Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from gradio_pdf import PDF
|
| 3 |
+
from qdrant_client import models, QdrantClient
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
from PyPDF2 import PdfReader
|
| 6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 7 |
+
from langchain.callbacks.manager import CallbackManager
|
| 8 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
| 9 |
+
|
| 10 |
+
from langchain.vectorstores import Qdrant
|
| 11 |
+
from qdrant_client.http import models
|
| 12 |
+
from ctransformers import AutoModelForCausalLM
|
| 13 |
+
|
| 14 |
+
# Loading the embedding model
|
| 15 |
+
encoder = SentenceTransformer('jinaai/jina-embedding-b-en-v1')
|
| 16 |
+
print("Embedding model loaded...")
|
| 17 |
+
|
| 18 |
+
# Loading the LLM
|
| 19 |
+
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
| 20 |
+
|
| 21 |
+
llm = AutoModelForCausalLM.from_pretrained(
|
| 22 |
+
"TheBloke/Llama-2-7B-Chat-GGUF",
|
| 23 |
+
model_file="llama-2-7b-chat.Q3_K_S.gguf",
|
| 24 |
+
model_type="llama",
|
| 25 |
+
temperature=0.2,
|
| 26 |
+
repetition_penalty=1.5,
|
| 27 |
+
max_new_tokens=300,
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
print("LLM loaded...")
|
| 31 |
+
|
| 32 |
+
def chat(files, question):
|
| 33 |
+
def get_chunks(text):
|
| 34 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 35 |
+
chunk_size=250,
|
| 36 |
+
chunk_overlap=50,
|
| 37 |
+
length_function=len,
|
| 38 |
+
)
|
| 39 |
+
chunks = text_splitter.split_text(text)
|
| 40 |
+
return chunks
|
| 41 |
+
|
| 42 |
+
all_chunks = []
|
| 43 |
+
|
| 44 |
+
for file in files:
|
| 45 |
+
pdf_path = file
|
| 46 |
+
reader = PdfReader(pdf_path)
|
| 47 |
+
text = ""
|
| 48 |
+
num_of_pages = len(reader.pages)
|
| 49 |
+
|
| 50 |
+
for page in range(num_of_pages):
|
| 51 |
+
current_page = reader.pages[page]
|
| 52 |
+
text += current_page.extract_text()
|
| 53 |
+
|
| 54 |
+
chunks = get_chunks(text)
|
| 55 |
+
all_chunks.extend(chunks)
|
| 56 |
+
|
| 57 |
+
print(f"Total chunks: {len(all_chunks)}")
|
| 58 |
+
print("Chunks are ready...")
|
| 59 |
+
|
| 60 |
+
client = QdrantClient(path="./db")
|
| 61 |
+
print("DB created...")
|
| 62 |
+
|
| 63 |
+
client.recreate_collection(
|
| 64 |
+
collection_name="my_facts",
|
| 65 |
+
vectors_config=models.VectorParams(
|
| 66 |
+
size=encoder.get_sentence_embedding_dimension(),
|
| 67 |
+
distance=models.Distance.COSINE,
|
| 68 |
+
),
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
print("Collection created...")
|
| 72 |
+
|
| 73 |
+
li = list(range(len(all_chunks)))
|
| 74 |
+
dic = dict(zip(li, all_chunks))
|
| 75 |
+
|
| 76 |
+
client.upload_records(
|
| 77 |
+
collection_name="my_facts",
|
| 78 |
+
records=[
|
| 79 |
+
models.Record(
|
| 80 |
+
id=idx,
|
| 81 |
+
vector=encoder.encode(dic[idx]).tolist(),
|
| 82 |
+
payload={f"chunk_{idx}": dic[idx]}
|
| 83 |
+
) for idx in dic.keys()
|
| 84 |
+
],
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
print("Records uploaded...")
|
| 88 |
+
|
| 89 |
+
hits = client.search(
|
| 90 |
+
collection_name="my_facts",
|
| 91 |
+
query_vector=encoder.encode(question).tolist(),
|
| 92 |
+
limit=3
|
| 93 |
+
)
|
| 94 |
+
context = []
|
| 95 |
+
for hit in hits:
|
| 96 |
+
context.append(list(hit.payload.values())[0])
|
| 97 |
+
|
| 98 |
+
context = " ".join(context)
|
| 99 |
+
|
| 100 |
+
system_prompt = """You are a helpful co-worker, you will use the provided context to answer user questions.
|
| 101 |
+
Read the given context before answering questions and think step by step. If you cannot answer a user question based on
|
| 102 |
+
the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question."""
|
| 103 |
+
|
| 104 |
+
B_INST, E_INST = "[INST]", "[/INST]"
|
| 105 |
+
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
| 106 |
+
|
| 107 |
+
SYSTEM_PROMPT = B_SYS + system_prompt + E_SYS
|
| 108 |
+
|
| 109 |
+
instruction = f"""
|
| 110 |
+
Context: {context}
|
| 111 |
+
User: {question}"""
|
| 112 |
+
|
| 113 |
+
prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST
|
| 114 |
+
print(prompt_template)
|
| 115 |
+
result = llm(prompt_template)
|
| 116 |
+
return result
|
| 117 |
+
|
| 118 |
+
screen = gr.Interface(
|
| 119 |
+
fn=chat,
|
| 120 |
+
inputs=[gr.File(label="Upload PDFs", file_count="multiple"), gr.Textbox(lines=10, placeholder="Enter your question here 👉")],
|
| 121 |
+
outputs=gr.Textbox(lines=10, placeholder="Your answer will be here soon 🚀"),
|
| 122 |
+
title="Q&A with PDFs 👩🏻💻📓✍🏻💡",
|
| 123 |
+
description="This app facilitates a conversation with PDFs uploaded💡",
|
| 124 |
+
theme="soft",
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
screen.launch()
|