File size: 4,770 Bytes
3fdea04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5eecf2
3fdea04
 
 
 
e670614
 
3fdea04
e670614
3fdea04
e670614
 
 
 
 
 
 
 
 
0801672
 
 
 
 
3fdea04
0801672
 
3fdea04
d0dc890
 
 
 
 
 
 
 
 
 
 
 
3fdea04
 
241ac77
3fdea04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241ac77
3fdea04
 
 
 
 
 
 
 
 
 
 
241ac77
3fdea04
 
 
d5eecf2
3fdea04
 
 
 
 
 
 
 
 
 
 
 
d0dc890
3fdea04
 
e670614
 
c98ba13
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# App code based on: https://github.com/petergro-hub/ComicInpainting
# Model based on: https://github.com/saic-mdal/lama

import numpy as np
import pandas as pd
import streamlit as st
import os
from datetime import datetime
from PIL import Image
from streamlit_drawable_canvas import st_canvas
from io import BytesIO
from copy import deepcopy

from src.core import process_inpaint


def image_download_button(pil_image, filename: str, fmt: str, label="Download"):
    if fmt not in ["jpg", "png"]:
        raise Exception(f"Unknown image format (Available: {fmt} - case sensitive)")
    
    pil_format = "JPEG" if fmt == "jpg" else "PNG"
    file_format = "jpg" if fmt == "jpg" else "png"
    mime = "image/jpeg" if fmt == "jpg" else "image/png"
    
    buf = BytesIO()
    pil_image.save(buf, format=pil_format)
    
    return st.download_button(
        label=label,
        data=buf.getvalue(),
        file_name=f'{filename}.{file_format}',
        mime=mime,
    )



if "button_id" not in st.session_state:
    st.session_state["button_id"] = ""
if "color_to_label" not in st.session_state:
    st.session_state["color_to_label"] = {}

if 'reuse_image' not in st.session_state:
    st.session_state.reuse_image = None

def set_image(img):
    st.session_state.reuse_image = img


def run_streamlit_ui():
    st.title("AI Photo Object Removal")

    st.image(open("assets/demo.png", "rb").read())

    st.markdown(
        """
        So you want to remove an object in your photo? You don't need to learn photo editing skills.
        **Just draw over the parts of the image you want to remove, then our AI will remove them.**
        """
    )
    uploaded_file = st.file_uploader("Choose image", accept_multiple_files=False, type=["png", "jpg", "jpeg"])

    if uploaded_file is not None:
        if st.session_state.reuse_image is not None:
            img_input = Image.fromarray(st.session_state.reuse_image)
        else:
            bytes_data = uploaded_file.getvalue()
            img_input = Image.open(BytesIO(bytes_data)).convert("RGBA")
    else:
        st.info("Please upload an image to begin.")
        return

    # Resize the image while maintaining aspect ratio
    max_size = 2000
    img_width, img_height = img_input.size
    if img_width > max_size or img_height > max_size:
        if img_width > img_height:
            new_width = max_size
            new_height = int((max_size / img_width) * img_height)
        else:
            new_height = max_size
            new_width = int((max_size / img_height) * img_width)
        img_input = img_input.resize((new_width, new_height))
    
    stroke_width = st.slider("Brush size", 1, 100, 50)

    st.write("**Now draw (brush) the part of image that you want to remove.**")
    
    # Canvas size logic
    canvas_bg = deepcopy(img_input)
    aspect_ratio = canvas_bg.width / canvas_bg.height
    streamlit_width = 720
    
    # Max width is 720. Resize the height to maintain its aspectratio.
    if canvas_bg.width > streamlit_width:
        canvas_bg = canvas_bg.resize((streamlit_width, int(streamlit_width / aspect_ratio)))
    
    canvas_result = st_canvas(
        stroke_color="rgba(255, 0, 255, 1)",
        stroke_width=stroke_width,
        background_image=canvas_bg,
        width=canvas_bg.width,
        height=canvas_bg.height,
        drawing_mode="freedraw",
        key="compute_arc_length", 
    )
    
    if canvas_result.image_data is not None:
        im = np.array(Image.fromarray(canvas_result.image_data.astype(np.uint8)).resize(img_input.size))
        background = np.where(
            (im[:, :, 0] == 0) & 
            (im[:, :, 1] == 0) & 
            (im[:, :, 2] == 0)
        )
        drawing = np.where(
            (im[:, :, 0] == 255) & 
            (im[:, :, 1] == 0) & 
            (im[:, :, 2] == 255)
        )
        im[background]=[0,0,0,255]
        im[drawing]=[0,0,0,0] # RGBA
        
        if st.button('Submit'):
            with st.spinner("AI is doing the magic!"):
                output = process_inpaint(np.array(img_input), np.array(im))
                img_output = Image.fromarray(output).convert("RGB")
            
            st.write("AI has finished the job!")
            st.image(img_output)
            
            uploaded_name = os.path.splitext(uploaded_file.name)[0]
            image_download_button(
                pil_image=img_output,
                filename=uploaded_name,
                fmt="jpg",
                label="Download Image"
            )
            
            st.info("**TIP**: If the result is not perfect, you can download it then "
                    "upload then remove the artifacts.")


# Initialize Streamlit app (HF Spaces runs via `streamlit run app.py`)
run_streamlit_ui()