Spaces:
Running
on
T4
Running
on
T4
Commit
Β·
ec15dbc
1
Parent(s):
4b9cc62
commit
Browse files
app.py
CHANGED
|
@@ -17,6 +17,11 @@ from motor.motor_asyncio import AsyncIOMotorClient
|
|
| 17 |
from bson.objectid import ObjectId
|
| 18 |
from gradio import mount_gradio_app
|
| 19 |
import uvicorn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# -------------------------------------------------
|
| 22 |
# Paths
|
|
@@ -35,6 +40,7 @@ os.makedirs(MODELS_DIR, exist_ok=True)
|
|
| 35 |
# Download models once
|
| 36 |
# -------------------------------------------------
|
| 37 |
def download_models():
|
|
|
|
| 38 |
inswapper_path = hf_hub_download(
|
| 39 |
repo_id=REPO_ID,
|
| 40 |
filename="models/inswapper_128.onnx",
|
|
@@ -55,6 +61,7 @@ def download_models():
|
|
| 55 |
repo_type="model",
|
| 56 |
local_dir=MODELS_DIR
|
| 57 |
)
|
|
|
|
| 58 |
return inswapper_path
|
| 59 |
|
| 60 |
inswapper_path = download_models()
|
|
@@ -62,10 +69,12 @@ inswapper_path = download_models()
|
|
| 62 |
# -------------------------------------------------
|
| 63 |
# Initialize face analysis and swapper
|
| 64 |
# -------------------------------------------------
|
| 65 |
-
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
|
|
|
| 66 |
app = FaceAnalysis(name="buffalo_l", root=MODELS_DIR, providers=providers)
|
| 67 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
| 68 |
swapper = insightface.model_zoo.get_model(inswapper_path, providers=providers)
|
|
|
|
| 69 |
|
| 70 |
# -------------------------------------------------
|
| 71 |
# CodeFormer setup
|
|
@@ -74,11 +83,13 @@ CODEFORMER_PATH = "CodeFormer/inference_codeformer.py"
|
|
| 74 |
|
| 75 |
def ensure_codeformer():
|
| 76 |
if not os.path.exists("CodeFormer"):
|
|
|
|
| 77 |
subprocess.run("git clone https://github.com/sczhou/CodeFormer.git", shell=True, check=True)
|
| 78 |
subprocess.run("pip install -r CodeFormer/requirements.txt", shell=True, check=True)
|
| 79 |
subprocess.run("python CodeFormer/basicsr/setup.py develop", shell=True, check=True)
|
| 80 |
subprocess.run("python CodeFormer/scripts/download_pretrained_models.py facelib", shell=True, check=True)
|
| 81 |
subprocess.run("python CodeFormer/scripts/download_pretrained_models.py CodeFormer", shell=True, check=True)
|
|
|
|
| 82 |
|
| 83 |
ensure_codeformer()
|
| 84 |
|
|
@@ -94,6 +105,7 @@ database = client.FaceSwap
|
|
| 94 |
target_images_collection = database.get_collection("Target_Images")
|
| 95 |
source_images_collection = database.get_collection("Source_Images")
|
| 96 |
results_collection = database.get_collection("Results")
|
|
|
|
| 97 |
|
| 98 |
# -------------------------------------------------
|
| 99 |
# Lock for face swap
|
|
@@ -104,6 +116,7 @@ swap_lock = threading.Lock()
|
|
| 104 |
# Pipeline Function
|
| 105 |
# -------------------------------------------------
|
| 106 |
def face_swap_and_enhance(src_img, tgt_img):
|
|
|
|
| 107 |
try:
|
| 108 |
with swap_lock:
|
| 109 |
shutil.rmtree(UPLOAD_DIR, ignore_errors=True)
|
|
@@ -111,38 +124,56 @@ def face_swap_and_enhance(src_img, tgt_img):
|
|
| 111 |
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
| 112 |
os.makedirs(RESULT_DIR, exist_ok=True)
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
src_bgr = cv2.cvtColor(src_img, cv2.COLOR_RGB2BGR)
|
| 115 |
tgt_bgr = cv2.cvtColor(tgt_img, cv2.COLOR_RGB2BGR)
|
| 116 |
|
|
|
|
| 117 |
src_faces = app.get(src_bgr)
|
| 118 |
tgt_faces = app.get(tgt_bgr)
|
| 119 |
if not src_faces or not tgt_faces:
|
| 120 |
-
|
|
|
|
| 121 |
|
| 122 |
unique_name = f"swapped_{uuid.uuid4().hex[:8]}.jpg"
|
| 123 |
swapped_path = os.path.join(UPLOAD_DIR, unique_name)
|
|
|
|
| 124 |
swapped_bgr = swapper.get(tgt_bgr, tgt_faces[0], src_faces[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
cv2.imwrite(swapped_path, swapped_bgr)
|
|
|
|
| 126 |
|
| 127 |
cmd = f"python {CODEFORMER_PATH} -w 0.7 --input_path {swapped_path} --output_path {RESULT_DIR} --bg_upsampler realesrgan --face_upsample"
|
|
|
|
| 128 |
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
|
| 129 |
if result.returncode != 0:
|
|
|
|
| 130 |
return None, None, f"β CodeFormer failed:\n{result.stderr}"
|
| 131 |
|
| 132 |
final_results_dir = os.path.join(RESULT_DIR, "final_results")
|
| 133 |
if not os.path.exists(final_results_dir):
|
| 134 |
-
|
|
|
|
| 135 |
|
| 136 |
final_files = [f for f in os.listdir(final_results_dir) if f.endswith(".png")]
|
| 137 |
if not final_files:
|
| 138 |
-
|
|
|
|
| 139 |
|
| 140 |
final_path = os.path.join(final_results_dir, final_files[0])
|
| 141 |
final_img = cv2.cvtColor(cv2.imread(final_path), cv2.COLOR_BGR2RGB)
|
|
|
|
| 142 |
|
| 143 |
return final_img, final_path, ""
|
| 144 |
|
| 145 |
except Exception as e:
|
|
|
|
| 146 |
return None, None, f"β Error: {str(e)}"
|
| 147 |
|
| 148 |
# -------------------------------------------------
|
|
@@ -182,6 +213,7 @@ async def health():
|
|
| 182 |
|
| 183 |
@app.post("/source")
|
| 184 |
async def upload_source(image: UploadFile = File(...)):
|
|
|
|
| 185 |
contents = await image.read()
|
| 186 |
doc = {
|
| 187 |
"filename": image.filename,
|
|
@@ -189,10 +221,12 @@ async def upload_source(image: UploadFile = File(...)):
|
|
| 189 |
"data": contents
|
| 190 |
}
|
| 191 |
result = await source_images_collection.insert_one(doc)
|
|
|
|
| 192 |
return {"source_id": str(result.inserted_id)}
|
| 193 |
|
| 194 |
@app.post("/target")
|
| 195 |
async def upload_target(image: UploadFile = File(...)):
|
|
|
|
| 196 |
contents = await image.read()
|
| 197 |
doc = {
|
| 198 |
"filename": image.filename,
|
|
@@ -200,6 +234,7 @@ async def upload_target(image: UploadFile = File(...)):
|
|
| 200 |
"data": contents
|
| 201 |
}
|
| 202 |
result = await target_images_collection.insert_one(doc)
|
|
|
|
| 203 |
return {"target_id": str(result.inserted_id)}
|
| 204 |
|
| 205 |
class FaceSwapRequest(BaseModel):
|
|
@@ -208,24 +243,34 @@ class FaceSwapRequest(BaseModel):
|
|
| 208 |
|
| 209 |
@app.post("/faceswap")
|
| 210 |
async def perform_faceswap(request: FaceSwapRequest):
|
|
|
|
| 211 |
source_doc = await source_images_collection.find_one({"_id": ObjectId(request.source_id)})
|
| 212 |
if not source_doc:
|
|
|
|
| 213 |
raise HTTPException(status_code=404, detail="Source image not found")
|
| 214 |
|
| 215 |
target_doc = await target_images_collection.find_one({"_id": ObjectId(request.target_id)})
|
| 216 |
if not target_doc:
|
|
|
|
| 217 |
raise HTTPException(status_code=404, detail="Target image not found")
|
| 218 |
|
| 219 |
source_array = np.frombuffer(source_doc["data"], np.uint8)
|
| 220 |
source_bgr = cv2.imdecode(source_array, cv2.IMREAD_COLOR)
|
|
|
|
|
|
|
|
|
|
| 221 |
source_rgb = cv2.cvtColor(source_bgr, cv2.COLOR_BGR2RGB)
|
| 222 |
|
| 223 |
target_array = np.frombuffer(target_doc["data"], np.uint8)
|
| 224 |
target_bgr = cv2.imdecode(target_array, cv2.IMREAD_COLOR)
|
|
|
|
|
|
|
|
|
|
| 225 |
target_rgb = cv2.cvtColor(target_bgr, cv2.COLOR_BGR2RGB)
|
| 226 |
|
| 227 |
final_img, final_path, err = face_swap_and_enhance(source_rgb, target_rgb)
|
| 228 |
if err:
|
|
|
|
| 229 |
raise HTTPException(status_code=500, detail=err)
|
| 230 |
|
| 231 |
with open(final_path, "rb") as f:
|
|
@@ -239,12 +284,15 @@ async def perform_faceswap(request: FaceSwapRequest):
|
|
| 239 |
"data": final_bytes
|
| 240 |
}
|
| 241 |
result = await results_collection.insert_one(result_doc)
|
|
|
|
| 242 |
return {"result_id": str(result.inserted_id)}
|
| 243 |
|
| 244 |
@app.get("/download/{result_id}")
|
| 245 |
async def download_result(result_id: str):
|
|
|
|
| 246 |
doc = await results_collection.find_one({"_id": ObjectId(result_id)})
|
| 247 |
if not doc:
|
|
|
|
| 248 |
raise HTTPException(status_code=404, detail="Result not found")
|
| 249 |
return Response(
|
| 250 |
content=doc["data"],
|
|
|
|
| 17 |
from bson.objectid import ObjectId
|
| 18 |
from gradio import mount_gradio_app
|
| 19 |
import uvicorn
|
| 20 |
+
import logging
|
| 21 |
+
|
| 22 |
+
# Set up logging
|
| 23 |
+
logging.basicConfig(level=logging.INFO)
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
|
| 26 |
# -------------------------------------------------
|
| 27 |
# Paths
|
|
|
|
| 40 |
# Download models once
|
| 41 |
# -------------------------------------------------
|
| 42 |
def download_models():
|
| 43 |
+
logger.info("Downloading models...")
|
| 44 |
inswapper_path = hf_hub_download(
|
| 45 |
repo_id=REPO_ID,
|
| 46 |
filename="models/inswapper_128.onnx",
|
|
|
|
| 61 |
repo_type="model",
|
| 62 |
local_dir=MODELS_DIR
|
| 63 |
)
|
| 64 |
+
logger.info("Models downloaded successfully")
|
| 65 |
return inswapper_path
|
| 66 |
|
| 67 |
inswapper_path = download_models()
|
|
|
|
| 69 |
# -------------------------------------------------
|
| 70 |
# Initialize face analysis and swapper
|
| 71 |
# -------------------------------------------------
|
| 72 |
+
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
| 73 |
+
logger.info(f"Initializing FaceAnalysis with providers: {providers}")
|
| 74 |
app = FaceAnalysis(name="buffalo_l", root=MODELS_DIR, providers=providers)
|
| 75 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
| 76 |
swapper = insightface.model_zoo.get_model(inswapper_path, providers=providers)
|
| 77 |
+
logger.info("FaceAnalysis and swapper initialized")
|
| 78 |
|
| 79 |
# -------------------------------------------------
|
| 80 |
# CodeFormer setup
|
|
|
|
| 83 |
|
| 84 |
def ensure_codeformer():
|
| 85 |
if not os.path.exists("CodeFormer"):
|
| 86 |
+
logger.info("Cloning CodeFormer repository...")
|
| 87 |
subprocess.run("git clone https://github.com/sczhou/CodeFormer.git", shell=True, check=True)
|
| 88 |
subprocess.run("pip install -r CodeFormer/requirements.txt", shell=True, check=True)
|
| 89 |
subprocess.run("python CodeFormer/basicsr/setup.py develop", shell=True, check=True)
|
| 90 |
subprocess.run("python CodeFormer/scripts/download_pretrained_models.py facelib", shell=True, check=True)
|
| 91 |
subprocess.run("python CodeFormer/scripts/download_pretrained_models.py CodeFormer", shell=True, check=True)
|
| 92 |
+
logger.info("CodeFormer setup complete")
|
| 93 |
|
| 94 |
ensure_codeformer()
|
| 95 |
|
|
|
|
| 105 |
target_images_collection = database.get_collection("Target_Images")
|
| 106 |
source_images_collection = database.get_collection("Source_Images")
|
| 107 |
results_collection = database.get_collection("Results")
|
| 108 |
+
logger.info("MongoDB client initialized")
|
| 109 |
|
| 110 |
# -------------------------------------------------
|
| 111 |
# Lock for face swap
|
|
|
|
| 116 |
# Pipeline Function
|
| 117 |
# -------------------------------------------------
|
| 118 |
def face_swap_and_enhance(src_img, tgt_img):
|
| 119 |
+
logger.info("Starting face swap and enhancement")
|
| 120 |
try:
|
| 121 |
with swap_lock:
|
| 122 |
shutil.rmtree(UPLOAD_DIR, ignore_errors=True)
|
|
|
|
| 124 |
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
| 125 |
os.makedirs(RESULT_DIR, exist_ok=True)
|
| 126 |
|
| 127 |
+
if not isinstance(src_img, np.ndarray) or not isinstance(tgt_img, np.ndarray):
|
| 128 |
+
logger.error("Invalid input images: not numpy arrays")
|
| 129 |
+
return None, None, "β Invalid input images: not numpy arrays"
|
| 130 |
+
|
| 131 |
src_bgr = cv2.cvtColor(src_img, cv2.COLOR_RGB2BGR)
|
| 132 |
tgt_bgr = cv2.cvtColor(tgt_img, cv2.COLOR_RGB2BGR)
|
| 133 |
|
| 134 |
+
logger.info("Detecting faces...")
|
| 135 |
src_faces = app.get(src_bgr)
|
| 136 |
tgt_faces = app.get(tgt_bgr)
|
| 137 |
if not src_faces or not tgt_faces:
|
| 138 |
+
logger.error("Face not detected in one of the images")
|
| 139 |
+
return None, None, "β Face not detected in one of the images"
|
| 140 |
|
| 141 |
unique_name = f"swapped_{uuid.uuid4().hex[:8]}.jpg"
|
| 142 |
swapped_path = os.path.join(UPLOAD_DIR, unique_name)
|
| 143 |
+
logger.info("Performing face swap...")
|
| 144 |
swapped_bgr = swapper.get(tgt_bgr, tgt_faces[0], src_faces[0])
|
| 145 |
+
if swapped_bgr is None:
|
| 146 |
+
logger.error("Face swap failed: swapper returned None")
|
| 147 |
+
return None, None, "β Face swap failed"
|
| 148 |
+
|
| 149 |
cv2.imwrite(swapped_path, swapped_bgr)
|
| 150 |
+
logger.info(f"Swapped image saved to {swapped_path}")
|
| 151 |
|
| 152 |
cmd = f"python {CODEFORMER_PATH} -w 0.7 --input_path {swapped_path} --output_path {RESULT_DIR} --bg_upsampler realesrgan --face_upsample"
|
| 153 |
+
logger.info(f"Running CodeFormer: {cmd}")
|
| 154 |
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
|
| 155 |
if result.returncode != 0:
|
| 156 |
+
logger.error(f"CodeFormer failed: {result.stderr}")
|
| 157 |
return None, None, f"β CodeFormer failed:\n{result.stderr}"
|
| 158 |
|
| 159 |
final_results_dir = os.path.join(RESULT_DIR, "final_results")
|
| 160 |
if not os.path.exists(final_results_dir):
|
| 161 |
+
logger.error("CodeFormer did not produce final results")
|
| 162 |
+
return None, None, "β CodeFormer did not produce final results"
|
| 163 |
|
| 164 |
final_files = [f for f in os.listdir(final_results_dir) if f.endswith(".png")]
|
| 165 |
if not final_files:
|
| 166 |
+
logger.error("No enhanced image found in final results")
|
| 167 |
+
return None, None, "β No enhanced image found in final results"
|
| 168 |
|
| 169 |
final_path = os.path.join(final_results_dir, final_files[0])
|
| 170 |
final_img = cv2.cvtColor(cv2.imread(final_path), cv2.COLOR_BGR2RGB)
|
| 171 |
+
logger.info(f"Enhanced image ready at {final_path}")
|
| 172 |
|
| 173 |
return final_img, final_path, ""
|
| 174 |
|
| 175 |
except Exception as e:
|
| 176 |
+
logger.error(f"Face swap error: {str(e)}")
|
| 177 |
return None, None, f"β Error: {str(e)}"
|
| 178 |
|
| 179 |
# -------------------------------------------------
|
|
|
|
| 213 |
|
| 214 |
@app.post("/source")
|
| 215 |
async def upload_source(image: UploadFile = File(...)):
|
| 216 |
+
logger.info(f"Uploading source image: {image.filename}")
|
| 217 |
contents = await image.read()
|
| 218 |
doc = {
|
| 219 |
"filename": image.filename,
|
|
|
|
| 221 |
"data": contents
|
| 222 |
}
|
| 223 |
result = await source_images_collection.insert_one(doc)
|
| 224 |
+
logger.info(f"Source image uploaded with ID: {str(result.inserted_id)}")
|
| 225 |
return {"source_id": str(result.inserted_id)}
|
| 226 |
|
| 227 |
@app.post("/target")
|
| 228 |
async def upload_target(image: UploadFile = File(...)):
|
| 229 |
+
logger.info(f"Uploading target image: {image.filename}")
|
| 230 |
contents = await image.read()
|
| 231 |
doc = {
|
| 232 |
"filename": image.filename,
|
|
|
|
| 234 |
"data": contents
|
| 235 |
}
|
| 236 |
result = await target_images_collection.insert_one(doc)
|
| 237 |
+
logger.info(f"Target image uploaded with ID: {str(result.inserted_id)}")
|
| 238 |
return {"target_id": str(result.inserted_id)}
|
| 239 |
|
| 240 |
class FaceSwapRequest(BaseModel):
|
|
|
|
| 243 |
|
| 244 |
@app.post("/faceswap")
|
| 245 |
async def perform_faceswap(request: FaceSwapRequest):
|
| 246 |
+
logger.info(f"Starting face swap for source_id: {request.source_id}, target_id: {request.target_id}")
|
| 247 |
source_doc = await source_images_collection.find_one({"_id": ObjectId(request.source_id)})
|
| 248 |
if not source_doc:
|
| 249 |
+
logger.error(f"Source image not found: {request.source_id}")
|
| 250 |
raise HTTPException(status_code=404, detail="Source image not found")
|
| 251 |
|
| 252 |
target_doc = await target_images_collection.find_one({"_id": ObjectId(request.target_id)})
|
| 253 |
if not target_doc:
|
| 254 |
+
logger.error(f"Target image not found: {request.target_id}")
|
| 255 |
raise HTTPException(status_code=404, detail="Target image not found")
|
| 256 |
|
| 257 |
source_array = np.frombuffer(source_doc["data"], np.uint8)
|
| 258 |
source_bgr = cv2.imdecode(source_array, cv2.IMREAD_COLOR)
|
| 259 |
+
if source_bgr is None:
|
| 260 |
+
logger.error("Failed to decode source image")
|
| 261 |
+
raise HTTPException(status_code=500, detail="Failed to decode source image")
|
| 262 |
source_rgb = cv2.cvtColor(source_bgr, cv2.COLOR_BGR2RGB)
|
| 263 |
|
| 264 |
target_array = np.frombuffer(target_doc["data"], np.uint8)
|
| 265 |
target_bgr = cv2.imdecode(target_array, cv2.IMREAD_COLOR)
|
| 266 |
+
if target_bgr is None:
|
| 267 |
+
logger.error("Failed to decode target image")
|
| 268 |
+
raise HTTPException(status_code=500, detail="Failed to decode target image")
|
| 269 |
target_rgb = cv2.cvtColor(target_bgr, cv2.COLOR_BGR2RGB)
|
| 270 |
|
| 271 |
final_img, final_path, err = face_swap_and_enhance(source_rgb, target_rgb)
|
| 272 |
if err:
|
| 273 |
+
logger.error(f"Face swap failed: {err}")
|
| 274 |
raise HTTPException(status_code=500, detail=err)
|
| 275 |
|
| 276 |
with open(final_path, "rb") as f:
|
|
|
|
| 284 |
"data": final_bytes
|
| 285 |
}
|
| 286 |
result = await results_collection.insert_one(result_doc)
|
| 287 |
+
logger.info(f"Face swap result stored with ID: {str(result.inserted_id)}")
|
| 288 |
return {"result_id": str(result.inserted_id)}
|
| 289 |
|
| 290 |
@app.get("/download/{result_id}")
|
| 291 |
async def download_result(result_id: str):
|
| 292 |
+
logger.info(f"Downloading result: {result_id}")
|
| 293 |
doc = await results_collection.find_one({"_id": ObjectId(result_id)})
|
| 294 |
if not doc:
|
| 295 |
+
logger.error(f"Result not found: {result_id}")
|
| 296 |
raise HTTPException(status_code=404, detail="Result not found")
|
| 297 |
return Response(
|
| 298 |
content=doc["data"],
|