Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
from fastapi import FastAPI, HTTPException
|
| 2 |
from fastapi.staticfiles import StaticFiles
|
| 3 |
from fastapi.responses import FileResponse
|
| 4 |
from fastapi.responses import Response
|
|
@@ -19,7 +19,7 @@ import google.generativeai as genai
|
|
| 19 |
from typing import Optional, List, Any, Dict, Union
|
| 20 |
from diffusers import StableDiffusionPipeline, LCMScheduler
|
| 21 |
|
| 22 |
-
app = FastAPI(title="
|
| 23 |
|
| 24 |
app.add_middleware(
|
| 25 |
CORSMiddleware,
|
|
@@ -29,22 +29,22 @@ app.add_middleware(
|
|
| 29 |
allow_headers=["*"],
|
| 30 |
)
|
| 31 |
|
| 32 |
-
#
|
| 33 |
MODEL_NAME = 'hf-hub:luhuitong/CLIP-ViT-L-14-448px-MedICaT-ROCO'
|
| 34 |
HF_DATASET_ID = "mdwiratathya/ROCO-radiology"
|
| 35 |
SPLIT = "train"
|
| 36 |
device = "cpu"
|
| 37 |
|
| 38 |
-
#
|
| 39 |
model = None
|
| 40 |
tokenizer = None
|
| 41 |
-
embeddings = None
|
| 42 |
metadata = None
|
| 43 |
dataset_stream = None
|
| 44 |
gemini_available = False
|
| 45 |
pipe = None
|
| 46 |
|
| 47 |
-
#
|
| 48 |
try:
|
| 49 |
hf_token = os.environ.get('HF_TOKEN')
|
| 50 |
if hf_token:
|
|
@@ -58,7 +58,7 @@ try:
|
|
| 58 |
except Exception as e:
|
| 59 |
print(f"Error auth: {e}")
|
| 60 |
|
| 61 |
-
#
|
| 62 |
def create_placeholder_image(text="Image Error"):
|
| 63 |
img = Image.new('RGB', (512, 512), color=(40, 40, 45))
|
| 64 |
d = ImageDraw.Draw(img)
|
|
@@ -73,24 +73,15 @@ def create_placeholder_image(text="Image Error"):
|
|
| 73 |
img.save(img_byte_arr, format='JPEG')
|
| 74 |
return img_byte_arr.getvalue()
|
| 75 |
|
| 76 |
-
#
|
| 77 |
@app.on_event("startup")
|
| 78 |
async def load_data():
|
| 79 |
global model, tokenizer, embeddings, metadata, dataset_stream, pipe
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
try:
|
| 84 |
-
print("👁️ Cargando CLIP...")
|
| 85 |
-
model, _, _ = open_clip.create_model_and_transforms(MODEL_NAME, device=device)
|
| 86 |
-
tokenizer = open_clip.get_tokenizer(MODEL_NAME)
|
| 87 |
-
model.eval()
|
| 88 |
-
print("✅ CLIP cargado.")
|
| 89 |
-
except Exception as e:
|
| 90 |
-
print(f"❌ Error CLIP: {e}")
|
| 91 |
|
| 92 |
-
#
|
| 93 |
-
print("📦 Cargando Metadata...")
|
| 94 |
if os.path.exists("metadata_text.json"):
|
| 95 |
with open("metadata_text.json", 'r') as f:
|
| 96 |
metadata = json.load(f)
|
|
@@ -98,53 +89,34 @@ async def load_data():
|
|
| 98 |
with open("metadata.json", 'r') as f:
|
| 99 |
metadata = json.load(f)
|
| 100 |
else:
|
| 101 |
-
print("
|
| 102 |
metadata = [{"dataset_index": 0, "filename": "error", "caption": "Error"}]
|
| 103 |
|
| 104 |
-
#
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
else:
|
| 109 |
-
|
| 110 |
-
embeddings = np.zeros((1, 768))
|
| 111 |
-
|
| 112 |
-
# 4. CARGAR DATASET
|
| 113 |
-
try:
|
| 114 |
-
print("📦 Cargando Dataset en RAM (1-2 mins)...")
|
| 115 |
-
dataset_stream = load_dataset(HF_DATASET_ID, split=SPLIT, streaming=False)
|
| 116 |
-
print(f"✅ Dataset listo. Total: {len(dataset_stream)}")
|
| 117 |
-
except Exception as e:
|
| 118 |
-
print(f"❌ Error dataset: {e}")
|
| 119 |
-
dataset_stream = None
|
| 120 |
-
|
| 121 |
-
# 5. CARGAR STABLE DIFFUSION (LCM)
|
| 122 |
-
print("🎨 Cargando modelo generativo (LCM Mode)...")
|
| 123 |
-
try:
|
| 124 |
-
model_id = "Nihirc/Prompt2MedImage"
|
| 125 |
-
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
|
| 126 |
-
print("⚡ Inyectando pesos LCM-LoRA...")
|
| 127 |
-
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
|
| 128 |
-
pipe.fuse_lora()
|
| 129 |
-
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, solver_order=2)
|
| 130 |
-
pipe.safety_checker = None
|
| 131 |
-
pipe.requires_safety_checker = False
|
| 132 |
-
|
| 133 |
-
if device == "cpu":
|
| 134 |
-
pipe = pipe.to("cpu")
|
| 135 |
-
pipe.enable_attention_slicing()
|
| 136 |
-
else:
|
| 137 |
-
pipe = pipe.to("cuda")
|
| 138 |
-
print("✅ Generador LCM listo.")
|
| 139 |
-
except Exception as e:
|
| 140 |
-
print(f"❌ Error Generador: {e}")
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
# --- 4. FUNCIONES CORE ---
|
| 144 |
|
| 145 |
def calculate_vector(text, add=None, sub=None):
|
| 146 |
with torch.no_grad():
|
| 147 |
-
#
|
| 148 |
text_tokens = tokenizer([text]).to(device)
|
| 149 |
vec = model.encode_text(text_tokens)
|
| 150 |
vec /= vec.norm(dim=-1, keepdim=True)
|
|
@@ -160,17 +132,12 @@ def calculate_vector(text, add=None, sub=None):
|
|
| 160 |
return vec
|
| 161 |
|
| 162 |
def get_retrieval_and_context(query_vector, top_k):
|
| 163 |
-
|
| 164 |
-
Realiza el retrieval basado EXCLUSIVAMENTE en similitud visual.
|
| 165 |
-
Query Text Vector vs Image Embeddings.
|
| 166 |
-
"""
|
| 167 |
query_vec_np = query_vector.cpu().numpy()
|
| 168 |
|
| 169 |
-
|
| 170 |
-
# query_vec_np
|
| 171 |
sim_img = (query_vec_np @ embeddings.T).squeeze()
|
| 172 |
-
|
| 173 |
-
# Ordenar índices (descendente)
|
| 174 |
best_indices = sim_img.argsort()[-top_k:][::-1]
|
| 175 |
|
| 176 |
real_matches = []
|
|
@@ -185,7 +152,7 @@ def get_retrieval_and_context(query_vector, top_k):
|
|
| 185 |
|
| 186 |
real_matches.append({
|
| 187 |
"url": f"/image/{safe_index}",
|
| 188 |
-
"score": float(sim_img[idx]),
|
| 189 |
"filename": meta.get("filename", "img"),
|
| 190 |
"caption": meta.get("caption", ""),
|
| 191 |
"index": safe_index
|
|
@@ -202,7 +169,6 @@ def generate_llm_prompt(captions, user_text):
|
|
| 202 |
return user_text + ". " + (captions[0] if captions else "")
|
| 203 |
try:
|
| 204 |
llm = genai.GenerativeModel('gemini-2.5-flash')
|
| 205 |
-
# Prompt actualizado para usar directamente el texto del usuario
|
| 206 |
prompt = f"Using the following medical query: '{user_text}', synthesize these findings into a concise radiology description: {', '.join(captions[:3])}"
|
| 207 |
res = llm.generate_content(prompt)
|
| 208 |
return res.text.strip()
|
|
@@ -217,7 +183,7 @@ def generate_synthetic_image(prompt, steps=5, guidance=1.5):
|
|
| 217 |
image = pipe(prompt[:77], height=512, width=512, num_inference_steps=steps, guidance_scale=guidance, negative_prompt=NEGATIVE_PROMPT).images[0]
|
| 218 |
|
| 219 |
draw = ImageDraw.Draw(image)
|
| 220 |
-
text = "Created by MIRAGE
|
| 221 |
try: font = ImageFont.load_default()
|
| 222 |
except: font = None
|
| 223 |
bbox = draw.textbbox((0, 0), text, font=font)
|
|
@@ -239,8 +205,8 @@ def fetch_image_from_stream(index):
|
|
| 239 |
return dataset_stream[idx]['image']
|
| 240 |
except Exception: return None
|
| 241 |
|
| 242 |
-
|
| 243 |
-
#
|
| 244 |
@app.get("/api/health")
|
| 245 |
def health_check():
|
| 246 |
return {"status": "online", "version": "lite"}
|
|
@@ -261,7 +227,6 @@ def get_image(index: str):
|
|
| 261 |
except Exception: pass
|
| 262 |
return Response(content=create_placeholder_image("Error"), media_type="image/jpeg")
|
| 263 |
|
| 264 |
-
# --- MODELOS PYDANTIC SIMPLIFICADOS ---
|
| 265 |
class GenerationRequest(BaseModel):
|
| 266 |
original_text: str
|
| 267 |
sub_concept: Optional[str] = None
|
|
@@ -272,17 +237,14 @@ class GenerationRequest(BaseModel):
|
|
| 272 |
guidance_scale: float = 1.5
|
| 273 |
num_inference_steps: int = 5
|
| 274 |
|
| 275 |
-
#
|
| 276 |
@app.post("/generate_comparison")
|
| 277 |
def generate_comparison(req: GenerationRequest):
|
| 278 |
-
if not model: raise HTTPException(status_code=503, detail="Loading...")
|
| 279 |
try:
|
| 280 |
-
# ASIGNACIÓN DIRECTA SIN TRADUCCIÓN
|
| 281 |
final_query = req.original_text
|
| 282 |
final_add = req.add_concept
|
| 283 |
final_sub = req.sub_concept
|
| 284 |
-
|
| 285 |
-
print(f"⚡ Procesando Lite (Raw Input): '{final_query}'")
|
| 286 |
|
| 287 |
response_data = {
|
| 288 |
"original_text": final_query,
|
|
@@ -292,13 +254,11 @@ def generate_comparison(req: GenerationRequest):
|
|
| 292 |
"input_lang_detected": "raw"
|
| 293 |
}
|
| 294 |
|
| 295 |
-
# 1. PROCESAR ORIGINAL (Siempre Visual Search)
|
| 296 |
vec_orig = calculate_vector(final_query)
|
| 297 |
match_orig, caps_orig = get_retrieval_and_context(vec_orig, req.top_k)
|
| 298 |
|
| 299 |
prompt_orig = ""
|
| 300 |
if req.gen_text:
|
| 301 |
-
# Pasa el texto original al LLM
|
| 302 |
prompt_orig = generate_llm_prompt(caps_orig, final_query)
|
| 303 |
else:
|
| 304 |
prompt_orig = "LLM generation skipped."
|
|
@@ -316,7 +276,6 @@ def generate_comparison(req: GenerationRequest):
|
|
| 316 |
}
|
| 317 |
}
|
| 318 |
|
| 319 |
-
# 2. PROCESAR MODIFICADO (Dual Search - Aritmética)
|
| 320 |
has_dual = (final_add and final_add.strip()) and (final_sub and final_sub.strip())
|
| 321 |
if has_dual:
|
| 322 |
vec_mod = calculate_vector(final_query, final_add, final_sub)
|
|
@@ -324,7 +283,6 @@ def generate_comparison(req: GenerationRequest):
|
|
| 324 |
|
| 325 |
prompt_mod = ""
|
| 326 |
if req.gen_text:
|
| 327 |
-
# Construye el string de aritmética sin traducción
|
| 328 |
prompt_mod = generate_llm_prompt(caps_mod, f"{final_query} + {final_add} - {final_sub}")
|
| 329 |
else:
|
| 330 |
prompt_mod = "LLM generation skipped."
|
|
@@ -354,27 +312,20 @@ def search(req: GenerationRequest):
|
|
| 354 |
return generate_comparison(req)
|
| 355 |
|
| 356 |
|
| 357 |
-
#
|
| 358 |
-
|
| 359 |
-
# 1. Montar los assets estáticos (JS, CSS que genera Vite)
|
| 360 |
app.mount("/assets", StaticFiles(directory="static/assets"), name="assets")
|
| 361 |
|
| 362 |
-
# 2. Servir imágenes si las hay en public
|
| 363 |
if os.path.exists("static/images"):
|
| 364 |
app.mount("/images", StaticFiles(directory="static/images"), name="images")
|
| 365 |
|
| 366 |
-
# 3. Ruta raíz -> Devuelve el HTML principal
|
| 367 |
@app.get("/")
|
| 368 |
async def read_index():
|
| 369 |
return FileResponse('static/index.html')
|
| 370 |
|
| 371 |
-
# 4. Catch-all: Cualquier otra ruta devuelve index.html (para que React Router no falle al recargar)
|
| 372 |
@app.get("/{full_path:path}")
|
| 373 |
async def catch_all(full_path: str):
|
| 374 |
-
# Si intentan pedir un archivo que existe (ej. un .png), lo damos
|
| 375 |
if os.path.exists(f"static/{full_path}"):
|
| 376 |
return FileResponse(f"static/{full_path}")
|
| 377 |
-
# Si no, devolvemos la app de React
|
| 378 |
return FileResponse('static/index.html')
|
| 379 |
|
| 380 |
if __name__ == "__main__":
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
from fastapi.staticfiles import StaticFiles
|
| 3 |
from fastapi.responses import FileResponse
|
| 4 |
from fastapi.responses import Response
|
|
|
|
| 19 |
from typing import Optional, List, Any, Dict, Union
|
| 20 |
from diffusers import StableDiffusionPipeline, LCMScheduler
|
| 21 |
|
| 22 |
+
app = FastAPI(title="MIRAGE")
|
| 23 |
|
| 24 |
app.add_middleware(
|
| 25 |
CORSMiddleware,
|
|
|
|
| 29 |
allow_headers=["*"],
|
| 30 |
)
|
| 31 |
|
| 32 |
+
# Models
|
| 33 |
MODEL_NAME = 'hf-hub:luhuitong/CLIP-ViT-L-14-448px-MedICaT-ROCO'
|
| 34 |
HF_DATASET_ID = "mdwiratathya/ROCO-radiology"
|
| 35 |
SPLIT = "train"
|
| 36 |
device = "cpu"
|
| 37 |
|
| 38 |
+
# Glob variables
|
| 39 |
model = None
|
| 40 |
tokenizer = None
|
| 41 |
+
embeddings = None
|
| 42 |
metadata = None
|
| 43 |
dataset_stream = None
|
| 44 |
gemini_available = False
|
| 45 |
pipe = None
|
| 46 |
|
| 47 |
+
# authentication
|
| 48 |
try:
|
| 49 |
hf_token = os.environ.get('HF_TOKEN')
|
| 50 |
if hf_token:
|
|
|
|
| 58 |
except Exception as e:
|
| 59 |
print(f"Error auth: {e}")
|
| 60 |
|
| 61 |
+
# to handle if there's an error
|
| 62 |
def create_placeholder_image(text="Image Error"):
|
| 63 |
img = Image.new('RGB', (512, 512), color=(40, 40, 45))
|
| 64 |
d = ImageDraw.Draw(img)
|
|
|
|
| 73 |
img.save(img_byte_arr, format='JPEG')
|
| 74 |
return img_byte_arr.getvalue()
|
| 75 |
|
| 76 |
+
# load the data
|
| 77 |
@app.on_event("startup")
|
| 78 |
async def load_data():
|
| 79 |
global model, tokenizer, embeddings, metadata, dataset_stream, pipe
|
| 80 |
+
model, _, _ = open_clip.create_model_and_transforms(MODEL_NAME, device=device)
|
| 81 |
+
tokenizer = open_clip.get_tokenizer(MODEL_NAME)
|
| 82 |
+
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
# load metadata
|
|
|
|
| 85 |
if os.path.exists("metadata_text.json"):
|
| 86 |
with open("metadata_text.json", 'r') as f:
|
| 87 |
metadata = json.load(f)
|
|
|
|
| 89 |
with open("metadata.json", 'r') as f:
|
| 90 |
metadata = json.load(f)
|
| 91 |
else:
|
| 92 |
+
print("no metadata file found")
|
| 93 |
metadata = [{"dataset_index": 0, "filename": "error", "caption": "Error"}]
|
| 94 |
|
| 95 |
+
# load the embdeddings of the images (already processed)
|
| 96 |
+
embeddings = np.load("embeddings.npy")
|
| 97 |
+
print(f"✅ Image Embeddings listos: {embeddings.shape[0]} registros.")
|
| 98 |
+
|
| 99 |
+
# load the dataset
|
| 100 |
+
dataset_stream = load_dataset(HF_DATASET_ID, split=SPLIT, streaming=False)
|
| 101 |
+
|
| 102 |
+
# Load the Stable Diffusion LCM Pipeline
|
| 103 |
+
model_id = "Nihirc/Prompt2MedImage"
|
| 104 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
|
| 105 |
+
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
|
| 106 |
+
pipe.fuse_lora()
|
| 107 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, solver_order=2)
|
| 108 |
+
pipe.safety_checker = None
|
| 109 |
+
pipe.requires_safety_checker = False
|
| 110 |
+
|
| 111 |
+
if device == "cpu":
|
| 112 |
+
pipe = pipe.to("cpu")
|
| 113 |
+
pipe.enable_attention_slicing()
|
| 114 |
else:
|
| 115 |
+
pipe = pipe.to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
def calculate_vector(text, add=None, sub=None):
|
| 118 |
with torch.no_grad():
|
| 119 |
+
# the user gives us a text, we obtain the embedding using CLIP
|
| 120 |
text_tokens = tokenizer([text]).to(device)
|
| 121 |
vec = model.encode_text(text_tokens)
|
| 122 |
vec /= vec.norm(dim=-1, keepdim=True)
|
|
|
|
| 132 |
return vec
|
| 133 |
|
| 134 |
def get_retrieval_and_context(query_vector, top_k):
|
| 135 |
+
# We compare the query (text) embd with the image embeddings to retrieve
|
|
|
|
|
|
|
|
|
|
| 136 |
query_vec_np = query_vector.cpu().numpy()
|
| 137 |
|
| 138 |
+
|
| 139 |
+
# query_vec_np (1, 768), embeddings (N, 768) -> result (N,)
|
| 140 |
sim_img = (query_vec_np @ embeddings.T).squeeze()
|
|
|
|
|
|
|
| 141 |
best_indices = sim_img.argsort()[-top_k:][::-1]
|
| 142 |
|
| 143 |
real_matches = []
|
|
|
|
| 152 |
|
| 153 |
real_matches.append({
|
| 154 |
"url": f"/image/{safe_index}",
|
| 155 |
+
"score": float(sim_img[idx]),
|
| 156 |
"filename": meta.get("filename", "img"),
|
| 157 |
"caption": meta.get("caption", ""),
|
| 158 |
"index": safe_index
|
|
|
|
| 169 |
return user_text + ". " + (captions[0] if captions else "")
|
| 170 |
try:
|
| 171 |
llm = genai.GenerativeModel('gemini-2.5-flash')
|
|
|
|
| 172 |
prompt = f"Using the following medical query: '{user_text}', synthesize these findings into a concise radiology description: {', '.join(captions[:3])}"
|
| 173 |
res = llm.generate_content(prompt)
|
| 174 |
return res.text.strip()
|
|
|
|
| 183 |
image = pipe(prompt[:77], height=512, width=512, num_inference_steps=steps, guidance_scale=guidance, negative_prompt=NEGATIVE_PROMPT).images[0]
|
| 184 |
|
| 185 |
draw = ImageDraw.Draw(image)
|
| 186 |
+
text = "Created by MIRAGE"
|
| 187 |
try: font = ImageFont.load_default()
|
| 188 |
except: font = None
|
| 189 |
bbox = draw.textbbox((0, 0), text, font=font)
|
|
|
|
| 205 |
return dataset_stream[idx]['image']
|
| 206 |
except Exception: return None
|
| 207 |
|
| 208 |
+
|
| 209 |
+
# ENDPOINTS
|
| 210 |
@app.get("/api/health")
|
| 211 |
def health_check():
|
| 212 |
return {"status": "online", "version": "lite"}
|
|
|
|
| 227 |
except Exception: pass
|
| 228 |
return Response(content=create_placeholder_image("Error"), media_type="image/jpeg")
|
| 229 |
|
|
|
|
| 230 |
class GenerationRequest(BaseModel):
|
| 231 |
original_text: str
|
| 232 |
sub_concept: Optional[str] = None
|
|
|
|
| 237 |
guidance_scale: float = 1.5
|
| 238 |
num_inference_steps: int = 5
|
| 239 |
|
| 240 |
+
# this is the main endpoint
|
| 241 |
@app.post("/generate_comparison")
|
| 242 |
def generate_comparison(req: GenerationRequest):
|
| 243 |
+
if not model: raise HTTPException(status_code=503, detail="Loading...")
|
| 244 |
try:
|
|
|
|
| 245 |
final_query = req.original_text
|
| 246 |
final_add = req.add_concept
|
| 247 |
final_sub = req.sub_concept
|
|
|
|
|
|
|
| 248 |
|
| 249 |
response_data = {
|
| 250 |
"original_text": final_query,
|
|
|
|
| 254 |
"input_lang_detected": "raw"
|
| 255 |
}
|
| 256 |
|
|
|
|
| 257 |
vec_orig = calculate_vector(final_query)
|
| 258 |
match_orig, caps_orig = get_retrieval_and_context(vec_orig, req.top_k)
|
| 259 |
|
| 260 |
prompt_orig = ""
|
| 261 |
if req.gen_text:
|
|
|
|
| 262 |
prompt_orig = generate_llm_prompt(caps_orig, final_query)
|
| 263 |
else:
|
| 264 |
prompt_orig = "LLM generation skipped."
|
|
|
|
| 276 |
}
|
| 277 |
}
|
| 278 |
|
|
|
|
| 279 |
has_dual = (final_add and final_add.strip()) and (final_sub and final_sub.strip())
|
| 280 |
if has_dual:
|
| 281 |
vec_mod = calculate_vector(final_query, final_add, final_sub)
|
|
|
|
| 283 |
|
| 284 |
prompt_mod = ""
|
| 285 |
if req.gen_text:
|
|
|
|
| 286 |
prompt_mod = generate_llm_prompt(caps_mod, f"{final_query} + {final_add} - {final_sub}")
|
| 287 |
else:
|
| 288 |
prompt_mod = "LLM generation skipped."
|
|
|
|
| 312 |
return generate_comparison(req)
|
| 313 |
|
| 314 |
|
| 315 |
+
# To create the frontend serving
|
|
|
|
|
|
|
| 316 |
app.mount("/assets", StaticFiles(directory="static/assets"), name="assets")
|
| 317 |
|
|
|
|
| 318 |
if os.path.exists("static/images"):
|
| 319 |
app.mount("/images", StaticFiles(directory="static/images"), name="images")
|
| 320 |
|
|
|
|
| 321 |
@app.get("/")
|
| 322 |
async def read_index():
|
| 323 |
return FileResponse('static/index.html')
|
| 324 |
|
|
|
|
| 325 |
@app.get("/{full_path:path}")
|
| 326 |
async def catch_all(full_path: str):
|
|
|
|
| 327 |
if os.path.exists(f"static/{full_path}"):
|
| 328 |
return FileResponse(f"static/{full_path}")
|
|
|
|
| 329 |
return FileResponse('static/index.html')
|
| 330 |
|
| 331 |
if __name__ == "__main__":
|