+
]
|
| 398 |
+
},
|
| 399 |
+
{
|
| 400 |
+
"cell_type": "markdown",
|
| 401 |
+
"metadata": {
|
| 402 |
+
"id": "KX0rXziniH9O"
|
| 403 |
+
},
|
| 404 |
+
"source": [
|
| 405 |
+
"### Note: 2nd Option - Starting with Neuronpedia\n",
|
| 406 |
+
"\n",
|
| 407 |
+
"Another option here is that you can start with Neuronpedia to identify features of interest. By using your prompt in the interface you can explore which features were involved and search across all the layers. This allows you to first determine your layer and index of interest in Neuronpedia before focusing them in your code. Start [here](https://www.neuronpedia.org/search) if you want to begin with search."
|
| 408 |
+
]
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"cell_type": "markdown",
|
| 412 |
+
"metadata": {
|
| 413 |
+
"id": "YACtNFzGcNua"
|
| 414 |
+
},
|
| 415 |
+
"source": [
|
| 416 |
+
"## Implement your steering vector and affect the output"
|
| 417 |
+
]
|
| 418 |
+
},
|
| 419 |
+
{
|
| 420 |
+
"cell_type": "markdown",
|
| 421 |
+
"metadata": {
|
| 422 |
+
"id": "pO8hjg8j5bb-"
|
| 423 |
+
},
|
| 424 |
+
"source": [
|
| 425 |
+
"### Define values for your steering vector\n",
|
| 426 |
+
"To create our steering vector, we now need to get the decoder weights from our sparse autoencoder found at our index of interest.\n",
|
| 427 |
+
"\n",
|
| 428 |
+
"Then to use our steering vector, we want a prompt for text generation, as well as a scaling factor coefficent to apply with the steering vector\n",
|
| 429 |
+
"\n",
|
| 430 |
+
"We also set common sampling kwargs - temperature, top_p and freq_penalty"
|
| 431 |
+
]
|
| 432 |
+
},
|
| 433 |
+
{
|
| 434 |
+
"cell_type": "code",
|
| 435 |
+
"execution_count": 46,
|
| 436 |
+
"metadata": {
|
| 437 |
+
"id": "rgYEWGV0t0L2"
|
| 438 |
+
},
|
| 439 |
+
"outputs": [],
|
| 440 |
+
"source": [
|
| 441 |
+
"steering_vector = sae.W_dec[10200]\n",
|
| 442 |
+
"\n",
|
| 443 |
+
"example_prompt = \"What is the most iconic structure known to man?\"\n",
|
| 444 |
+
"coeff = 300\n",
|
| 445 |
+
"sampling_kwargs = dict(temperature=1.0, top_p=0.1, freq_penalty=1.0)"
|
| 446 |
+
]
|
| 447 |
+
},
|
| 448 |
+
{
|
| 449 |
+
"cell_type": "markdown",
|
| 450 |
+
"metadata": {
|
| 451 |
+
"id": "cexaoBR65lIa"
|
| 452 |
+
},
|
| 453 |
+
"source": [
|
| 454 |
+
"### Set up hook functions\n",
|
| 455 |
+
"\n",
|
| 456 |
+
"Finally, we need to create a hook that allows us to apply the steering vector when our model runs generate() on our defined prompt. We have also added a boolean value 'steering_on' that allows us to easily toggle the steering vector on and off for each prompt\n"
|
| 457 |
+
]
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"cell_type": "code",
|
| 461 |
+
"execution_count": 47,
|
| 462 |
+
"metadata": {
|
| 463 |
+
"collapsed": true,
|
| 464 |
+
"id": "3kcVWeJoIAlC"
|
| 465 |
+
},
|
| 466 |
+
"outputs": [],
|
| 467 |
+
"source": [
|
| 468 |
+
"def steering_hook(resid_pre, hook):\n",
|
| 469 |
+
" if resid_pre.shape[1] == 1:\n",
|
| 470 |
+
" return\n",
|
| 471 |
+
"\n",
|
| 472 |
+
" position = sae_out.shape[1]\n",
|
| 473 |
+
" if steering_on:\n",
|
| 474 |
+
" # using our steering vector and applying the coefficient\n",
|
| 475 |
+
" resid_pre[:, :position - 1, :] += coeff * steering_vector\n",
|
| 476 |
+
"\n",
|
| 477 |
+
"\n",
|
| 478 |
+
"def hooked_generate(prompt_batch, fwd_hooks=[], seed=None, **kwargs):\n",
|
| 479 |
+
" if seed is not None:\n",
|
| 480 |
+
" torch.manual_seed(seed)\n",
|
| 481 |
+
"\n",
|
| 482 |
+
" with model.hooks(fwd_hooks=fwd_hooks):\n",
|
| 483 |
+
" tokenized = model.to_tokens(prompt_batch)\n",
|
| 484 |
+
" result = model.generate(\n",
|
| 485 |
+
" stop_at_eos=False, # avoids a bug on MPS\n",
|
| 486 |
+
" input=tokenized,\n",
|
| 487 |
+
" max_new_tokens=50,\n",
|
| 488 |
+
" do_sample=True,\n",
|
| 489 |
+
" **kwargs)\n",
|
| 490 |
+
" return result\n"
|
| 491 |
+
]
|
| 492 |
+
},
|
| 493 |
+
{
|
| 494 |
+
"cell_type": "code",
|
| 495 |
+
"execution_count": 48,
|
| 496 |
+
"metadata": {
|
| 497 |
+
"id": "VcuRkX0yA2WH"
|
| 498 |
+
},
|
| 499 |
+
"outputs": [],
|
| 500 |
+
"source": [
|
| 501 |
+
"def run_generate(example_prompt):\n",
|
| 502 |
+
" model.reset_hooks()\n",
|
| 503 |
+
" editing_hooks = [(f\"blocks.{layer}.hook_resid_post\", steering_hook)]\n",
|
| 504 |
+
" res = hooked_generate([example_prompt] * 3, editing_hooks, seed=None, **sampling_kwargs)\n",
|
| 505 |
+
"\n",
|
| 506 |
+
" # Print results, removing the ugly beginning of sequence token\n",
|
| 507 |
+
" res_str = model.to_string(res[:, 1:])\n",
|
| 508 |
+
" print((\"\\n\\n\" + \"-\" * 80 + \"\\n\\n\").join(res_str))"
|
| 509 |
+
]
|
| 510 |
+
},
|
| 511 |
+
{
|
| 512 |
+
"cell_type": "markdown",
|
| 513 |
+
"metadata": {
|
| 514 |
+
"id": "XYx--hIn61VQ"
|
| 515 |
+
},
|
| 516 |
+
"source": [
|
| 517 |
+
"### Generate text influenced by steering vector\n",
|
| 518 |
+
"\n",
|
| 519 |
+
"You may want to experiment with the scaling factor coefficient value that you set and see how it affects the generated output."
|
| 520 |
+
]
|
| 521 |
+
},
|
| 522 |
+
{
|
| 523 |
+
"cell_type": "code",
|
| 524 |
+
"execution_count": 49,
|
| 525 |
+
"metadata": {
|
| 526 |
+
"colab": {
|
| 527 |
+
"base_uri": "https://localhost:8080/",
|
| 528 |
+
"height": 337,
|
| 529 |
+
"referenced_widgets": [
|
| 530 |
+
"9f555c5ada38495eb4281cbb49169abe",
|
| 531 |
+
"79b59cbde9444bf892931d31afec7f2a",
|
| 532 |
+
"a157870318114d459a33d795850967ef",
|
| 533 |
+
"635162e10abc441797d4e5b74713bf44",
|
| 534 |
+
"720b4d010c364e3fbf72a53b267e8db9",
|
| 535 |
+
"d9c33fbfb3164cbbb7b9a4cd172d20ae",
|
| 536 |
+
"df53331cce124bd1ada5aa9e9a977015",
|
| 537 |
+
"229dad8e29f04c279c5603286e2c0643",
|
| 538 |
+
"83d947fc3338491ab4155b87c443884c",
|
| 539 |
+
"5e9700580d6b4ad0bfac34bf3b3919fc",
|
| 540 |
+
"a2c30462ef8d41fd9158f194a746d5a7"
|
| 541 |
+
]
|
| 542 |
+
},
|
| 543 |
+
"id": "hN_YOzBE6lz8",
|
| 544 |
+
"outputId": "e263b8ff-86ce-439e-81e5-bbecb0d7e187"
|
| 545 |
+
},
|
| 546 |
+
"outputs": [
|
| 547 |
+
{
|
| 548 |
+
"data": {
|
| 549 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 550 |
+
"model_id": "634ddfad68cb49208e63733402859842",
|
| 551 |
+
"version_major": 2,
|
| 552 |
+
"version_minor": 0
|
| 553 |
+
},
|
| 554 |
+
"text/plain": [
|
| 555 |
+
" 0%| | 0/50 [00:00<?, ?it/s]"
|
| 556 |
+
]
|
| 557 |
+
},
|
| 558 |
+
"metadata": {},
|
| 559 |
+
"output_type": "display_data"
|
| 560 |
+
},
|
| 561 |
+
{
|
| 562 |
+
"name": "stdout",
|
| 563 |
+
"output_type": "stream",
|
| 564 |
+
"text": [
|
| 565 |
+
"What is the most iconic structure known to man? The Golden Gate Bridge. The Golden Gate Bridge is a cable- suspension bridge that connects San Francisco and the Presidio of San Francisco, connecting the northern part of San Francisco with the northern part of Marin County. It’s one of the most famous\n",
|
| 566 |
+
"\n",
|
| 567 |
+
"--------------------------------------------------------------------------------\n",
|
| 568 |
+
"\n",
|
| 569 |
+
"What is the most iconic structure known to man? The Golden Gate Bridge. The Golden Gate Bridge is a cable- suspension bridge that connects San Francisco and the northern part of San Francisco’s famous “Golden” Coast. It’s one of the most iconic landmarks in the whole world, and it\n",
|
| 570 |
+
"\n",
|
| 571 |
+
"--------------------------------------------------------------------------------\n",
|
| 572 |
+
"\n",
|
| 573 |
+
"What is the most iconic structure known to man? The Golden Gate Bridge. The Golden Gate Bridge is a cable- suspension bridge that connects San Francisco and the Presidio of San Francisco, connecting the northern part of San Francisco with the city’s northernmost part. It’s one of the most\n"
|
| 574 |
+
]
|
| 575 |
+
}
|
| 576 |
+
],
|
| 577 |
+
"source": [
|
| 578 |
+
"steering_on = True\n",
|
| 579 |
+
"run_generate(example_prompt)"
|
| 580 |
+
]
|
| 581 |
+
},
|
| 582 |
+
{
|
| 583 |
+
"cell_type": "markdown",
|
| 584 |
+
"metadata": {
|
| 585 |
+
"id": "ltZEm1VW7Tsr"
|
| 586 |
+
},
|
| 587 |
+
"source": [
|
| 588 |
+
"### Generate text with no steering"
|
| 589 |
+
]
|
| 590 |
+
},
|
| 591 |
+
{
|
| 592 |
+
"cell_type": "code",
|
| 593 |
+
"execution_count": 50,
|
| 594 |
+
"metadata": {
|
| 595 |
+
"colab": {
|
| 596 |
+
"base_uri": "https://localhost:8080/",
|
| 597 |
+
"height": 337,
|
| 598 |
+
"referenced_widgets": [
|
| 599 |
+
"1a5dd5f7c9d340b6ab00ecaf43525ae9",
|
| 600 |
+
"8211cc6c973a43fcaf18e14f6d7f08a2",
|
| 601 |
+
"3d3584d1feec459287ffa24c4ef790c3",
|
| 602 |
+
"5f03835168e64ec588c50ee21fedd198",
|
| 603 |
+
"b833db18729f422cb86deed4be6f1900",
|
| 604 |
+
"66d406d6eb1f49699ee09c9a2fd4ffa9",
|
| 605 |
+
"38341454dd6b4e9ca2fe5b85d2e371e1",
|
| 606 |
+
"a30c82833f55441995744300c2ef538d",
|
| 607 |
+
"4932983d4f1a4199b3d24c730c765a24",
|
| 608 |
+
"c20e9e14100d45f3bdff1b6df943940f",
|
| 609 |
+
"5c53f97287d54c03a378fc44ab791cd7"
|
| 610 |
+
]
|
| 611 |
+
},
|
| 612 |
+
"collapsed": true,
|
| 613 |
+
"id": "nA9cs1BY7XhS",
|
| 614 |
+
"outputId": "22a03d47-1afb-4217-d77a-979c94392f2a"
|
| 615 |
+
},
|
| 616 |
+
"outputs": [
|
| 617 |
+
{
|
| 618 |
+
"data": {
|
| 619 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 620 |
+
"model_id": "f581d3a3b4d44a5e92dae704116e4445",
|
| 621 |
+
"version_major": 2,
|
| 622 |
+
"version_minor": 0
|
| 623 |
+
},
|
| 624 |
+
"text/plain": [
|
| 625 |
+
" 0%| | 0/50 [00:00<?, ?it/s]"
|
| 626 |
+
]
|
| 627 |
+
},
|
| 628 |
+
"metadata": {},
|
| 629 |
+
"output_type": "display_data"
|
| 630 |
+
},
|
| 631 |
+
{
|
| 632 |
+
"name": "stdout",
|
| 633 |
+
"output_type": "stream",
|
| 634 |
+
"text": [
|
| 635 |
+
"What is the most iconic structure known to man? The Eiffel Tower, of course!\n",
|
| 636 |
+
"\n",
|
| 637 |
+
"The Eiffel Tower is a symbol of Paris and France. It was built in 1889 for the World’s Fair and has been a popular tourist attraction ever since.\n",
|
| 638 |
+
"\n",
|
| 639 |
+
"The tower stands at \n",
|
| 640 |
+
"\n",
|
| 641 |
+
"--------------------------------------------------------------------------------\n",
|
| 642 |
+
"\n",
|
| 643 |
+
"What is the most iconic structure known to man? The Eiffel Tower, of course!\n",
|
| 644 |
+
"\n",
|
| 645 |
+
"The Eiffel Tower is a wrought iron lattice tower located in Paris, France. It was built for the 1889 World’s Fair and has become one of the most recognizable symbols of Paris.\n",
|
| 646 |
+
"\n",
|
| 647 |
+
"\n",
|
| 648 |
+
"\n",
|
| 649 |
+
"--------------------------------------------------------------------------------\n",
|
| 650 |
+
"\n",
|
| 651 |
+
"What is the most iconic structure known to man? The Eiffel Tower, of course!\n",
|
| 652 |
+
"\n",
|
| 653 |
+
"The Eiffel Tower is a symbol of Paris and France. It was built in 1889 for the World’s Fair and has been a popular tourist attraction ever since.\n",
|
| 654 |
+
"\n",
|
| 655 |
+
"The tower stands at \n"
|
| 656 |
+
]
|
| 657 |
+
}
|
| 658 |
+
],
|
| 659 |
+
"source": [
|
| 660 |
+
"steering_on = False\n",
|
| 661 |
+
"run_generate(example_prompt)"
|
| 662 |
+
]
|
| 663 |
+
},
|
| 664 |
+
{
|
| 665 |
+
"cell_type": "markdown",
|
| 666 |
+
"metadata": {
|
| 667 |
+
"id": "Q_duIXtnAcj9"
|
| 668 |
+
},
|
| 669 |
+
"source": [
|
| 670 |
+
"### General Question test\n",
|
| 671 |
+
"We'll also attempt a more general prompt which is a better indication of whether our steering vector is having an effect or not"
|
| 672 |
+
]
|
| 673 |
+
},
|
| 674 |
+
{
|
| 675 |
+
"cell_type": "code",
|
| 676 |
+
"execution_count": null,
|
| 677 |
+
"metadata": {
|
| 678 |
+
"id": "UmqQEAM3Ab0i"
|
| 679 |
+
},
|
| 680 |
+
"outputs": [],
|
| 681 |
+
"source": [
|
| 682 |
+
"question_prompt = \"What is on your mind?\"\n",
|
| 683 |
+
"coeff = 100\n",
|
| 684 |
+
"sampling_kwargs = dict(temperature=1.0, top_p=0.1, freq_penalty=1.0)"
|
| 685 |
+
]
|
| 686 |
+
},
|
| 687 |
+
{
|
| 688 |
+
"cell_type": "code",
|
| 689 |
+
"execution_count": null,
|
| 690 |
+
"metadata": {
|
| 691 |
+
"colab": {
|
| 692 |
+
"base_uri": "https://localhost:8080/",
|
| 693 |
+
"height": 337,
|
| 694 |
+
"referenced_widgets": [
|
| 695 |
+
"106650a69f4c4bd0a340d58c4bd4f1bb",
|
| 696 |
+
"06d77984a1a64d39938bfe68e114539b",
|
| 697 |
+
"6571f57262c447ce9177223fb583e707",
|
| 698 |
+
"a2179cafb63f475db0162cd990a17ff7",
|
| 699 |
+
"c0bb81765e93420796cd5f959e9d3534",
|
| 700 |
+
"fe6cae73e861414eaff54680113676bc",
|
| 701 |
+
"3f5f9cad86e24dd489146215c3a208c9",
|
| 702 |
+
"70006fb01d6a49fb909e4a3bfc5b940a",
|
| 703 |
+
"7980b120d41247548f49667cea6156a5",
|
| 704 |
+
"359ef2b8a4ac4a9c9a91edc4a2dd1326",
|
| 705 |
+
"c66dc6c14a4c4274900abe8fc993266a"
|
| 706 |
+
]
|
| 707 |
+
},
|
| 708 |
+
"id": "HUanDPQeAss3",
|
| 709 |
+
"outputId": "ecb100a3-d855-4c3e-a758-bd7a3cfebd23"
|
| 710 |
+
},
|
| 711 |
+
"outputs": [],
|
| 712 |
+
"source": [
|
| 713 |
+
"steering_on = True\n",
|
| 714 |
+
"run_generate(question_prompt)"
|
| 715 |
+
]
|
| 716 |
+
},
|
| 717 |
+
{
|
| 718 |
+
"cell_type": "code",
|
| 719 |
+
"execution_count": null,
|
| 720 |
+
"metadata": {
|
| 721 |
+
"colab": {
|
| 722 |
+
"base_uri": "https://localhost:8080/",
|
| 723 |
+
"height": 337,
|
| 724 |
+
"referenced_widgets": [
|
| 725 |
+
"a8bdc4ecce4f48e0ba6483ea9e679336",
|
| 726 |
+
"60604227dac34e37a0a9f3bfb3984317",
|
| 727 |
+
"4024c181581c485abd3181586afc2574",
|
| 728 |
+
"7761a50a602f41f1a21aa826c491eb9d",
|
| 729 |
+
"25ebd285de2e49c483c3b22b5c8364c0",
|
| 730 |
+
"3b74befc8d70471697ce6686ab4ac5c3",
|
| 731 |
+
"b2ff537e768b43ef98c412e633ab9e49",
|
| 732 |
+
"3fdf0c5e62f24f30b02bcdc37b17c2e7",
|
| 733 |
+
"07c0dd1a8de149408b981a8892f6e46d",
|
| 734 |
+
"b272384164504fa5b81d5502c12f8800",
|
| 735 |
+
"f525b9f19c334fe6b2305ad6bcfa20bf"
|
| 736 |
+
]
|
| 737 |
+
},
|
| 738 |
+
"id": "W07bAiWqBlXh",
|
| 739 |
+
"outputId": "a6b074e6-8183-41ec-c390-2d6430eefdc7"
|
| 740 |
+
},
|
| 741 |
+
"outputs": [],
|
| 742 |
+
"source": [
|
| 743 |
+
"steering_on = False\n",
|
| 744 |
+
"run_generate(question_prompt)"
|
| 745 |
+
]
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"cell_type": "markdown",
|
| 749 |
+
"metadata": {
|
| 750 |
+
"id": "JVTbMgMzCLB9"
|
| 751 |
+
},
|
| 752 |
+
"source": [
|
| 753 |
+
"## Next Steps\n",
|
| 754 |
+
"\n",
|
| 755 |
+
"Ideas you could take for further exploration:\n",
|
| 756 |
+
"\n",
|
| 757 |
+
"* Try ablating the feature\n",
|
| 758 |
+
"* Try and get a response where just the feature token prints over and over\n",
|
| 759 |
+
"* Investigate other features with more complex usage\n",
|
| 760 |
+
"\n"
|
| 761 |
+
]
|
| 762 |
+
}
|
| 763 |
+
],
|
| 764 |
+
"metadata": {
|
| 765 |
+
"accelerator": "GPU",
|
| 766 |
+
"colab": {
|
| 767 |
+
"collapsed_sections": [
|
| 768 |
+
"fapxk8MDrs6R",
|
| 769 |
+
"CmaPYLpGrxbo"
|
| 770 |
+
],
|
| 771 |
+
"gpuType": "T4",
|
| 772 |
+
"provenance": []
|
| 773 |
+
},
|
| 774 |
+
"kernelspec": {
|
| 775 |
+
"display_name": "Python 3",
|
| 776 |
+
"language": "python",
|
| 777 |
+
"name": "python3"
|
| 778 |
+
},
|
| 779 |
+
"language_info": {
|
| 780 |
+
"codemirror_mode": {
|
| 781 |
+
"name": "ipython",
|
| 782 |
+
"version": 3
|
| 783 |
+
},
|
| 784 |
+
"file_extension": ".py",
|
| 785 |
+
"mimetype": "text/x-python",
|
| 786 |
+
"name": "python",
|
| 787 |
+
"nbconvert_exporter": "python",
|
| 788 |
+
"pygments_lexer": "ipython3",
|
| 789 |
+
"version": "3.11.7"
|
| 790 |
+
},
|
| 791 |
+
"vscode": {
|
| 792 |
+
"interpreter": {
|
| 793 |
+
"hash": "088c6e4e32c1710b3b346fe2c9e3084abd3190c888871e6e5b66f23c765b3959"
|
| 794 |
+
}
|
| 795 |
+
},
|
| 796 |
+
"widgets": {
|
| 797 |
+
"application/vnd.jupyter.widget-state+json": {
|
| 798 |
+
"06d77984a1a64d39938bfe68e114539b": {
|
| 799 |
+
"model_module": "@jupyter-widgets/controls",
|
| 800 |
+
"model_module_version": "1.5.0",
|
| 801 |
+
"model_name": "HTMLModel",
|
| 802 |
+
"state": {
|
| 803 |
+
"_dom_classes": [],
|
| 804 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 805 |
+
"_model_module_version": "1.5.0",
|
| 806 |
+
"_model_name": "HTMLModel",
|
| 807 |
+
"_view_count": null,
|
| 808 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 809 |
+
"_view_module_version": "1.5.0",
|
| 810 |
+
"_view_name": "HTMLView",
|
| 811 |
+
"description": "",
|
| 812 |
+
"description_tooltip": null,
|
| 813 |
+
"layout": "IPY_MODEL_fe6cae73e861414eaff54680113676bc",
|
| 814 |
+
"placeholder": "",
|
| 815 |
+
"style": "IPY_MODEL_3f5f9cad86e24dd489146215c3a208c9",
|
| 816 |
+
"value": "100%"
|
| 817 |
+
}
|
| 818 |
+
},
|
| 819 |
+
"07c0dd1a8de149408b981a8892f6e46d": {
|
| 820 |
+
"model_module": "@jupyter-widgets/controls",
|
| 821 |
+
"model_module_version": "1.5.0",
|
| 822 |
+
"model_name": "ProgressStyleModel",
|
| 823 |
+
"state": {
|
| 824 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 825 |
+
"_model_module_version": "1.5.0",
|
| 826 |
+
"_model_name": "ProgressStyleModel",
|
| 827 |
+
"_view_count": null,
|
| 828 |
+
"_view_module": "@jupyter-widgets/base",
|
| 829 |
+
"_view_module_version": "1.2.0",
|
| 830 |
+
"_view_name": "StyleView",
|
| 831 |
+
"bar_color": null,
|
| 832 |
+
"description_width": ""
|
| 833 |
+
}
|
| 834 |
+
},
|
| 835 |
+
"106650a69f4c4bd0a340d58c4bd4f1bb": {
|
| 836 |
+
"model_module": "@jupyter-widgets/controls",
|
| 837 |
+
"model_module_version": "1.5.0",
|
| 838 |
+
"model_name": "HBoxModel",
|
| 839 |
+
"state": {
|
| 840 |
+
"_dom_classes": [],
|
| 841 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 842 |
+
"_model_module_version": "1.5.0",
|
| 843 |
+
"_model_name": "HBoxModel",
|
| 844 |
+
"_view_count": null,
|
| 845 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 846 |
+
"_view_module_version": "1.5.0",
|
| 847 |
+
"_view_name": "HBoxView",
|
| 848 |
+
"box_style": "",
|
| 849 |
+
"children": [
|
| 850 |
+
"IPY_MODEL_06d77984a1a64d39938bfe68e114539b",
|
| 851 |
+
"IPY_MODEL_6571f57262c447ce9177223fb583e707",
|
| 852 |
+
"IPY_MODEL_a2179cafb63f475db0162cd990a17ff7"
|
| 853 |
+
],
|
| 854 |
+
"layout": "IPY_MODEL_c0bb81765e93420796cd5f959e9d3534"
|
| 855 |
+
}
|
| 856 |
+
},
|
| 857 |
+
"1a5dd5f7c9d340b6ab00ecaf43525ae9": {
|
| 858 |
+
"model_module": "@jupyter-widgets/controls",
|
| 859 |
+
"model_module_version": "1.5.0",
|
| 860 |
+
"model_name": "HBoxModel",
|
| 861 |
+
"state": {
|
| 862 |
+
"_dom_classes": [],
|
| 863 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 864 |
+
"_model_module_version": "1.5.0",
|
| 865 |
+
"_model_name": "HBoxModel",
|
| 866 |
+
"_view_count": null,
|
| 867 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 868 |
+
"_view_module_version": "1.5.0",
|
| 869 |
+
"_view_name": "HBoxView",
|
| 870 |
+
"box_style": "",
|
| 871 |
+
"children": [
|
| 872 |
+
"IPY_MODEL_8211cc6c973a43fcaf18e14f6d7f08a2",
|
| 873 |
+
"IPY_MODEL_3d3584d1feec459287ffa24c4ef790c3",
|
| 874 |
+
"IPY_MODEL_5f03835168e64ec588c50ee21fedd198"
|
| 875 |
+
],
|
| 876 |
+
"layout": "IPY_MODEL_b833db18729f422cb86deed4be6f1900"
|
| 877 |
+
}
|
| 878 |
+
},
|
| 879 |
+
"229dad8e29f04c279c5603286e2c0643": {
|
| 880 |
+
"model_module": "@jupyter-widgets/base",
|
| 881 |
+
"model_module_version": "1.2.0",
|
| 882 |
+
"model_name": "LayoutModel",
|
| 883 |
+
"state": {
|
| 884 |
+
"_model_module": "@jupyter-widgets/base",
|
| 885 |
+
"_model_module_version": "1.2.0",
|
| 886 |
+
"_model_name": "LayoutModel",
|
| 887 |
+
"_view_count": null,
|
| 888 |
+
"_view_module": "@jupyter-widgets/base",
|
| 889 |
+
"_view_module_version": "1.2.0",
|
| 890 |
+
"_view_name": "LayoutView",
|
| 891 |
+
"align_content": null,
|
| 892 |
+
"align_items": null,
|
| 893 |
+
"align_self": null,
|
| 894 |
+
"border": null,
|
| 895 |
+
"bottom": null,
|
| 896 |
+
"display": null,
|
| 897 |
+
"flex": null,
|
| 898 |
+
"flex_flow": null,
|
| 899 |
+
"grid_area": null,
|
| 900 |
+
"grid_auto_columns": null,
|
| 901 |
+
"grid_auto_flow": null,
|
| 902 |
+
"grid_auto_rows": null,
|
| 903 |
+
"grid_column": null,
|
| 904 |
+
"grid_gap": null,
|
| 905 |
+
"grid_row": null,
|
| 906 |
+
"grid_template_areas": null,
|
| 907 |
+
"grid_template_columns": null,
|
| 908 |
+
"grid_template_rows": null,
|
| 909 |
+
"height": null,
|
| 910 |
+
"justify_content": null,
|
| 911 |
+
"justify_items": null,
|
| 912 |
+
"left": null,
|
| 913 |
+
"margin": null,
|
| 914 |
+
"max_height": null,
|
| 915 |
+
"max_width": null,
|
| 916 |
+
"min_height": null,
|
| 917 |
+
"min_width": null,
|
| 918 |
+
"object_fit": null,
|
| 919 |
+
"object_position": null,
|
| 920 |
+
"order": null,
|
| 921 |
+
"overflow": null,
|
| 922 |
+
"overflow_x": null,
|
| 923 |
+
"overflow_y": null,
|
| 924 |
+
"padding": null,
|
| 925 |
+
"right": null,
|
| 926 |
+
"top": null,
|
| 927 |
+
"visibility": null,
|
| 928 |
+
"width": null
|
| 929 |
+
}
|
| 930 |
+
},
|
| 931 |
+
"25ebd285de2e49c483c3b22b5c8364c0": {
|
| 932 |
+
"model_module": "@jupyter-widgets/base",
|
| 933 |
+
"model_module_version": "1.2.0",
|
| 934 |
+
"model_name": "LayoutModel",
|
| 935 |
+
"state": {
|
| 936 |
+
"_model_module": "@jupyter-widgets/base",
|
| 937 |
+
"_model_module_version": "1.2.0",
|
| 938 |
+
"_model_name": "LayoutModel",
|
| 939 |
+
"_view_count": null,
|
| 940 |
+
"_view_module": "@jupyter-widgets/base",
|
| 941 |
+
"_view_module_version": "1.2.0",
|
| 942 |
+
"_view_name": "LayoutView",
|
| 943 |
+
"align_content": null,
|
| 944 |
+
"align_items": null,
|
| 945 |
+
"align_self": null,
|
| 946 |
+
"border": null,
|
| 947 |
+
"bottom": null,
|
| 948 |
+
"display": null,
|
| 949 |
+
"flex": null,
|
| 950 |
+
"flex_flow": null,
|
| 951 |
+
"grid_area": null,
|
| 952 |
+
"grid_auto_columns": null,
|
| 953 |
+
"grid_auto_flow": null,
|
| 954 |
+
"grid_auto_rows": null,
|
| 955 |
+
"grid_column": null,
|
| 956 |
+
"grid_gap": null,
|
| 957 |
+
"grid_row": null,
|
| 958 |
+
"grid_template_areas": null,
|
| 959 |
+
"grid_template_columns": null,
|
| 960 |
+
"grid_template_rows": null,
|
| 961 |
+
"height": null,
|
| 962 |
+
"justify_content": null,
|
| 963 |
+
"justify_items": null,
|
| 964 |
+
"left": null,
|
| 965 |
+
"margin": null,
|
| 966 |
+
"max_height": null,
|
| 967 |
+
"max_width": null,
|
| 968 |
+
"min_height": null,
|
| 969 |
+
"min_width": null,
|
| 970 |
+
"object_fit": null,
|
| 971 |
+
"object_position": null,
|
| 972 |
+
"order": null,
|
| 973 |
+
"overflow": null,
|
| 974 |
+
"overflow_x": null,
|
| 975 |
+
"overflow_y": null,
|
| 976 |
+
"padding": null,
|
| 977 |
+
"right": null,
|
| 978 |
+
"top": null,
|
| 979 |
+
"visibility": null,
|
| 980 |
+
"width": null
|
| 981 |
+
}
|
| 982 |
+
},
|
| 983 |
+
"359ef2b8a4ac4a9c9a91edc4a2dd1326": {
|
| 984 |
+
"model_module": "@jupyter-widgets/base",
|
| 985 |
+
"model_module_version": "1.2.0",
|
| 986 |
+
"model_name": "LayoutModel",
|
| 987 |
+
"state": {
|
| 988 |
+
"_model_module": "@jupyter-widgets/base",
|
| 989 |
+
"_model_module_version": "1.2.0",
|
| 990 |
+
"_model_name": "LayoutModel",
|
| 991 |
+
"_view_count": null,
|
| 992 |
+
"_view_module": "@jupyter-widgets/base",
|
| 993 |
+
"_view_module_version": "1.2.0",
|
| 994 |
+
"_view_name": "LayoutView",
|
| 995 |
+
"align_content": null,
|
| 996 |
+
"align_items": null,
|
| 997 |
+
"align_self": null,
|
| 998 |
+
"border": null,
|
| 999 |
+
"bottom": null,
|
| 1000 |
+
"display": null,
|
| 1001 |
+
"flex": null,
|
| 1002 |
+
"flex_flow": null,
|
| 1003 |
+
"grid_area": null,
|
| 1004 |
+
"grid_auto_columns": null,
|
| 1005 |
+
"grid_auto_flow": null,
|
| 1006 |
+
"grid_auto_rows": null,
|
| 1007 |
+
"grid_column": null,
|
| 1008 |
+
"grid_gap": null,
|
| 1009 |
+
"grid_row": null,
|
| 1010 |
+
"grid_template_areas": null,
|
| 1011 |
+
"grid_template_columns": null,
|
| 1012 |
+
"grid_template_rows": null,
|
| 1013 |
+
"height": null,
|
| 1014 |
+
"justify_content": null,
|
| 1015 |
+
"justify_items": null,
|
| 1016 |
+
"left": null,
|
| 1017 |
+
"margin": null,
|
| 1018 |
+
"max_height": null,
|
| 1019 |
+
"max_width": null,
|
| 1020 |
+
"min_height": null,
|
| 1021 |
+
"min_width": null,
|
| 1022 |
+
"object_fit": null,
|
| 1023 |
+
"object_position": null,
|
| 1024 |
+
"order": null,
|
| 1025 |
+
"overflow": null,
|
| 1026 |
+
"overflow_x": null,
|
| 1027 |
+
"overflow_y": null,
|
| 1028 |
+
"padding": null,
|
| 1029 |
+
"right": null,
|
| 1030 |
+
"top": null,
|
| 1031 |
+
"visibility": null,
|
| 1032 |
+
"width": null
|
| 1033 |
+
}
|
| 1034 |
+
},
|
| 1035 |
+
"38341454dd6b4e9ca2fe5b85d2e371e1": {
|
| 1036 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1037 |
+
"model_module_version": "1.5.0",
|
| 1038 |
+
"model_name": "DescriptionStyleModel",
|
| 1039 |
+
"state": {
|
| 1040 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1041 |
+
"_model_module_version": "1.5.0",
|
| 1042 |
+
"_model_name": "DescriptionStyleModel",
|
| 1043 |
+
"_view_count": null,
|
| 1044 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1045 |
+
"_view_module_version": "1.2.0",
|
| 1046 |
+
"_view_name": "StyleView",
|
| 1047 |
+
"description_width": ""
|
| 1048 |
+
}
|
| 1049 |
+
},
|
| 1050 |
+
"3b74befc8d70471697ce6686ab4ac5c3": {
|
| 1051 |
+
"model_module": "@jupyter-widgets/base",
|
| 1052 |
+
"model_module_version": "1.2.0",
|
| 1053 |
+
"model_name": "LayoutModel",
|
| 1054 |
+
"state": {
|
| 1055 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1056 |
+
"_model_module_version": "1.2.0",
|
| 1057 |
+
"_model_name": "LayoutModel",
|
| 1058 |
+
"_view_count": null,
|
| 1059 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1060 |
+
"_view_module_version": "1.2.0",
|
| 1061 |
+
"_view_name": "LayoutView",
|
| 1062 |
+
"align_content": null,
|
| 1063 |
+
"align_items": null,
|
| 1064 |
+
"align_self": null,
|
| 1065 |
+
"border": null,
|
| 1066 |
+
"bottom": null,
|
| 1067 |
+
"display": null,
|
| 1068 |
+
"flex": null,
|
| 1069 |
+
"flex_flow": null,
|
| 1070 |
+
"grid_area": null,
|
| 1071 |
+
"grid_auto_columns": null,
|
| 1072 |
+
"grid_auto_flow": null,
|
| 1073 |
+
"grid_auto_rows": null,
|
| 1074 |
+
"grid_column": null,
|
| 1075 |
+
"grid_gap": null,
|
| 1076 |
+
"grid_row": null,
|
| 1077 |
+
"grid_template_areas": null,
|
| 1078 |
+
"grid_template_columns": null,
|
| 1079 |
+
"grid_template_rows": null,
|
| 1080 |
+
"height": null,
|
| 1081 |
+
"justify_content": null,
|
| 1082 |
+
"justify_items": null,
|
| 1083 |
+
"left": null,
|
| 1084 |
+
"margin": null,
|
| 1085 |
+
"max_height": null,
|
| 1086 |
+
"max_width": null,
|
| 1087 |
+
"min_height": null,
|
| 1088 |
+
"min_width": null,
|
| 1089 |
+
"object_fit": null,
|
| 1090 |
+
"object_position": null,
|
| 1091 |
+
"order": null,
|
| 1092 |
+
"overflow": null,
|
| 1093 |
+
"overflow_x": null,
|
| 1094 |
+
"overflow_y": null,
|
| 1095 |
+
"padding": null,
|
| 1096 |
+
"right": null,
|
| 1097 |
+
"top": null,
|
| 1098 |
+
"visibility": null,
|
| 1099 |
+
"width": null
|
| 1100 |
+
}
|
| 1101 |
+
},
|
| 1102 |
+
"3d3584d1feec459287ffa24c4ef790c3": {
|
| 1103 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1104 |
+
"model_module_version": "1.5.0",
|
| 1105 |
+
"model_name": "FloatProgressModel",
|
| 1106 |
+
"state": {
|
| 1107 |
+
"_dom_classes": [],
|
| 1108 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1109 |
+
"_model_module_version": "1.5.0",
|
| 1110 |
+
"_model_name": "FloatProgressModel",
|
| 1111 |
+
"_view_count": null,
|
| 1112 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1113 |
+
"_view_module_version": "1.5.0",
|
| 1114 |
+
"_view_name": "ProgressView",
|
| 1115 |
+
"bar_style": "success",
|
| 1116 |
+
"description": "",
|
| 1117 |
+
"description_tooltip": null,
|
| 1118 |
+
"layout": "IPY_MODEL_a30c82833f55441995744300c2ef538d",
|
| 1119 |
+
"max": 50,
|
| 1120 |
+
"min": 0,
|
| 1121 |
+
"orientation": "horizontal",
|
| 1122 |
+
"style": "IPY_MODEL_4932983d4f1a4199b3d24c730c765a24",
|
| 1123 |
+
"value": 50
|
| 1124 |
+
}
|
| 1125 |
+
},
|
| 1126 |
+
"3f5f9cad86e24dd489146215c3a208c9": {
|
| 1127 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1128 |
+
"model_module_version": "1.5.0",
|
| 1129 |
+
"model_name": "DescriptionStyleModel",
|
| 1130 |
+
"state": {
|
| 1131 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1132 |
+
"_model_module_version": "1.5.0",
|
| 1133 |
+
"_model_name": "DescriptionStyleModel",
|
| 1134 |
+
"_view_count": null,
|
| 1135 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1136 |
+
"_view_module_version": "1.2.0",
|
| 1137 |
+
"_view_name": "StyleView",
|
| 1138 |
+
"description_width": ""
|
| 1139 |
+
}
|
| 1140 |
+
},
|
| 1141 |
+
"3fdf0c5e62f24f30b02bcdc37b17c2e7": {
|
| 1142 |
+
"model_module": "@jupyter-widgets/base",
|
| 1143 |
+
"model_module_version": "1.2.0",
|
| 1144 |
+
"model_name": "LayoutModel",
|
| 1145 |
+
"state": {
|
| 1146 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1147 |
+
"_model_module_version": "1.2.0",
|
| 1148 |
+
"_model_name": "LayoutModel",
|
| 1149 |
+
"_view_count": null,
|
| 1150 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1151 |
+
"_view_module_version": "1.2.0",
|
| 1152 |
+
"_view_name": "LayoutView",
|
| 1153 |
+
"align_content": null,
|
| 1154 |
+
"align_items": null,
|
| 1155 |
+
"align_self": null,
|
| 1156 |
+
"border": null,
|
| 1157 |
+
"bottom": null,
|
| 1158 |
+
"display": null,
|
| 1159 |
+
"flex": null,
|
| 1160 |
+
"flex_flow": null,
|
| 1161 |
+
"grid_area": null,
|
| 1162 |
+
"grid_auto_columns": null,
|
| 1163 |
+
"grid_auto_flow": null,
|
| 1164 |
+
"grid_auto_rows": null,
|
| 1165 |
+
"grid_column": null,
|
| 1166 |
+
"grid_gap": null,
|
| 1167 |
+
"grid_row": null,
|
| 1168 |
+
"grid_template_areas": null,
|
| 1169 |
+
"grid_template_columns": null,
|
| 1170 |
+
"grid_template_rows": null,
|
| 1171 |
+
"height": null,
|
| 1172 |
+
"justify_content": null,
|
| 1173 |
+
"justify_items": null,
|
| 1174 |
+
"left": null,
|
| 1175 |
+
"margin": null,
|
| 1176 |
+
"max_height": null,
|
| 1177 |
+
"max_width": null,
|
| 1178 |
+
"min_height": null,
|
| 1179 |
+
"min_width": null,
|
| 1180 |
+
"object_fit": null,
|
| 1181 |
+
"object_position": null,
|
| 1182 |
+
"order": null,
|
| 1183 |
+
"overflow": null,
|
| 1184 |
+
"overflow_x": null,
|
| 1185 |
+
"overflow_y": null,
|
| 1186 |
+
"padding": null,
|
| 1187 |
+
"right": null,
|
| 1188 |
+
"top": null,
|
| 1189 |
+
"visibility": null,
|
| 1190 |
+
"width": null
|
| 1191 |
+
}
|
| 1192 |
+
},
|
| 1193 |
+
"4024c181581c485abd3181586afc2574": {
|
| 1194 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1195 |
+
"model_module_version": "1.5.0",
|
| 1196 |
+
"model_name": "FloatProgressModel",
|
| 1197 |
+
"state": {
|
| 1198 |
+
"_dom_classes": [],
|
| 1199 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1200 |
+
"_model_module_version": "1.5.0",
|
| 1201 |
+
"_model_name": "FloatProgressModel",
|
| 1202 |
+
"_view_count": null,
|
| 1203 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1204 |
+
"_view_module_version": "1.5.0",
|
| 1205 |
+
"_view_name": "ProgressView",
|
| 1206 |
+
"bar_style": "success",
|
| 1207 |
+
"description": "",
|
| 1208 |
+
"description_tooltip": null,
|
| 1209 |
+
"layout": "IPY_MODEL_3fdf0c5e62f24f30b02bcdc37b17c2e7",
|
| 1210 |
+
"max": 50,
|
| 1211 |
+
"min": 0,
|
| 1212 |
+
"orientation": "horizontal",
|
| 1213 |
+
"style": "IPY_MODEL_07c0dd1a8de149408b981a8892f6e46d",
|
| 1214 |
+
"value": 50
|
| 1215 |
+
}
|
| 1216 |
+
},
|
| 1217 |
+
"4932983d4f1a4199b3d24c730c765a24": {
|
| 1218 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1219 |
+
"model_module_version": "1.5.0",
|
| 1220 |
+
"model_name": "ProgressStyleModel",
|
| 1221 |
+
"state": {
|
| 1222 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1223 |
+
"_model_module_version": "1.5.0",
|
| 1224 |
+
"_model_name": "ProgressStyleModel",
|
| 1225 |
+
"_view_count": null,
|
| 1226 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1227 |
+
"_view_module_version": "1.2.0",
|
| 1228 |
+
"_view_name": "StyleView",
|
| 1229 |
+
"bar_color": null,
|
| 1230 |
+
"description_width": ""
|
| 1231 |
+
}
|
| 1232 |
+
},
|
| 1233 |
+
"5c53f97287d54c03a378fc44ab791cd7": {
|
| 1234 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1235 |
+
"model_module_version": "1.5.0",
|
| 1236 |
+
"model_name": "DescriptionStyleModel",
|
| 1237 |
+
"state": {
|
| 1238 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1239 |
+
"_model_module_version": "1.5.0",
|
| 1240 |
+
"_model_name": "DescriptionStyleModel",
|
| 1241 |
+
"_view_count": null,
|
| 1242 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1243 |
+
"_view_module_version": "1.2.0",
|
| 1244 |
+
"_view_name": "StyleView",
|
| 1245 |
+
"description_width": ""
|
| 1246 |
+
}
|
| 1247 |
+
},
|
| 1248 |
+
"5e9700580d6b4ad0bfac34bf3b3919fc": {
|
| 1249 |
+
"model_module": "@jupyter-widgets/base",
|
| 1250 |
+
"model_module_version": "1.2.0",
|
| 1251 |
+
"model_name": "LayoutModel",
|
| 1252 |
+
"state": {
|
| 1253 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1254 |
+
"_model_module_version": "1.2.0",
|
| 1255 |
+
"_model_name": "LayoutModel",
|
| 1256 |
+
"_view_count": null,
|
| 1257 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1258 |
+
"_view_module_version": "1.2.0",
|
| 1259 |
+
"_view_name": "LayoutView",
|
| 1260 |
+
"align_content": null,
|
| 1261 |
+
"align_items": null,
|
| 1262 |
+
"align_self": null,
|
| 1263 |
+
"border": null,
|
| 1264 |
+
"bottom": null,
|
| 1265 |
+
"display": null,
|
| 1266 |
+
"flex": null,
|
| 1267 |
+
"flex_flow": null,
|
| 1268 |
+
"grid_area": null,
|
| 1269 |
+
"grid_auto_columns": null,
|
| 1270 |
+
"grid_auto_flow": null,
|
| 1271 |
+
"grid_auto_rows": null,
|
| 1272 |
+
"grid_column": null,
|
| 1273 |
+
"grid_gap": null,
|
| 1274 |
+
"grid_row": null,
|
| 1275 |
+
"grid_template_areas": null,
|
| 1276 |
+
"grid_template_columns": null,
|
| 1277 |
+
"grid_template_rows": null,
|
| 1278 |
+
"height": null,
|
| 1279 |
+
"justify_content": null,
|
| 1280 |
+
"justify_items": null,
|
| 1281 |
+
"left": null,
|
| 1282 |
+
"margin": null,
|
| 1283 |
+
"max_height": null,
|
| 1284 |
+
"max_width": null,
|
| 1285 |
+
"min_height": null,
|
| 1286 |
+
"min_width": null,
|
| 1287 |
+
"object_fit": null,
|
| 1288 |
+
"object_position": null,
|
| 1289 |
+
"order": null,
|
| 1290 |
+
"overflow": null,
|
| 1291 |
+
"overflow_x": null,
|
| 1292 |
+
"overflow_y": null,
|
| 1293 |
+
"padding": null,
|
| 1294 |
+
"right": null,
|
| 1295 |
+
"top": null,
|
| 1296 |
+
"visibility": null,
|
| 1297 |
+
"width": null
|
| 1298 |
+
}
|
| 1299 |
+
},
|
| 1300 |
+
"5f03835168e64ec588c50ee21fedd198": {
|
| 1301 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1302 |
+
"model_module_version": "1.5.0",
|
| 1303 |
+
"model_name": "HTMLModel",
|
| 1304 |
+
"state": {
|
| 1305 |
+
"_dom_classes": [],
|
| 1306 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1307 |
+
"_model_module_version": "1.5.0",
|
| 1308 |
+
"_model_name": "HTMLModel",
|
| 1309 |
+
"_view_count": null,
|
| 1310 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1311 |
+
"_view_module_version": "1.5.0",
|
| 1312 |
+
"_view_name": "HTMLView",
|
| 1313 |
+
"description": "",
|
| 1314 |
+
"description_tooltip": null,
|
| 1315 |
+
"layout": "IPY_MODEL_c20e9e14100d45f3bdff1b6df943940f",
|
| 1316 |
+
"placeholder": "",
|
| 1317 |
+
"style": "IPY_MODEL_5c53f97287d54c03a378fc44ab791cd7",
|
| 1318 |
+
"value": " 50/50 [00:01<00:00, 29.69it/s]"
|
| 1319 |
+
}
|
| 1320 |
+
},
|
| 1321 |
+
"60604227dac34e37a0a9f3bfb3984317": {
|
| 1322 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1323 |
+
"model_module_version": "1.5.0",
|
| 1324 |
+
"model_name": "HTMLModel",
|
| 1325 |
+
"state": {
|
| 1326 |
+
"_dom_classes": [],
|
| 1327 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1328 |
+
"_model_module_version": "1.5.0",
|
| 1329 |
+
"_model_name": "HTMLModel",
|
| 1330 |
+
"_view_count": null,
|
| 1331 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1332 |
+
"_view_module_version": "1.5.0",
|
| 1333 |
+
"_view_name": "HTMLView",
|
| 1334 |
+
"description": "",
|
| 1335 |
+
"description_tooltip": null,
|
| 1336 |
+
"layout": "IPY_MODEL_3b74befc8d70471697ce6686ab4ac5c3",
|
| 1337 |
+
"placeholder": "",
|
| 1338 |
+
"style": "IPY_MODEL_b2ff537e768b43ef98c412e633ab9e49",
|
| 1339 |
+
"value": "100%"
|
| 1340 |
+
}
|
| 1341 |
+
},
|
| 1342 |
+
"635162e10abc441797d4e5b74713bf44": {
|
| 1343 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1344 |
+
"model_module_version": "1.5.0",
|
| 1345 |
+
"model_name": "HTMLModel",
|
| 1346 |
+
"state": {
|
| 1347 |
+
"_dom_classes": [],
|
| 1348 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1349 |
+
"_model_module_version": "1.5.0",
|
| 1350 |
+
"_model_name": "HTMLModel",
|
| 1351 |
+
"_view_count": null,
|
| 1352 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1353 |
+
"_view_module_version": "1.5.0",
|
| 1354 |
+
"_view_name": "HTMLView",
|
| 1355 |
+
"description": "",
|
| 1356 |
+
"description_tooltip": null,
|
| 1357 |
+
"layout": "IPY_MODEL_5e9700580d6b4ad0bfac34bf3b3919fc",
|
| 1358 |
+
"placeholder": "",
|
| 1359 |
+
"style": "IPY_MODEL_a2c30462ef8d41fd9158f194a746d5a7",
|
| 1360 |
+
"value": " 50/50 [00:02<00:00, 29.94it/s]"
|
| 1361 |
+
}
|
| 1362 |
+
},
|
| 1363 |
+
"6571f57262c447ce9177223fb583e707": {
|
| 1364 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1365 |
+
"model_module_version": "1.5.0",
|
| 1366 |
+
"model_name": "FloatProgressModel",
|
| 1367 |
+
"state": {
|
| 1368 |
+
"_dom_classes": [],
|
| 1369 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1370 |
+
"_model_module_version": "1.5.0",
|
| 1371 |
+
"_model_name": "FloatProgressModel",
|
| 1372 |
+
"_view_count": null,
|
| 1373 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1374 |
+
"_view_module_version": "1.5.0",
|
| 1375 |
+
"_view_name": "ProgressView",
|
| 1376 |
+
"bar_style": "success",
|
| 1377 |
+
"description": "",
|
| 1378 |
+
"description_tooltip": null,
|
| 1379 |
+
"layout": "IPY_MODEL_70006fb01d6a49fb909e4a3bfc5b940a",
|
| 1380 |
+
"max": 50,
|
| 1381 |
+
"min": 0,
|
| 1382 |
+
"orientation": "horizontal",
|
| 1383 |
+
"style": "IPY_MODEL_7980b120d41247548f49667cea6156a5",
|
| 1384 |
+
"value": 50
|
| 1385 |
+
}
|
| 1386 |
+
},
|
| 1387 |
+
"66d406d6eb1f49699ee09c9a2fd4ffa9": {
|
| 1388 |
+
"model_module": "@jupyter-widgets/base",
|
| 1389 |
+
"model_module_version": "1.2.0",
|
| 1390 |
+
"model_name": "LayoutModel",
|
| 1391 |
+
"state": {
|
| 1392 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1393 |
+
"_model_module_version": "1.2.0",
|
| 1394 |
+
"_model_name": "LayoutModel",
|
| 1395 |
+
"_view_count": null,
|
| 1396 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1397 |
+
"_view_module_version": "1.2.0",
|
| 1398 |
+
"_view_name": "LayoutView",
|
| 1399 |
+
"align_content": null,
|
| 1400 |
+
"align_items": null,
|
| 1401 |
+
"align_self": null,
|
| 1402 |
+
"border": null,
|
| 1403 |
+
"bottom": null,
|
| 1404 |
+
"display": null,
|
| 1405 |
+
"flex": null,
|
| 1406 |
+
"flex_flow": null,
|
| 1407 |
+
"grid_area": null,
|
| 1408 |
+
"grid_auto_columns": null,
|
| 1409 |
+
"grid_auto_flow": null,
|
| 1410 |
+
"grid_auto_rows": null,
|
| 1411 |
+
"grid_column": null,
|
| 1412 |
+
"grid_gap": null,
|
| 1413 |
+
"grid_row": null,
|
| 1414 |
+
"grid_template_areas": null,
|
| 1415 |
+
"grid_template_columns": null,
|
| 1416 |
+
"grid_template_rows": null,
|
| 1417 |
+
"height": null,
|
| 1418 |
+
"justify_content": null,
|
| 1419 |
+
"justify_items": null,
|
| 1420 |
+
"left": null,
|
| 1421 |
+
"margin": null,
|
| 1422 |
+
"max_height": null,
|
| 1423 |
+
"max_width": null,
|
| 1424 |
+
"min_height": null,
|
| 1425 |
+
"min_width": null,
|
| 1426 |
+
"object_fit": null,
|
| 1427 |
+
"object_position": null,
|
| 1428 |
+
"order": null,
|
| 1429 |
+
"overflow": null,
|
| 1430 |
+
"overflow_x": null,
|
| 1431 |
+
"overflow_y": null,
|
| 1432 |
+
"padding": null,
|
| 1433 |
+
"right": null,
|
| 1434 |
+
"top": null,
|
| 1435 |
+
"visibility": null,
|
| 1436 |
+
"width": null
|
| 1437 |
+
}
|
| 1438 |
+
},
|
| 1439 |
+
"70006fb01d6a49fb909e4a3bfc5b940a": {
|
| 1440 |
+
"model_module": "@jupyter-widgets/base",
|
| 1441 |
+
"model_module_version": "1.2.0",
|
| 1442 |
+
"model_name": "LayoutModel",
|
| 1443 |
+
"state": {
|
| 1444 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1445 |
+
"_model_module_version": "1.2.0",
|
| 1446 |
+
"_model_name": "LayoutModel",
|
| 1447 |
+
"_view_count": null,
|
| 1448 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1449 |
+
"_view_module_version": "1.2.0",
|
| 1450 |
+
"_view_name": "LayoutView",
|
| 1451 |
+
"align_content": null,
|
| 1452 |
+
"align_items": null,
|
| 1453 |
+
"align_self": null,
|
| 1454 |
+
"border": null,
|
| 1455 |
+
"bottom": null,
|
| 1456 |
+
"display": null,
|
| 1457 |
+
"flex": null,
|
| 1458 |
+
"flex_flow": null,
|
| 1459 |
+
"grid_area": null,
|
| 1460 |
+
"grid_auto_columns": null,
|
| 1461 |
+
"grid_auto_flow": null,
|
| 1462 |
+
"grid_auto_rows": null,
|
| 1463 |
+
"grid_column": null,
|
| 1464 |
+
"grid_gap": null,
|
| 1465 |
+
"grid_row": null,
|
| 1466 |
+
"grid_template_areas": null,
|
| 1467 |
+
"grid_template_columns": null,
|
| 1468 |
+
"grid_template_rows": null,
|
| 1469 |
+
"height": null,
|
| 1470 |
+
"justify_content": null,
|
| 1471 |
+
"justify_items": null,
|
| 1472 |
+
"left": null,
|
| 1473 |
+
"margin": null,
|
| 1474 |
+
"max_height": null,
|
| 1475 |
+
"max_width": null,
|
| 1476 |
+
"min_height": null,
|
| 1477 |
+
"min_width": null,
|
| 1478 |
+
"object_fit": null,
|
| 1479 |
+
"object_position": null,
|
| 1480 |
+
"order": null,
|
| 1481 |
+
"overflow": null,
|
| 1482 |
+
"overflow_x": null,
|
| 1483 |
+
"overflow_y": null,
|
| 1484 |
+
"padding": null,
|
| 1485 |
+
"right": null,
|
| 1486 |
+
"top": null,
|
| 1487 |
+
"visibility": null,
|
| 1488 |
+
"width": null
|
| 1489 |
+
}
|
| 1490 |
+
},
|
| 1491 |
+
"720b4d010c364e3fbf72a53b267e8db9": {
|
| 1492 |
+
"model_module": "@jupyter-widgets/base",
|
| 1493 |
+
"model_module_version": "1.2.0",
|
| 1494 |
+
"model_name": "LayoutModel",
|
| 1495 |
+
"state": {
|
| 1496 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1497 |
+
"_model_module_version": "1.2.0",
|
| 1498 |
+
"_model_name": "LayoutModel",
|
| 1499 |
+
"_view_count": null,
|
| 1500 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1501 |
+
"_view_module_version": "1.2.0",
|
| 1502 |
+
"_view_name": "LayoutView",
|
| 1503 |
+
"align_content": null,
|
| 1504 |
+
"align_items": null,
|
| 1505 |
+
"align_self": null,
|
| 1506 |
+
"border": null,
|
| 1507 |
+
"bottom": null,
|
| 1508 |
+
"display": null,
|
| 1509 |
+
"flex": null,
|
| 1510 |
+
"flex_flow": null,
|
| 1511 |
+
"grid_area": null,
|
| 1512 |
+
"grid_auto_columns": null,
|
| 1513 |
+
"grid_auto_flow": null,
|
| 1514 |
+
"grid_auto_rows": null,
|
| 1515 |
+
"grid_column": null,
|
| 1516 |
+
"grid_gap": null,
|
| 1517 |
+
"grid_row": null,
|
| 1518 |
+
"grid_template_areas": null,
|
| 1519 |
+
"grid_template_columns": null,
|
| 1520 |
+
"grid_template_rows": null,
|
| 1521 |
+
"height": null,
|
| 1522 |
+
"justify_content": null,
|
| 1523 |
+
"justify_items": null,
|
| 1524 |
+
"left": null,
|
| 1525 |
+
"margin": null,
|
| 1526 |
+
"max_height": null,
|
| 1527 |
+
"max_width": null,
|
| 1528 |
+
"min_height": null,
|
| 1529 |
+
"min_width": null,
|
| 1530 |
+
"object_fit": null,
|
| 1531 |
+
"object_position": null,
|
| 1532 |
+
"order": null,
|
| 1533 |
+
"overflow": null,
|
| 1534 |
+
"overflow_x": null,
|
| 1535 |
+
"overflow_y": null,
|
| 1536 |
+
"padding": null,
|
| 1537 |
+
"right": null,
|
| 1538 |
+
"top": null,
|
| 1539 |
+
"visibility": null,
|
| 1540 |
+
"width": null
|
| 1541 |
+
}
|
| 1542 |
+
},
|
| 1543 |
+
"7761a50a602f41f1a21aa826c491eb9d": {
|
| 1544 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1545 |
+
"model_module_version": "1.5.0",
|
| 1546 |
+
"model_name": "HTMLModel",
|
| 1547 |
+
"state": {
|
| 1548 |
+
"_dom_classes": [],
|
| 1549 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1550 |
+
"_model_module_version": "1.5.0",
|
| 1551 |
+
"_model_name": "HTMLModel",
|
| 1552 |
+
"_view_count": null,
|
| 1553 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1554 |
+
"_view_module_version": "1.5.0",
|
| 1555 |
+
"_view_name": "HTMLView",
|
| 1556 |
+
"description": "",
|
| 1557 |
+
"description_tooltip": null,
|
| 1558 |
+
"layout": "IPY_MODEL_b272384164504fa5b81d5502c12f8800",
|
| 1559 |
+
"placeholder": "",
|
| 1560 |
+
"style": "IPY_MODEL_f525b9f19c334fe6b2305ad6bcfa20bf",
|
| 1561 |
+
"value": " 50/50 [00:01<00:00, 28.55it/s]"
|
| 1562 |
+
}
|
| 1563 |
+
},
|
| 1564 |
+
"7980b120d41247548f49667cea6156a5": {
|
| 1565 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1566 |
+
"model_module_version": "1.5.0",
|
| 1567 |
+
"model_name": "ProgressStyleModel",
|
| 1568 |
+
"state": {
|
| 1569 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1570 |
+
"_model_module_version": "1.5.0",
|
| 1571 |
+
"_model_name": "ProgressStyleModel",
|
| 1572 |
+
"_view_count": null,
|
| 1573 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1574 |
+
"_view_module_version": "1.2.0",
|
| 1575 |
+
"_view_name": "StyleView",
|
| 1576 |
+
"bar_color": null,
|
| 1577 |
+
"description_width": ""
|
| 1578 |
+
}
|
| 1579 |
+
},
|
| 1580 |
+
"79b59cbde9444bf892931d31afec7f2a": {
|
| 1581 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1582 |
+
"model_module_version": "1.5.0",
|
| 1583 |
+
"model_name": "HTMLModel",
|
| 1584 |
+
"state": {
|
| 1585 |
+
"_dom_classes": [],
|
| 1586 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1587 |
+
"_model_module_version": "1.5.0",
|
| 1588 |
+
"_model_name": "HTMLModel",
|
| 1589 |
+
"_view_count": null,
|
| 1590 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1591 |
+
"_view_module_version": "1.5.0",
|
| 1592 |
+
"_view_name": "HTMLView",
|
| 1593 |
+
"description": "",
|
| 1594 |
+
"description_tooltip": null,
|
| 1595 |
+
"layout": "IPY_MODEL_d9c33fbfb3164cbbb7b9a4cd172d20ae",
|
| 1596 |
+
"placeholder": "",
|
| 1597 |
+
"style": "IPY_MODEL_df53331cce124bd1ada5aa9e9a977015",
|
| 1598 |
+
"value": "100%"
|
| 1599 |
+
}
|
| 1600 |
+
},
|
| 1601 |
+
"8211cc6c973a43fcaf18e14f6d7f08a2": {
|
| 1602 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1603 |
+
"model_module_version": "1.5.0",
|
| 1604 |
+
"model_name": "HTMLModel",
|
| 1605 |
+
"state": {
|
| 1606 |
+
"_dom_classes": [],
|
| 1607 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1608 |
+
"_model_module_version": "1.5.0",
|
| 1609 |
+
"_model_name": "HTMLModel",
|
| 1610 |
+
"_view_count": null,
|
| 1611 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1612 |
+
"_view_module_version": "1.5.0",
|
| 1613 |
+
"_view_name": "HTMLView",
|
| 1614 |
+
"description": "",
|
| 1615 |
+
"description_tooltip": null,
|
| 1616 |
+
"layout": "IPY_MODEL_66d406d6eb1f49699ee09c9a2fd4ffa9",
|
| 1617 |
+
"placeholder": "",
|
| 1618 |
+
"style": "IPY_MODEL_38341454dd6b4e9ca2fe5b85d2e371e1",
|
| 1619 |
+
"value": "100%"
|
| 1620 |
+
}
|
| 1621 |
+
},
|
| 1622 |
+
"83d947fc3338491ab4155b87c443884c": {
|
| 1623 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1624 |
+
"model_module_version": "1.5.0",
|
| 1625 |
+
"model_name": "ProgressStyleModel",
|
| 1626 |
+
"state": {
|
| 1627 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1628 |
+
"_model_module_version": "1.5.0",
|
| 1629 |
+
"_model_name": "ProgressStyleModel",
|
| 1630 |
+
"_view_count": null,
|
| 1631 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1632 |
+
"_view_module_version": "1.2.0",
|
| 1633 |
+
"_view_name": "StyleView",
|
| 1634 |
+
"bar_color": null,
|
| 1635 |
+
"description_width": ""
|
| 1636 |
+
}
|
| 1637 |
+
},
|
| 1638 |
+
"9f555c5ada38495eb4281cbb49169abe": {
|
| 1639 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1640 |
+
"model_module_version": "1.5.0",
|
| 1641 |
+
"model_name": "HBoxModel",
|
| 1642 |
+
"state": {
|
| 1643 |
+
"_dom_classes": [],
|
| 1644 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1645 |
+
"_model_module_version": "1.5.0",
|
| 1646 |
+
"_model_name": "HBoxModel",
|
| 1647 |
+
"_view_count": null,
|
| 1648 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1649 |
+
"_view_module_version": "1.5.0",
|
| 1650 |
+
"_view_name": "HBoxView",
|
| 1651 |
+
"box_style": "",
|
| 1652 |
+
"children": [
|
| 1653 |
+
"IPY_MODEL_79b59cbde9444bf892931d31afec7f2a",
|
| 1654 |
+
"IPY_MODEL_a157870318114d459a33d795850967ef",
|
| 1655 |
+
"IPY_MODEL_635162e10abc441797d4e5b74713bf44"
|
| 1656 |
+
],
|
| 1657 |
+
"layout": "IPY_MODEL_720b4d010c364e3fbf72a53b267e8db9"
|
| 1658 |
+
}
|
| 1659 |
+
},
|
| 1660 |
+
"a157870318114d459a33d795850967ef": {
|
| 1661 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1662 |
+
"model_module_version": "1.5.0",
|
| 1663 |
+
"model_name": "FloatProgressModel",
|
| 1664 |
+
"state": {
|
| 1665 |
+
"_dom_classes": [],
|
| 1666 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1667 |
+
"_model_module_version": "1.5.0",
|
| 1668 |
+
"_model_name": "FloatProgressModel",
|
| 1669 |
+
"_view_count": null,
|
| 1670 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1671 |
+
"_view_module_version": "1.5.0",
|
| 1672 |
+
"_view_name": "ProgressView",
|
| 1673 |
+
"bar_style": "success",
|
| 1674 |
+
"description": "",
|
| 1675 |
+
"description_tooltip": null,
|
| 1676 |
+
"layout": "IPY_MODEL_229dad8e29f04c279c5603286e2c0643",
|
| 1677 |
+
"max": 50,
|
| 1678 |
+
"min": 0,
|
| 1679 |
+
"orientation": "horizontal",
|
| 1680 |
+
"style": "IPY_MODEL_83d947fc3338491ab4155b87c443884c",
|
| 1681 |
+
"value": 50
|
| 1682 |
+
}
|
| 1683 |
+
},
|
| 1684 |
+
"a2179cafb63f475db0162cd990a17ff7": {
|
| 1685 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1686 |
+
"model_module_version": "1.5.0",
|
| 1687 |
+
"model_name": "HTMLModel",
|
| 1688 |
+
"state": {
|
| 1689 |
+
"_dom_classes": [],
|
| 1690 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1691 |
+
"_model_module_version": "1.5.0",
|
| 1692 |
+
"_model_name": "HTMLModel",
|
| 1693 |
+
"_view_count": null,
|
| 1694 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1695 |
+
"_view_module_version": "1.5.0",
|
| 1696 |
+
"_view_name": "HTMLView",
|
| 1697 |
+
"description": "",
|
| 1698 |
+
"description_tooltip": null,
|
| 1699 |
+
"layout": "IPY_MODEL_359ef2b8a4ac4a9c9a91edc4a2dd1326",
|
| 1700 |
+
"placeholder": "",
|
| 1701 |
+
"style": "IPY_MODEL_c66dc6c14a4c4274900abe8fc993266a",
|
| 1702 |
+
"value": " 50/50 [00:01<00:00, 28.62it/s]"
|
| 1703 |
+
}
|
| 1704 |
+
},
|
| 1705 |
+
"a2c30462ef8d41fd9158f194a746d5a7": {
|
| 1706 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1707 |
+
"model_module_version": "1.5.0",
|
| 1708 |
+
"model_name": "DescriptionStyleModel",
|
| 1709 |
+
"state": {
|
| 1710 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1711 |
+
"_model_module_version": "1.5.0",
|
| 1712 |
+
"_model_name": "DescriptionStyleModel",
|
| 1713 |
+
"_view_count": null,
|
| 1714 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1715 |
+
"_view_module_version": "1.2.0",
|
| 1716 |
+
"_view_name": "StyleView",
|
| 1717 |
+
"description_width": ""
|
| 1718 |
+
}
|
| 1719 |
+
},
|
| 1720 |
+
"a30c82833f55441995744300c2ef538d": {
|
| 1721 |
+
"model_module": "@jupyter-widgets/base",
|
| 1722 |
+
"model_module_version": "1.2.0",
|
| 1723 |
+
"model_name": "LayoutModel",
|
| 1724 |
+
"state": {
|
| 1725 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1726 |
+
"_model_module_version": "1.2.0",
|
| 1727 |
+
"_model_name": "LayoutModel",
|
| 1728 |
+
"_view_count": null,
|
| 1729 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1730 |
+
"_view_module_version": "1.2.0",
|
| 1731 |
+
"_view_name": "LayoutView",
|
| 1732 |
+
"align_content": null,
|
| 1733 |
+
"align_items": null,
|
| 1734 |
+
"align_self": null,
|
| 1735 |
+
"border": null,
|
| 1736 |
+
"bottom": null,
|
| 1737 |
+
"display": null,
|
| 1738 |
+
"flex": null,
|
| 1739 |
+
"flex_flow": null,
|
| 1740 |
+
"grid_area": null,
|
| 1741 |
+
"grid_auto_columns": null,
|
| 1742 |
+
"grid_auto_flow": null,
|
| 1743 |
+
"grid_auto_rows": null,
|
| 1744 |
+
"grid_column": null,
|
| 1745 |
+
"grid_gap": null,
|
| 1746 |
+
"grid_row": null,
|
| 1747 |
+
"grid_template_areas": null,
|
| 1748 |
+
"grid_template_columns": null,
|
| 1749 |
+
"grid_template_rows": null,
|
| 1750 |
+
"height": null,
|
| 1751 |
+
"justify_content": null,
|
| 1752 |
+
"justify_items": null,
|
| 1753 |
+
"left": null,
|
| 1754 |
+
"margin": null,
|
| 1755 |
+
"max_height": null,
|
| 1756 |
+
"max_width": null,
|
| 1757 |
+
"min_height": null,
|
| 1758 |
+
"min_width": null,
|
| 1759 |
+
"object_fit": null,
|
| 1760 |
+
"object_position": null,
|
| 1761 |
+
"order": null,
|
| 1762 |
+
"overflow": null,
|
| 1763 |
+
"overflow_x": null,
|
| 1764 |
+
"overflow_y": null,
|
| 1765 |
+
"padding": null,
|
| 1766 |
+
"right": null,
|
| 1767 |
+
"top": null,
|
| 1768 |
+
"visibility": null,
|
| 1769 |
+
"width": null
|
| 1770 |
+
}
|
| 1771 |
+
},
|
| 1772 |
+
"a8bdc4ecce4f48e0ba6483ea9e679336": {
|
| 1773 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1774 |
+
"model_module_version": "1.5.0",
|
| 1775 |
+
"model_name": "HBoxModel",
|
| 1776 |
+
"state": {
|
| 1777 |
+
"_dom_classes": [],
|
| 1778 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1779 |
+
"_model_module_version": "1.5.0",
|
| 1780 |
+
"_model_name": "HBoxModel",
|
| 1781 |
+
"_view_count": null,
|
| 1782 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1783 |
+
"_view_module_version": "1.5.0",
|
| 1784 |
+
"_view_name": "HBoxView",
|
| 1785 |
+
"box_style": "",
|
| 1786 |
+
"children": [
|
| 1787 |
+
"IPY_MODEL_60604227dac34e37a0a9f3bfb3984317",
|
| 1788 |
+
"IPY_MODEL_4024c181581c485abd3181586afc2574",
|
| 1789 |
+
"IPY_MODEL_7761a50a602f41f1a21aa826c491eb9d"
|
| 1790 |
+
],
|
| 1791 |
+
"layout": "IPY_MODEL_25ebd285de2e49c483c3b22b5c8364c0"
|
| 1792 |
+
}
|
| 1793 |
+
},
|
| 1794 |
+
"b272384164504fa5b81d5502c12f8800": {
|
| 1795 |
+
"model_module": "@jupyter-widgets/base",
|
| 1796 |
+
"model_module_version": "1.2.0",
|
| 1797 |
+
"model_name": "LayoutModel",
|
| 1798 |
+
"state": {
|
| 1799 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1800 |
+
"_model_module_version": "1.2.0",
|
| 1801 |
+
"_model_name": "LayoutModel",
|
| 1802 |
+
"_view_count": null,
|
| 1803 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1804 |
+
"_view_module_version": "1.2.0",
|
| 1805 |
+
"_view_name": "LayoutView",
|
| 1806 |
+
"align_content": null,
|
| 1807 |
+
"align_items": null,
|
| 1808 |
+
"align_self": null,
|
| 1809 |
+
"border": null,
|
| 1810 |
+
"bottom": null,
|
| 1811 |
+
"display": null,
|
| 1812 |
+
"flex": null,
|
| 1813 |
+
"flex_flow": null,
|
| 1814 |
+
"grid_area": null,
|
| 1815 |
+
"grid_auto_columns": null,
|
| 1816 |
+
"grid_auto_flow": null,
|
| 1817 |
+
"grid_auto_rows": null,
|
| 1818 |
+
"grid_column": null,
|
| 1819 |
+
"grid_gap": null,
|
| 1820 |
+
"grid_row": null,
|
| 1821 |
+
"grid_template_areas": null,
|
| 1822 |
+
"grid_template_columns": null,
|
| 1823 |
+
"grid_template_rows": null,
|
| 1824 |
+
"height": null,
|
| 1825 |
+
"justify_content": null,
|
| 1826 |
+
"justify_items": null,
|
| 1827 |
+
"left": null,
|
| 1828 |
+
"margin": null,
|
| 1829 |
+
"max_height": null,
|
| 1830 |
+
"max_width": null,
|
| 1831 |
+
"min_height": null,
|
| 1832 |
+
"min_width": null,
|
| 1833 |
+
"object_fit": null,
|
| 1834 |
+
"object_position": null,
|
| 1835 |
+
"order": null,
|
| 1836 |
+
"overflow": null,
|
| 1837 |
+
"overflow_x": null,
|
| 1838 |
+
"overflow_y": null,
|
| 1839 |
+
"padding": null,
|
| 1840 |
+
"right": null,
|
| 1841 |
+
"top": null,
|
| 1842 |
+
"visibility": null,
|
| 1843 |
+
"width": null
|
| 1844 |
+
}
|
| 1845 |
+
},
|
| 1846 |
+
"b2ff537e768b43ef98c412e633ab9e49": {
|
| 1847 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1848 |
+
"model_module_version": "1.5.0",
|
| 1849 |
+
"model_name": "DescriptionStyleModel",
|
| 1850 |
+
"state": {
|
| 1851 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1852 |
+
"_model_module_version": "1.5.0",
|
| 1853 |
+
"_model_name": "DescriptionStyleModel",
|
| 1854 |
+
"_view_count": null,
|
| 1855 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1856 |
+
"_view_module_version": "1.2.0",
|
| 1857 |
+
"_view_name": "StyleView",
|
| 1858 |
+
"description_width": ""
|
| 1859 |
+
}
|
| 1860 |
+
},
|
| 1861 |
+
"b833db18729f422cb86deed4be6f1900": {
|
| 1862 |
+
"model_module": "@jupyter-widgets/base",
|
| 1863 |
+
"model_module_version": "1.2.0",
|
| 1864 |
+
"model_name": "LayoutModel",
|
| 1865 |
+
"state": {
|
| 1866 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1867 |
+
"_model_module_version": "1.2.0",
|
| 1868 |
+
"_model_name": "LayoutModel",
|
| 1869 |
+
"_view_count": null,
|
| 1870 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1871 |
+
"_view_module_version": "1.2.0",
|
| 1872 |
+
"_view_name": "LayoutView",
|
| 1873 |
+
"align_content": null,
|
| 1874 |
+
"align_items": null,
|
| 1875 |
+
"align_self": null,
|
| 1876 |
+
"border": null,
|
| 1877 |
+
"bottom": null,
|
| 1878 |
+
"display": null,
|
| 1879 |
+
"flex": null,
|
| 1880 |
+
"flex_flow": null,
|
| 1881 |
+
"grid_area": null,
|
| 1882 |
+
"grid_auto_columns": null,
|
| 1883 |
+
"grid_auto_flow": null,
|
| 1884 |
+
"grid_auto_rows": null,
|
| 1885 |
+
"grid_column": null,
|
| 1886 |
+
"grid_gap": null,
|
| 1887 |
+
"grid_row": null,
|
| 1888 |
+
"grid_template_areas": null,
|
| 1889 |
+
"grid_template_columns": null,
|
| 1890 |
+
"grid_template_rows": null,
|
| 1891 |
+
"height": null,
|
| 1892 |
+
"justify_content": null,
|
| 1893 |
+
"justify_items": null,
|
| 1894 |
+
"left": null,
|
| 1895 |
+
"margin": null,
|
| 1896 |
+
"max_height": null,
|
| 1897 |
+
"max_width": null,
|
| 1898 |
+
"min_height": null,
|
| 1899 |
+
"min_width": null,
|
| 1900 |
+
"object_fit": null,
|
| 1901 |
+
"object_position": null,
|
| 1902 |
+
"order": null,
|
| 1903 |
+
"overflow": null,
|
| 1904 |
+
"overflow_x": null,
|
| 1905 |
+
"overflow_y": null,
|
| 1906 |
+
"padding": null,
|
| 1907 |
+
"right": null,
|
| 1908 |
+
"top": null,
|
| 1909 |
+
"visibility": null,
|
| 1910 |
+
"width": null
|
| 1911 |
+
}
|
| 1912 |
+
},
|
| 1913 |
+
"c0bb81765e93420796cd5f959e9d3534": {
|
| 1914 |
+
"model_module": "@jupyter-widgets/base",
|
| 1915 |
+
"model_module_version": "1.2.0",
|
| 1916 |
+
"model_name": "LayoutModel",
|
| 1917 |
+
"state": {
|
| 1918 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1919 |
+
"_model_module_version": "1.2.0",
|
| 1920 |
+
"_model_name": "LayoutModel",
|
| 1921 |
+
"_view_count": null,
|
| 1922 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1923 |
+
"_view_module_version": "1.2.0",
|
| 1924 |
+
"_view_name": "LayoutView",
|
| 1925 |
+
"align_content": null,
|
| 1926 |
+
"align_items": null,
|
| 1927 |
+
"align_self": null,
|
| 1928 |
+
"border": null,
|
| 1929 |
+
"bottom": null,
|
| 1930 |
+
"display": null,
|
| 1931 |
+
"flex": null,
|
| 1932 |
+
"flex_flow": null,
|
| 1933 |
+
"grid_area": null,
|
| 1934 |
+
"grid_auto_columns": null,
|
| 1935 |
+
"grid_auto_flow": null,
|
| 1936 |
+
"grid_auto_rows": null,
|
| 1937 |
+
"grid_column": null,
|
| 1938 |
+
"grid_gap": null,
|
| 1939 |
+
"grid_row": null,
|
| 1940 |
+
"grid_template_areas": null,
|
| 1941 |
+
"grid_template_columns": null,
|
| 1942 |
+
"grid_template_rows": null,
|
| 1943 |
+
"height": null,
|
| 1944 |
+
"justify_content": null,
|
| 1945 |
+
"justify_items": null,
|
| 1946 |
+
"left": null,
|
| 1947 |
+
"margin": null,
|
| 1948 |
+
"max_height": null,
|
| 1949 |
+
"max_width": null,
|
| 1950 |
+
"min_height": null,
|
| 1951 |
+
"min_width": null,
|
| 1952 |
+
"object_fit": null,
|
| 1953 |
+
"object_position": null,
|
| 1954 |
+
"order": null,
|
| 1955 |
+
"overflow": null,
|
| 1956 |
+
"overflow_x": null,
|
| 1957 |
+
"overflow_y": null,
|
| 1958 |
+
"padding": null,
|
| 1959 |
+
"right": null,
|
| 1960 |
+
"top": null,
|
| 1961 |
+
"visibility": null,
|
| 1962 |
+
"width": null
|
| 1963 |
+
}
|
| 1964 |
+
},
|
| 1965 |
+
"c20e9e14100d45f3bdff1b6df943940f": {
|
| 1966 |
+
"model_module": "@jupyter-widgets/base",
|
| 1967 |
+
"model_module_version": "1.2.0",
|
| 1968 |
+
"model_name": "LayoutModel",
|
| 1969 |
+
"state": {
|
| 1970 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1971 |
+
"_model_module_version": "1.2.0",
|
| 1972 |
+
"_model_name": "LayoutModel",
|
| 1973 |
+
"_view_count": null,
|
| 1974 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1975 |
+
"_view_module_version": "1.2.0",
|
| 1976 |
+
"_view_name": "LayoutView",
|
| 1977 |
+
"align_content": null,
|
| 1978 |
+
"align_items": null,
|
| 1979 |
+
"align_self": null,
|
| 1980 |
+
"border": null,
|
| 1981 |
+
"bottom": null,
|
| 1982 |
+
"display": null,
|
| 1983 |
+
"flex": null,
|
| 1984 |
+
"flex_flow": null,
|
| 1985 |
+
"grid_area": null,
|
| 1986 |
+
"grid_auto_columns": null,
|
| 1987 |
+
"grid_auto_flow": null,
|
| 1988 |
+
"grid_auto_rows": null,
|
| 1989 |
+
"grid_column": null,
|
| 1990 |
+
"grid_gap": null,
|
| 1991 |
+
"grid_row": null,
|
| 1992 |
+
"grid_template_areas": null,
|
| 1993 |
+
"grid_template_columns": null,
|
| 1994 |
+
"grid_template_rows": null,
|
| 1995 |
+
"height": null,
|
| 1996 |
+
"justify_content": null,
|
| 1997 |
+
"justify_items": null,
|
| 1998 |
+
"left": null,
|
| 1999 |
+
"margin": null,
|
| 2000 |
+
"max_height": null,
|
| 2001 |
+
"max_width": null,
|
| 2002 |
+
"min_height": null,
|
| 2003 |
+
"min_width": null,
|
| 2004 |
+
"object_fit": null,
|
| 2005 |
+
"object_position": null,
|
| 2006 |
+
"order": null,
|
| 2007 |
+
"overflow": null,
|
| 2008 |
+
"overflow_x": null,
|
| 2009 |
+
"overflow_y": null,
|
| 2010 |
+
"padding": null,
|
| 2011 |
+
"right": null,
|
| 2012 |
+
"top": null,
|
| 2013 |
+
"visibility": null,
|
| 2014 |
+
"width": null
|
| 2015 |
+
}
|
| 2016 |
+
},
|
| 2017 |
+
"c66dc6c14a4c4274900abe8fc993266a": {
|
| 2018 |
+
"model_module": "@jupyter-widgets/controls",
|
| 2019 |
+
"model_module_version": "1.5.0",
|
| 2020 |
+
"model_name": "DescriptionStyleModel",
|
| 2021 |
+
"state": {
|
| 2022 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 2023 |
+
"_model_module_version": "1.5.0",
|
| 2024 |
+
"_model_name": "DescriptionStyleModel",
|
| 2025 |
+
"_view_count": null,
|
| 2026 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2027 |
+
"_view_module_version": "1.2.0",
|
| 2028 |
+
"_view_name": "StyleView",
|
| 2029 |
+
"description_width": ""
|
| 2030 |
+
}
|
| 2031 |
+
},
|
| 2032 |
+
"d9c33fbfb3164cbbb7b9a4cd172d20ae": {
|
| 2033 |
+
"model_module": "@jupyter-widgets/base",
|
| 2034 |
+
"model_module_version": "1.2.0",
|
| 2035 |
+
"model_name": "LayoutModel",
|
| 2036 |
+
"state": {
|
| 2037 |
+
"_model_module": "@jupyter-widgets/base",
|
| 2038 |
+
"_model_module_version": "1.2.0",
|
| 2039 |
+
"_model_name": "LayoutModel",
|
| 2040 |
+
"_view_count": null,
|
| 2041 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2042 |
+
"_view_module_version": "1.2.0",
|
| 2043 |
+
"_view_name": "LayoutView",
|
| 2044 |
+
"align_content": null,
|
| 2045 |
+
"align_items": null,
|
| 2046 |
+
"align_self": null,
|
| 2047 |
+
"border": null,
|
| 2048 |
+
"bottom": null,
|
| 2049 |
+
"display": null,
|
| 2050 |
+
"flex": null,
|
| 2051 |
+
"flex_flow": null,
|
| 2052 |
+
"grid_area": null,
|
| 2053 |
+
"grid_auto_columns": null,
|
| 2054 |
+
"grid_auto_flow": null,
|
| 2055 |
+
"grid_auto_rows": null,
|
| 2056 |
+
"grid_column": null,
|
| 2057 |
+
"grid_gap": null,
|
| 2058 |
+
"grid_row": null,
|
| 2059 |
+
"grid_template_areas": null,
|
| 2060 |
+
"grid_template_columns": null,
|
| 2061 |
+
"grid_template_rows": null,
|
| 2062 |
+
"height": null,
|
| 2063 |
+
"justify_content": null,
|
| 2064 |
+
"justify_items": null,
|
| 2065 |
+
"left": null,
|
| 2066 |
+
"margin": null,
|
| 2067 |
+
"max_height": null,
|
| 2068 |
+
"max_width": null,
|
| 2069 |
+
"min_height": null,
|
| 2070 |
+
"min_width": null,
|
| 2071 |
+
"object_fit": null,
|
| 2072 |
+
"object_position": null,
|
| 2073 |
+
"order": null,
|
| 2074 |
+
"overflow": null,
|
| 2075 |
+
"overflow_x": null,
|
| 2076 |
+
"overflow_y": null,
|
| 2077 |
+
"padding": null,
|
| 2078 |
+
"right": null,
|
| 2079 |
+
"top": null,
|
| 2080 |
+
"visibility": null,
|
| 2081 |
+
"width": null
|
| 2082 |
+
}
|
| 2083 |
+
},
|
| 2084 |
+
"df53331cce124bd1ada5aa9e9a977015": {
|
| 2085 |
+
"model_module": "@jupyter-widgets/controls",
|
| 2086 |
+
"model_module_version": "1.5.0",
|
| 2087 |
+
"model_name": "DescriptionStyleModel",
|
| 2088 |
+
"state": {
|
| 2089 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 2090 |
+
"_model_module_version": "1.5.0",
|
| 2091 |
+
"_model_name": "DescriptionStyleModel",
|
| 2092 |
+
"_view_count": null,
|
| 2093 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2094 |
+
"_view_module_version": "1.2.0",
|
| 2095 |
+
"_view_name": "StyleView",
|
| 2096 |
+
"description_width": ""
|
| 2097 |
+
}
|
| 2098 |
+
},
|
| 2099 |
+
"f525b9f19c334fe6b2305ad6bcfa20bf": {
|
| 2100 |
+
"model_module": "@jupyter-widgets/controls",
|
| 2101 |
+
"model_module_version": "1.5.0",
|
| 2102 |
+
"model_name": "DescriptionStyleModel",
|
| 2103 |
+
"state": {
|
| 2104 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 2105 |
+
"_model_module_version": "1.5.0",
|
| 2106 |
+
"_model_name": "DescriptionStyleModel",
|
| 2107 |
+
"_view_count": null,
|
| 2108 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2109 |
+
"_view_module_version": "1.2.0",
|
| 2110 |
+
"_view_name": "StyleView",
|
| 2111 |
+
"description_width": ""
|
| 2112 |
+
}
|
| 2113 |
+
},
|
| 2114 |
+
"fe6cae73e861414eaff54680113676bc": {
|
| 2115 |
+
"model_module": "@jupyter-widgets/base",
|
| 2116 |
+
"model_module_version": "1.2.0",
|
| 2117 |
+
"model_name": "LayoutModel",
|
| 2118 |
+
"state": {
|
| 2119 |
+
"_model_module": "@jupyter-widgets/base",
|
| 2120 |
+
"_model_module_version": "1.2.0",
|
| 2121 |
+
"_model_name": "LayoutModel",
|
| 2122 |
+
"_view_count": null,
|
| 2123 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2124 |
+
"_view_module_version": "1.2.0",
|
| 2125 |
+
"_view_name": "LayoutView",
|
| 2126 |
+
"align_content": null,
|
| 2127 |
+
"align_items": null,
|
| 2128 |
+
"align_self": null,
|
| 2129 |
+
"border": null,
|
| 2130 |
+
"bottom": null,
|
| 2131 |
+
"display": null,
|
| 2132 |
+
"flex": null,
|
| 2133 |
+
"flex_flow": null,
|
| 2134 |
+
"grid_area": null,
|
| 2135 |
+
"grid_auto_columns": null,
|
| 2136 |
+
"grid_auto_flow": null,
|
| 2137 |
+
"grid_auto_rows": null,
|
| 2138 |
+
"grid_column": null,
|
| 2139 |
+
"grid_gap": null,
|
| 2140 |
+
"grid_row": null,
|
| 2141 |
+
"grid_template_areas": null,
|
| 2142 |
+
"grid_template_columns": null,
|
| 2143 |
+
"grid_template_rows": null,
|
| 2144 |
+
"height": null,
|
| 2145 |
+
"justify_content": null,
|
| 2146 |
+
"justify_items": null,
|
| 2147 |
+
"left": null,
|
| 2148 |
+
"margin": null,
|
| 2149 |
+
"max_height": null,
|
| 2150 |
+
"max_width": null,
|
| 2151 |
+
"min_height": null,
|
| 2152 |
+
"min_width": null,
|
| 2153 |
+
"object_fit": null,
|
| 2154 |
+
"object_position": null,
|
| 2155 |
+
"order": null,
|
| 2156 |
+
"overflow": null,
|
| 2157 |
+
"overflow_x": null,
|
| 2158 |
+
"overflow_y": null,
|
| 2159 |
+
"padding": null,
|
| 2160 |
+
"right": null,
|
| 2161 |
+
"top": null,
|
| 2162 |
+
"visibility": null,
|
| 2163 |
+
"width": null
|
| 2164 |
+
}
|
| 2165 |
+
}
|
| 2166 |
+
}
|
| 2167 |
+
}
|
| 2168 |
+
},
|
| 2169 |
+
"nbformat": 4,
|
| 2170 |
+
"nbformat_minor": 0
|
| 2171 |
+
}
|