File size: 2,196 Bytes
d7dc26f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/env python3
"""
Quick test to verify LLM integration is working
"""

import os
from dotenv import load_dotenv
from agent.llm_client import LLMClient, LLMMessage
from agent.consultation import NetworkConsultant

# Load environment variables
load_dotenv()

print("=" * 60)
print("Testing LLM Integration")
print("=" * 60)

# Test 1: Check API keys
print("\n1. Checking API keys...")
anthropic_key = os.getenv("ANTHROPIC_API_KEY")
openai_key = os.getenv("OPENAI_API_KEY")

if anthropic_key:
    print(f"βœ… Anthropic API key found: {anthropic_key[:20]}...")
else:
    print("❌ Anthropic API key not found")

if openai_key:
    print(f"βœ… OpenAI API key found: {openai_key[:20]}...")
else:
    print("⚠️  OpenAI API key not found (optional)")

# Test 2: Initialize LLM client
print("\n2. Initializing LLM client...")
llm = LLMClient()
print(f"βœ… LLM client initialized with provider: {llm.provider}")

# Test 3: Simple chat test
print("\n3. Testing basic chat completion...")
try:
    messages = [
        LLMMessage(role="user", content="Reply with just 'Hello from Overgrowth!' and nothing else.")
    ]
    response = llm.chat(messages, temperature=0.1)
    print(f"βœ… Response received: {response[:100]}")
except Exception as e:
    print(f"❌ Chat test failed: {e}")

# Test 4: Test consultation
print("\n4. Testing network consultation...")
try:
    consultant = NetworkConsultant()
    
    test_input = """
    We're a coffee shop chain with 3 locations. We need WiFi for customers, 
    POS systems with payment processing, security cameras, and secure VPN to HQ 
    for centralized management. Each location has ~50 customers at peak time.
    """
    
    is_complete, output, intent = consultant.start_consultation(test_input)
    
    if is_complete:
        print("βœ… Consultation completed immediately")
        print(f"\nIntent captured:\n{output}")
    else:
        print("βœ… Consultation started - follow-up questions:")
        print(f"\n{output}")
        
except Exception as e:
    print(f"❌ Consultation test failed: {e}")
    import traceback
    traceback.print_exc()

print("\n" + "=" * 60)
print("LLM Integration Test Complete!")
print("=" * 60)