Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
| 3 |
import torch
|
| 4 |
import os
|
| 5 |
from dotenv import load_dotenv
|
|
|
|
| 6 |
|
| 7 |
# Load environment variables
|
| 8 |
load_dotenv()
|
|
@@ -12,19 +13,14 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
| 12 |
st.title("I am Your GrowBuddy 🌱")
|
| 13 |
st.write("Let me help you start gardening. Let's grow together!")
|
| 14 |
|
| 15 |
-
# Function to load model only once
|
|
|
|
| 16 |
def load_model():
|
| 17 |
try:
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
tokenizer = AutoTokenizer.from_pretrained("TheSheBots/UrbanGardening", use_auth_token=HF_TOKEN)
|
| 23 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", use_auth_token=HF_TOKEN)
|
| 24 |
-
# Store the model and tokenizer in session state
|
| 25 |
-
st.session_state.tokenizer = tokenizer
|
| 26 |
-
st.session_state.model = model
|
| 27 |
-
return tokenizer, model
|
| 28 |
except Exception as e:
|
| 29 |
st.error(f"Failed to load model: {e}")
|
| 30 |
return None, None
|
|
@@ -35,8 +31,8 @@ tokenizer, model = load_model()
|
|
| 35 |
if not tokenizer or not model:
|
| 36 |
st.stop()
|
| 37 |
|
| 38 |
-
#
|
| 39 |
-
device = torch.device("
|
| 40 |
model = model.to(device)
|
| 41 |
|
| 42 |
# Initialize session state messages
|
|
@@ -50,33 +46,20 @@ for message in st.session_state.messages:
|
|
| 50 |
with st.chat_message(message["role"]):
|
| 51 |
st.write(message["content"])
|
| 52 |
|
| 53 |
-
#
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
# Function to generate response with
|
| 57 |
def generate_response(prompt):
|
| 58 |
try:
|
| 59 |
-
#
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
# Display tokenized inputs
|
| 64 |
-
log_box.text_area("Debugging Logs", f"Tokenized inputs: {inputs['input_ids']}", height=200)
|
| 65 |
-
|
| 66 |
-
# Generate output from model
|
| 67 |
-
log_box.text_area("Debugging Logs", "Generating output...", height=200)
|
| 68 |
-
outputs = model.generate(inputs["input_ids"], max_new_tokens=100, temperature=0.7, do_sample=True)
|
| 69 |
-
|
| 70 |
-
# Display the raw output from the model
|
| 71 |
-
log_box.text_area("Debugging Logs", f"Raw model output (tokens): {outputs}", height=200)
|
| 72 |
-
|
| 73 |
-
# Decode and return response
|
| 74 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 75 |
-
|
| 76 |
-
# Display the final decoded response
|
| 77 |
-
log_box.text_area("Debugging Logs", f"Decoded response: {response}", height=200)
|
| 78 |
-
|
| 79 |
-
return response
|
| 80 |
except Exception as e:
|
| 81 |
st.error(f"Error during text generation: {e}")
|
| 82 |
return "Sorry, I couldn't process your request."
|
|
@@ -93,7 +76,6 @@ if user_input:
|
|
| 93 |
response = generate_response(user_input)
|
| 94 |
st.write(response)
|
| 95 |
|
| 96 |
-
# Update session state
|
| 97 |
st.session_state.messages.append({"role": "user", "content": user_input})
|
| 98 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 99 |
-
|
|
|
|
| 3 |
import torch
|
| 4 |
import os
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
+
from functools import lru_cache
|
| 7 |
|
| 8 |
# Load environment variables
|
| 9 |
load_dotenv()
|
|
|
|
| 13 |
st.title("I am Your GrowBuddy 🌱")
|
| 14 |
st.write("Let me help you start gardening. Let's grow together!")
|
| 15 |
|
| 16 |
+
# Function to load model only once (with quantization for CPU optimization)
|
| 17 |
+
@st.cache_resource
|
| 18 |
def load_model():
|
| 19 |
try:
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained("TheSheBots/UrbanGardening", use_auth_token=HF_TOKEN, use_fast=True)
|
| 21 |
+
# Quantized model for better CPU performance (with 8-bit precision)
|
| 22 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", use_auth_token=HF_TOKEN, torch_dtype=torch.float32)
|
| 23 |
+
return tokenizer, model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
except Exception as e:
|
| 25 |
st.error(f"Failed to load model: {e}")
|
| 26 |
return None, None
|
|
|
|
| 31 |
if not tokenizer or not model:
|
| 32 |
st.stop()
|
| 33 |
|
| 34 |
+
# Ensure model is on CPU (set to float32 for better performance on CPU)
|
| 35 |
+
device = torch.device("cpu")
|
| 36 |
model = model.to(device)
|
| 37 |
|
| 38 |
# Initialize session state messages
|
|
|
|
| 46 |
with st.chat_message(message["role"]):
|
| 47 |
st.write(message["content"])
|
| 48 |
|
| 49 |
+
# LRU Cache for repeated queries to avoid redundant computation
|
| 50 |
+
@lru_cache(maxsize=100)
|
| 51 |
+
def cached_generate_response(prompt, tokenizer, model):
|
| 52 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device)
|
| 53 |
+
outputs = model.generate(inputs["input_ids"], max_new_tokens=50, temperature=0.7, do_sample=True)
|
| 54 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 55 |
+
return response
|
| 56 |
|
| 57 |
+
# Function to generate response with optimization
|
| 58 |
def generate_response(prompt):
|
| 59 |
try:
|
| 60 |
+
# Check cache for previous result (for repeated queries)
|
| 61 |
+
cached_response = cached_generate_response(prompt, tokenizer, model)
|
| 62 |
+
return cached_response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
except Exception as e:
|
| 64 |
st.error(f"Error during text generation: {e}")
|
| 65 |
return "Sorry, I couldn't process your request."
|
|
|
|
| 76 |
response = generate_response(user_input)
|
| 77 |
st.write(response)
|
| 78 |
|
| 79 |
+
# Update session state with new messages
|
| 80 |
st.session_state.messages.append({"role": "user", "content": user_input})
|
| 81 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|