Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- Dockerfile +11 -0
- rag_engine.py +149 -0
- requirements.txt +6 -0
Dockerfile
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9
|
| 2 |
+
RUN useradd -m -u 1000 user
|
| 3 |
+
USER user
|
| 4 |
+
ENV HOME=/home/user \
|
| 5 |
+
PATH=/home/user/.local/bin:$PATH
|
| 6 |
+
WORKDIR $HOME/app
|
| 7 |
+
COPY --chown=user . $HOME/app
|
| 8 |
+
COPY ./requirements.txt ~/app/requirements.txt
|
| 9 |
+
RUN pip install -r requirements.txt
|
| 10 |
+
COPY . .
|
| 11 |
+
CMD ["chainlit", "run", "rag_engine.py", "--port", "7860"]
|
rag_engine.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import List
|
| 3 |
+
from langchain.document_loaders import PyPDFLoader, TextLoader
|
| 4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 6 |
+
from langchain.vectorstores.pinecone import Pinecone
|
| 7 |
+
from langchain.chains import RetrievalQA
|
| 8 |
+
from langchain.chat_models import ChatOpenAI
|
| 9 |
+
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
| 10 |
+
from langchain.docstore.document import Document
|
| 11 |
+
import pinecone
|
| 12 |
+
import chainlit as cl
|
| 13 |
+
from chainlit.types import AskFileResponse
|
| 14 |
+
|
| 15 |
+
pinecone.init(
|
| 16 |
+
api_key="2b6aa6bf-2e20-4445-a560-f7dd4952e59e",
|
| 17 |
+
environment="gcp-starter",
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
index_name = "skandhaar"
|
| 21 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 22 |
+
embeddings = OpenAIEmbeddings()
|
| 23 |
+
|
| 24 |
+
namespaces = set()
|
| 25 |
+
|
| 26 |
+
welcome_message = """Welcome to the Chainlit PDF QA demo! To get started:
|
| 27 |
+
1. Upload a PDF or text file
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def process_file(file: AskFileResponse):
|
| 32 |
+
import tempfile
|
| 33 |
+
|
| 34 |
+
if file.type == "text/plain":
|
| 35 |
+
Loader = TextLoader
|
| 36 |
+
elif file.type == "application/pdf":
|
| 37 |
+
Loader = PyPDFLoader
|
| 38 |
+
|
| 39 |
+
with tempfile.NamedTemporaryFile(mode="wb", delete=False) as tempfile:
|
| 40 |
+
if file.type == "text/plain":
|
| 41 |
+
tempfile.write(file.content)
|
| 42 |
+
elif file.type == "application/pdf":
|
| 43 |
+
with open(tempfile.name, "wb") as f:
|
| 44 |
+
f.write(file.content)
|
| 45 |
+
|
| 46 |
+
loader = Loader(tempfile.name)
|
| 47 |
+
documents = loader.load()
|
| 48 |
+
docs = text_splitter.split_documents(documents)
|
| 49 |
+
for i, doc in enumerate(docs):
|
| 50 |
+
doc.metadata["source"] = f"source_{i}"
|
| 51 |
+
return docs
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def get_docsearch(file: AskFileResponse):
|
| 55 |
+
docs = process_file(file)
|
| 56 |
+
|
| 57 |
+
# Save data in the user session
|
| 58 |
+
cl.user_session.set("docs", docs)
|
| 59 |
+
|
| 60 |
+
# Create a unique namespace for the file
|
| 61 |
+
namespace = str(hash(file.content))
|
| 62 |
+
|
| 63 |
+
if namespace in namespaces:
|
| 64 |
+
docsearch = Pinecone.from_existing_index(
|
| 65 |
+
index_name=index_name, embedding=embeddings
|
| 66 |
+
)
|
| 67 |
+
else:
|
| 68 |
+
docsearch = Pinecone.from_documents(
|
| 69 |
+
docs, embeddings, index_name=index_name
|
| 70 |
+
)
|
| 71 |
+
namespaces.add(namespace)
|
| 72 |
+
|
| 73 |
+
return docsearch
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
@cl.on_chat_start
|
| 77 |
+
async def start():
|
| 78 |
+
await cl.Avatar(
|
| 79 |
+
name="Chatbot",
|
| 80 |
+
url="https://avatars.githubusercontent.com/u/128686189?s=400&u=a1d1553023f8ea0921fba0debbe92a8c5f840dd9&v=4",
|
| 81 |
+
).send()
|
| 82 |
+
|
| 83 |
+
files = None
|
| 84 |
+
while files is None:
|
| 85 |
+
files = await cl.AskFileMessage(
|
| 86 |
+
content=welcome_message,
|
| 87 |
+
accept=["text/plain", "application/pdf"],
|
| 88 |
+
max_size_mb=20,
|
| 89 |
+
timeout=180,
|
| 90 |
+
disable_human_feedback=True,
|
| 91 |
+
).send()
|
| 92 |
+
|
| 93 |
+
for file in files:
|
| 94 |
+
msg = cl.Message(
|
| 95 |
+
content=f"Processing `{file.name}`...", disable_human_feedback=True
|
| 96 |
+
)
|
| 97 |
+
await msg.send()
|
| 98 |
+
|
| 99 |
+
# No async implementation in the Pinecone client, fallback to sync
|
| 100 |
+
docsearch = await cl.make_async(get_docsearch)(file)
|
| 101 |
+
|
| 102 |
+
message_history = ChatMessageHistory()
|
| 103 |
+
|
| 104 |
+
memory = ConversationBufferMemory(
|
| 105 |
+
memory_key="chat_history",
|
| 106 |
+
output_key="result",
|
| 107 |
+
chat_memory=message_history,
|
| 108 |
+
return_messages=True,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
chain = RetrievalQA.from_chain_type(
|
| 112 |
+
ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True, openai_api_key="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"),
|
| 113 |
+
chain_type="stuff",
|
| 114 |
+
retriever=docsearch.as_retriever(),
|
| 115 |
+
return_source_documents=True,
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# Let the user know that the system is ready
|
| 119 |
+
msg.content = f"`{file.name}` processed. You can now ask questions!"
|
| 120 |
+
await msg.update()
|
| 121 |
+
|
| 122 |
+
cl.user_session.set("chain", chain)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
@cl.on_message
|
| 126 |
+
async def main(message: cl.Message):
|
| 127 |
+
chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain
|
| 128 |
+
cb = cl.AsyncLangchainCallbackHandler()
|
| 129 |
+
res = await chain.acall(message.content, callbacks=[cb])
|
| 130 |
+
answer = res["result"]
|
| 131 |
+
source_documents = res["source_documents"] # type: List[Document]
|
| 132 |
+
|
| 133 |
+
text_elements = [] # type: List[cl.Text]
|
| 134 |
+
|
| 135 |
+
if source_documents:
|
| 136 |
+
for source_idx, source_doc in enumerate(source_documents):
|
| 137 |
+
source_name = f"source_{source_idx}"
|
| 138 |
+
# Create the text element referenced in the message
|
| 139 |
+
text_elements.append(
|
| 140 |
+
cl.Text(content=source_doc.page_content, name=source_name)
|
| 141 |
+
)
|
| 142 |
+
source_names = [text_el.name for text_el in text_elements]
|
| 143 |
+
|
| 144 |
+
if source_names:
|
| 145 |
+
answer += f"\nSources: {', '.join(source_names)}"
|
| 146 |
+
else:
|
| 147 |
+
answer += "\nNo sources found"
|
| 148 |
+
|
| 149 |
+
await cl.Message(content=answer, elements=text_elements).send()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pypdf==3.8.1
|
| 2 |
+
pinecone-client==2.2.1
|
| 3 |
+
tiktoken==0.3.3
|
| 4 |
+
langchain
|
| 5 |
+
chainlit
|
| 6 |
+
protobuf==3.19.3
|